JP4624598B2 - Exhaust gas purification catalyst and production method thereof - Google Patents

Exhaust gas purification catalyst and production method thereof Download PDF

Info

Publication number
JP4624598B2
JP4624598B2 JP2001156652A JP2001156652A JP4624598B2 JP 4624598 B2 JP4624598 B2 JP 4624598B2 JP 2001156652 A JP2001156652 A JP 2001156652A JP 2001156652 A JP2001156652 A JP 2001156652A JP 4624598 B2 JP4624598 B2 JP 4624598B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
supported
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001156652A
Other languages
Japanese (ja)
Other versions
JP2002346391A (en
Inventor
春彦 村上
眞 河合
ルリ 樋口
宏章 玉巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2001156652A priority Critical patent/JP4624598B2/en
Publication of JP2002346391A publication Critical patent/JP2002346391A/en
Application granted granted Critical
Publication of JP4624598B2 publication Critical patent/JP4624598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、燃焼機関から排出される排ガス浄化用触媒とその製造方法に関する。
【0002】
【従来の技術】
自動車の排ガス浄化装置の触媒として、従来から白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)の貴金属が単独あるいは組み合わせて用いられ、通常、触媒担体に担持されている。この排ガス浄化装置は、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等の排ガスの有害成分を酸化または還元させることによって排ガスを浄化する。
【0003】
地球環境問題が叫ばれる中、今後さらに排ガス規制が強化され、さらなる排ガス浄化のために触媒の技術開発が必要となっている。特にエンジン始動直後には触媒の温度が低いため浄化されない排ガスが環境に排出されてしまう。従来よりエンジン始動直後の排ガス浄化の技術開発は盛んに行われている。例えば、高価な貴金属を使用するマニバータ触媒が開発されている。ほかにも、排出されるCO2の量を減らすために、希薄燃焼が有望視され、酸素過剰条件下でもNOxを浄化するCu等の遷移金属をイオン交換してゼオライトに担持したゼオライト系触媒(特開平1−139145号公報)が開発されている。NOx触媒下流にはHC、COを低減するパラジウム−アルミナ等を用いた酸化触媒(特開昭63−100919号公報)、CO、HCとともにNOxをも同時に酸化浄化する三元触媒(特開平5−187229号公報、特開平6−190246号公報)が配設されているものが提案されている。
【0004】
しかしながら、上記貴金属のうち特にロジウムは資源的に豊富ではなく、また、価格面からも高価であるために、その使用量が抑えられている。したがって、ロジウムに比べて、まだ資源的に余裕のある白金が必須成分として使用されている。今後の排ガス規制強化に伴う排ガス浄化用触媒に用いる貴金属の使用量の増加を抑制するために、廉価な貴金属触媒を使用した触媒の開発が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は上述の状況を鑑みてなされたものであり、高価な貴金属であるロジウム(Rh)、白金(Pt)を使用することなく、また、パラジウム(Pd)の使用量を抑えて、今後さらに厳しくなる排ガス規制に対応できる安価な排ガス浄化用触媒を提供することを目的とする。すなわち、コスト上昇を抑えつつ、エンジン低温始動時の排ガス浄化性能の向上、および希薄空燃比域での浄化性能の向上を図れる触媒の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の排ガス浄化用触媒製造方法は、担体にRuを担持させるステップと、次いで、前記担体にPdを担持させるステップとを含む。
本発明の排ガス浄化用触媒製造方法は、別の態様として、担体にRuを担持させるステップと、次いで、担持させたRuを30℃〜150℃の温度で熱処理するステップと、次いで、Pdを含浸担持法により担持させるステップとを含む。
好適には、上述の2つの本発明の排ガス浄化用触媒製造方法は、前記担体にRuとPdとを担持させた後に、Mgと、Caと、Srと、Baと、Cuと、Feと、Laと、Ceと、Niと、Coと、Liと、Znと、Mnとを含む群から選択される一種以上の金属成分を前記担体に担持させるステップをさらに含むことが望ましい。
【0007】
本発明の排ガス浄化用触媒製造方法は、別の態様として、担体にRuを担持させるステップと、次いで、Mgと、Caと、Srと、Baと、Cuと、Feと、Laと、Ceと、Niと、Coと、Liと、Znと、Mnとを含む群から選択される一種以上の金属成分を前記担体に担持させるステップと 次いで、前記担体にPdを担持させるステップとを含む。
好適には、上述した金属成分を前記担体に含浸担持法により担持させることがのぞましい。
【0008】
本発明は、上述した排ガス浄化用触媒製造方法のいずれかの製造方法により製造された排ガス浄化用触媒を提供する。また、本発明は、上述したいずれかの排ガス浄化用触媒製造方法により製造された排ガス浄化用触媒を2種以上含んでなる排ガス浄化用触媒を提供する。
【0009】
本発明の担体にはコージェライト等のセラミック担体、メタル担体を用いることができ、アルミナ、シリカ、ジルコニア、ゼオライト等の多孔質を担体上にコーティングして用いてもよい。担体には、浄化性能向上の目的で、酸素吸蔵物質やNOx吸蔵物質等をコーティング時に付加して使用してもよい。
また、貴金属や金属成分の担体への担持方法として、主に吸水担持法と含浸担持法がある。これらの方法には製造上の特徴(担持するために担体を触媒溶液に含浸する時間、含浸率など)があり、いずれも用途に応じて用いることができるので、本発明では特に限定しない。しかし、金属成分の担持量が多くなりすぎると、RuとPdの排ガス浄化効果が薄れるため、その金属成分の担持量は適宜決定される必要がある。本発明に係る排ガス浄化触媒の製造方法では、Ru、Pdへの金属成分の凝集を防ぐためには、含浸担持法の方が好ましい。含浸担持法とは、担体を触媒活性成分の貴金属を含む溶液に長時間接触させ、吸着により金属成分を担体に担持させ、熱処理し、後処理を行うものである。含浸担持法では、溶液としては、有機溶媒を使用することがあるが、通常は水溶液を使用する。また、吸水担持法とは、担体に触媒活性成分の貴金属を含む溶液をしみ込ませて、短時間で金属成分を担持させる方法である。
【0010】
上述したように、本発明によれば、高価な貴金属であるロジウム(Rh)、白金(Pt)を使用することなく、また、パラジウム(Pd)の使用量を抑えて、コスト面で比較的に優位な貴金属であるルテニウム(Ru)を使用することにより、安価な排ガス浄化用触媒とその製造方法を提供できる。また、パラジウム(Pd)とルテニウム(Ru)に加えて、もうひとつの金属成分を用いることができる。このようにして、コスト上昇を抑えつつ、エンジン低温始動時の排ガス浄化性能の向上、および希薄空燃比域での浄化性能の向上を図れる触媒とその製造方法を提供できる。
【0011】
【発明の実施の形態】
本発明では、Ruとともに用いる高価な貴金属(Pt、Rh、Pd)を選定するための実験を行ったところ、Pdとともに用いた場合に特に低温活性が優れるという知見が得られた。この知見から本発明の触媒は、RuとPdとを、Ruを先にして担体に担持させている。そして、Ru−Pd系触媒を選定し、さらにその浄化性能の向上を目指し鋭意研究した結果、RuとPdを担体に担持させる間に金属成分Mを担持させることによって、さらにCO、HCの酸化浄化性能、耐熱性が向上することも見出された。したがって、Ruを担体に担持したのちに金属成分成分Mを担持し、つぎにPdを担持させたことを特徴とする触媒の製造方法を提供する。RuとPdとのほかに、他の金属成分Mを担体に担持させることにより、CO、HCとともにNOxをも同時に浄化する性能が機能する。
【0012】
本発明に係る別の態様として、RuとPdを担体に担持させた後、他の金属成分であるMを担持させたことを特徴とする触媒の製造方法も提供する。RuとPdとのほかに、他の金属成分Mを担持させることにより、CO、HCとともにNOxをも浄化する性能が機能する。
【0013】
上述した金属成分Mとは、Mgと、Caと、Srと、Baと、Cuと、Feと、Laと、Ceと、Niと、Coと、Liと、Znと、Mnとを含む群から選択される一種以上の金属である。
本発明において用いることができる担体には、例えば、コージェライト等のセラミック担体、メタル担体がある。さらに、本発明においては、アルミナ、シリカ、ジルコニア、ゼオライト等の多孔質を担体上にコーティングして用いていることができる。さらには、浄化性能向上の目的で酸素吸蔵物質、NOx吸蔵物質等をコーティング時に付加し利用してもよい。
【0014】
排ガス浄化性能は、基本的にはRuとPdの担持量に比例する。排ガス浄化性能の影響は、排ガス成分・量を測定することによって決定することができる。また、貴金属や金属の担体への担持方法として、主に吸水担持法と含浸担持法があるが、それらには製造上の含浸時間や含浸率の面で一長一短があるため、本発明では特に吸水担持法であるか、それとも含浸担持法であるかは限定しない。
【0015】
しかし、金属成分の担持量が多くなり過ぎると、RuとPdの排ガス浄化効果が薄れるため、その金属成分の担持量は適宜決定される必要がある。本発明に係る排ガス浄化触媒の製造方法では、一般にRu、Pdへの金属成分の凝集を防ぐため、含浸担持法の方が好ましい。ここで、吸水担持法とは、担体に触媒活性成分の貴金属を含む溶液をしみ込ませて、短時間で金属成分を担持させる方法である。
含浸担持法とは、担体を活性成分の貴金属の溶液に長時間接触させ、熱処理し、後処理を行うものである。含浸担持法では、溶液としては、有機溶媒を使用することがあるが、通常は水溶液を使用する。
【0016】
さらに、本発明の排ガス触媒製造方法は、Ru触媒を担体に担持後の乾燥温度、熱処理温度を特定の範囲に制限することを特徴としている。Ru触媒を担体に担持後に、30℃〜150℃の温度により、Ru成分を熱処理し、つぎにPdを含浸担持させることにより、CO、HCとともにNOxをも同時に浄化する三元触媒としての浄化性能が向上する。この三元触媒としての浄化性能が向上する理由は、Ruの乾燥・熱処理温度を30℃〜150℃の特定の範囲に制限することにより、その後に担持させるPdの含浸率が高くなり、CO、HCとともにNOxをも同時に浄化する三元触媒としての浄化機能が向上するからである。
【0017】
つぎに、本発明の排ガス浄化用触媒の設置例を図を用いて説明する。
図1は、本発明の排ガス浄化用触媒の設置したときの構成の一例を示したものである。排ガス浄化管3の前段に第一触媒として従来の三元触媒1を配置し、後段に第二触媒として本発明のRu−Pd系触媒2を配置する。従来の三元触媒1は触媒活性が高い時にNOxを優先的に浄化する目的で前段に配置し、本発明のRu−Pd系触媒2は低温始動時に三元触媒で浄化しにくいCO、HCを優先的に浄化する目的で後段に配置している。この結果、エンジン低温始動時の排ガス浄化性能の向上、および酸素吸蔵物質、NOx吸蔵物質等の利用による希薄空燃比域での浄化性能の向上を図ることができる。さらに、図1のように、従来の三元触媒1を配置し、Ru−Pd系触媒2との距離を設け、二個の担体を別体として配置したのは、三元触媒浄化に伴う温度上昇が過度になる問題となる場合を考慮したためである。
【0018】
図2は図1の触媒構成の変形例である。排ガス浄化管13での前段に第一触媒として従来の三元触媒またはNOx浄化触媒11を配置し、後段に第二触媒として本発明によるRu−Pd系触媒12を配置するように、一個の担体、あるいは二個の担体を同一排ガス浄化管13に配置してもよい。図2のように、NOx浄化触媒11と、後段の本発明によるRu−Pd系触媒12との間に距離を設けないで設置したのは、製造上のメリットのためである。
【0019】
【実施例】
本発明の排ガス浄化触媒装置の実施例を以下に説明する。以下の実施例1〜6の記述において、ハイフン(−)を使用して、Ru−Pd、Ru−Pd−M、Ru−M−Pdなどの表示がある。これは、左から右にしたがって、担体に担持させる順を示している。つまり、Ru−Pd−Mであると、担体にまずRuを担持させ、つぎにPdを担持させ、金属成分(M)を担持させて得られた触媒を示す。
【0020】
[担体の調製]
本発明の実施例1〜6で用いる担体は、市販のコージェライト製セラミックハニカム(25cm3、400セル/インチ2(62.0セル/cm2))を使用し、粉末状γ−アルミナ(比表面積200m2/g)を常法のウォッシュコート法によりコートしたものを用いた。ここで、ウォッシュコート法とは、適度な粘土を持ち、γ−アルミナが均一に分散したスラリーを使用して、担体をそのスラリーに浸漬、引き上げる操作を行い、γ-アルミナを担体にコートするものである。
【0021】
[触媒の排ガス浄化性能の評価法]
本発明の実施例1〜6における触媒の排ガス浄化性能は、固定床式反応装置に下記のように製造した触媒を装填し、表1に示した組成比の雰囲気からなるモデルガスを空間速度SV=60,000h-1を流通し、反応前後のガス濃度を分析計で測定することにより評価した。表1に示すモデルガスの組成は、エンジン始動から数十秒後の三元触媒通過後の排ガス成分を模擬したものである。表1のガス組成は、A/Fは14.6相当、反応温度は250℃または400℃、COは0.6%、HCは1600ppm、NOは1000ppm、O2は0.6%、CO2は13.9%、H2は0.2%、H2Oは10%、残部はN2とした。
【表1】

Figure 0004624598
【0022】
[実施例1:Ru−Pd−Mの触媒の調製とその排ガス浄化性能の測定]
実施例1として、Ru−Pd−Mで示される触媒の調製とその触媒の排ガス浄化性能の測定を行った。RuとPdの貴金属の合計の担持重量は、担体体積1Lに対して、2g/Lとした。また、担持貴金属のモル比率はRu:Pd=5:1とした。各貴金属の原料として、Ruは硝酸ルテニウム、Pdはジニトロジアンミンパラジウムを使用することにより得た。はじめに、ウォッシュコート済担体にRuの溶液を用いて、吸水担持法によりRuを担体へ担持した。加熱処理後、Pd溶液によってPdを触媒成分として含浸担持した。浸漬時間は2.5時間とした。二成分を担体に担持後、200℃において1時間焼成した。
【0023】
ここで、金属成分Mは、Ca、Sr、Ba、Cu、Fe、La、Ce、Ni、Co、Li、ZnおよびMnからなる群から選択した。使用した金属の各原料成分は硝酸塩であり、0.2g/Lとなる金属成分Mの硝酸塩溶液中にRu−Pdを担持した担体を浸漬すること、つまり含浸担持法により担持した。浸漬時間は2.5時間とした。触媒を担持後、熱処理し、500℃において1時間焼成した。
【0024】
表1に示すCO、HCおよびNOXを含むモデルガスを利用して、試験条件250℃、400℃において、Ru−Pd−Mで表される触媒の排ガス浄化性能を評価した結果を表2に示す。表2から、最下欄に表したRu-Pd二成分よりも高いCO、HCの浄化率を維持しながら、NOX浄化率が向上していることが分かる。また、表2において、金属成分Mが2成分の金属であるときの例として、SrとBa(最下段から3行目)、CuとZn(最下段から2行目)の混合物を担持した触媒があるが、Ru-Pd二成分よりも高いCO、HCの浄化率を維持しながら、NOX浄化率が向上していることが分かる。
【表2】
Figure 0004624598
【0025】
[実施例2:Ru、Pd、Pt、Rhから選択される2成分を含む触媒の調製とその排ガス浄化性能の測定]
実施例2は、本発明の排ガス浄化触媒において、担持される2成分の貴金属において、Ru−Pdの順で担持される触媒が、三元触媒としての浄化機能が高いことを証明するために行われたものである。Ru、Pd、PtおよびRhの群から選択された二成分の貴金属を担持した触媒の排気ガス浄化性能を評価した。
まず、貴金属の担持重量は担体単位体積1Lに対して2g/Lとし、また、担持貴金属率は、Ru:(Pd、Pt、Rh)=5:1とした。各貴金属原料として、Ruは硝酸ルテニウム、Pdはジニトロジアンミンパラジウム、Ptはジニトロジアンミン白金、Rhは硝酸ロジウムを使用した。はじめに、ウォッシュコート済み担体にRuの溶液を吸水担持法により担持した。乾燥後、Pd溶液、Pt溶液またはRh溶液を担体に含浸させて、それぞれ含浸時間として2.5時間をかけて触媒成分を担持させた。二成分を担持後、500℃において1時間焼成し、試料とした。
【0026】
表3は、実施例2における二成分触媒の各触媒の排ガス浄化性能を評価した結果である。試験条件は表1と同様の条件(250℃、400℃など)を用いた。
表3の結果から、Ru−Pt、Ru−Rhの排ガス浄化率は、Pt、Rh単成分(0.33g/L)の排ガス浄化率よりも低かった。しかし、Ru−Pdは、Pd単成分の排ガス浄化率よりも高く、担持された二成分の貴金属による排ガス浄化率の向上が確かめられた。しかしながら、貴金属の担持順序を逆にしてPd−Ruとすると、排ガス浄化性能は格段に劣ることが分かる。よって、本発明のRuを最初に担体に担持させて、その後にPdを担持させることが有効であることが分かる。
【表3】
Figure 0004624598
【0027】
[実施例3:Ru−M−Pdの触媒の調製とその排ガス浄化性能の測定]
つぎに実施例3として、Ru担持後でPd担持前に金属成分Mを担持した結果を表4に示す。Ru−M−Pdで示される順番で担体に担持し、触媒を作製した。実施例2と同様に、貴金属の担持重量は担体単位体積1Lに対して2g/Lとし、また、担持貴金属率は、Ru:Pd=5:1とした。各貴金属原料として、Ruは硝酸ルテニウム、Pdはジニトロジアンミンパラジウムを使用した。金属成分Mは、Mg、Ca、Sr、Ba、Cu、Fe、La、Ce、Ni、Co、Li、Zn、Mnを含む群から選択された。
はじめに、ウォッシュコート済み担体にRuの溶液を吸水担持法により担持した。使用した各金属の原料成分は硝酸塩であり、それぞれ、0.2g/Lの濃度の金属成分Mの硝酸塩溶液中に、Ruを担持した担体を浸漬して、含浸担持法により担持後、熱処理させた。その後、Pd溶液によって、含浸して、2.5時間かけて担持した。担持後、500℃において1時間焼成し、試料とした。
【0028】
調製したRu−M−Pdで表される排ガス浄化用触媒を表1に示すモデルガスを使用し浄化性能を評価した結果を表4に示す。表4より、表3と比較して、Ru−Pdの二成分よりもCO、HC浄化率が特に高くなることが分かった。
【表4】
Figure 0004624598
【0029】
[実施例4:Ru−M−Pdの触媒の排ガス浄化性能の測定]
実施例3で調製したRu−La−Pd、Ru−Sr−Pd、Ru−Ba−Pdにより示される触媒を、PdとRhの2成分系の触媒と200℃という低温時の排ガス浄化性能について比較した。高価な貴金属であるRhとPdのみを使用したPd−Rhを実施例2と同様な調製方法により作製した。PdとRhを合計した貴金属の担持量は担体体積に対して2g/Lとし、また担持貴金属比率はPd:Rh=5:1とした。排ガス浄化性能の試験条件は表1中の温度を200℃にしたほかは同様に行った。表5に示されるように、本発明の排ガス浄化用触媒に係るRu−La−Pd、Ru−Sr−Pd、Ru−Ba−Pdは、200℃という低温にも関わらず、高価な貴金属のみを使用したPd−Rh触媒の浄化性能とほぼ等しい性能を示した。
【表5】
Figure 0004624598
【0030】
[実施例5:Ru−Pd触媒におけるRu調製時加熱処理温度の変化の排ガス浄化性能に対する影響]
実施例5として、RuとPdの二成分の排ガス浄化性能をRu調製時の熱処理温度の変化にしたがって評価した。貴金属の担持重量は、担体体積に対して、RuとPdの合計で2g/Lとし、また、担持された貴金属比率は、Ru:Pd=5:1とした。各貴金属原料として、Ruは硝酸ルテニウム、Pdはジニトロジアンミンパラジウムを使用した。ウォッシュコート済担体に、はじめにRuの溶液を吸水担持法により担持し、表6の左欄で示す温度である室温、30℃、50℃、80℃、100℃、150℃、200℃および500℃において熱処理後、Pd溶液で含浸担持法により、含浸時間として2.5時間でPdを担体に担持した。RuとPdの二成分を担持後、500℃において1時間焼成し、試料とした。表6に示すように、Ru担持後の熱処理温度を変えた触媒を調製し、表1に示すと同様の条件で排ガス浄化性能を評価した。
【0031】
表6に示すように、Ru担持後の各熱処理温度で調製した、各Ru−Pdの浄化性能を評価した結果、30℃〜150℃の熱処理温度範囲内で浄化性能が高いことが分かった。
Ru担持後の30℃〜150℃の熱処理温度の範囲内がよい理由は、Ru担持後に空気中に室温で放置すれば、担持されたRuは化学変化し、黒色化するが、室温下ではその化学変化に必要な時間が長くなり、作業効率が低くなってしまう。また、化学変化をもたらす温度が30℃未満のように低いと、Pd担持溶液に浸したときに、担持したRuがPd担持溶液に溶け込み、Pd溶液は黒くなる。
よって、RuとPdは担体に所定量担持することができず、排ガス浄化機能が落ちてしまう。
そして、150℃以上であると、Ruの凝集のため、排ガス浄化機能が落ちてしまうと考えられる。より好ましい温度範囲は50℃〜80℃である。
【表6】
Figure 0004624598
【0032】
[実施例6:Ru−Pd−Mの触媒の調製とその排ガス浄化性能の測定]
つぎに実施例6として、Ru担持後の熱処理温度を80℃として、Pd担持後、金属成分Mを担持したRu−Pd−Mで示される触媒の浄化性能のを測定した。
まず、RuとPdの貴金属の合計の担持重量は、担体体積1Lに対して、2g/Lとした。また、担持貴金属のモル比率はRu:Pd=5:1とした。各貴金属の原料として、Ruは硝酸ルテニウム、Pdはジニトロジアンミンパラジウムを使用することにより得た。はじめに、ウォッシュコート済担体にRuの溶液を用いて、吸水担持法によりRuを担体へ担持した。温度80℃で熱処理後、Pd溶液によってPdを含浸担持した。浸漬時間は2.5時間とした。二成分を担体に担持後、200℃において1時間焼成した。
【0033】
つぎに、金属成分Mを含浸担持法により担持した。ここで、金属成分Mとして、Sr、Ba、Laを使用した。使用した各原料成分は硝酸塩であり、0.2g/Lとなる金属成分Mの硝酸塩溶液中にRuを担持した担体を浸漬して、含浸担持法により担持し、その後熱処理させた。浸漬時間は2.5時間とした。触媒を担持後、熱処理し、500℃において1時間焼成した。
【0034】
表1に示すCO、HCおよびNOXを含むモデルガスを利用して、試験条件250℃、400℃において、Ru−Pd−Mで表される触媒の排ガス浄化性能を評価した結果を表7に示す。
表6に示したRu−Pd二成分の触媒の同じ熱処理温度80℃のRu−Pdの触媒よりも、表7に示した実施例6のRu−Pd−M触媒のCO、HC浄化率が高くなることが分かった。
【表7】
Figure 0004624598
【0035】
【発明の効果】
本発明に係る排ガス浄化用触媒製造方法を利用することにより、高価な貴金属であるロジウム(Rh)、白金(Pt)を使用することなく、また、パラジウム(Pd)の使用量を抑えて、コスト面で比較的に優位な貴金属であるルテニウム(Ru)とその他の金属成分Mを使用することにより、今後さらに厳しくなる排ガス規制に対応できる安価な排ガス浄化用触媒を提供できる。すなわち、コスト上昇を抑えつつ、エンジン低温始動時の排ガス浄化性能の向上、および希薄空燃比域での浄化性能の向上を図れる排ガス浄化用触媒が提供できる。
【図面の簡単な説明】
【図1】本発明に係る排ガス浄化用触媒の構成の一実施の形態を示した模式図である。
【図2】本発明に係る排ガス浄化用触媒の構成の他の実施の形態を示した模式図である。
【符号の説明】
1 第一触媒(三元触媒)
2 第二触媒(Ru−Pd系触媒)
3 排ガス浄化管
11 三元触媒、NOx浄化触媒
12 Ru−Pd系触媒
13 排ガス浄化管[0001]
[Industrial application fields]
The present invention relates to a catalyst for purifying exhaust gas discharged from a combustion engine and a method for producing the same.
[0002]
[Prior art]
Conventionally, noble metals such as platinum (Pt), rhodium (Rh), palladium (Pd), and iridium (Ir) have been used alone or in combination as catalysts for automobile exhaust gas purification apparatuses, and are usually supported on a catalyst carrier. This exhaust gas purification device purifies exhaust gas by oxidizing or reducing harmful components of exhaust gas such as HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide) and the like.
[0003]
As global environmental problems are screamed, exhaust gas regulations will be strengthened in the future, and catalyst technology development will be required for further exhaust gas purification. In particular, immediately after the engine is started, exhaust gas that is not purified is discharged to the environment because the temperature of the catalyst is low. Conventionally, exhaust gas purification technology development immediately after engine startup has been actively conducted. For example, manipulator catalysts using expensive noble metals have been developed. In addition, in order to reduce the amount of CO 2 emitted, a lean combustion is considered promising, and a zeolite-based catalyst in which transition metals such as Cu that purify NOx are ion-exchanged and supported on zeolite even under oxygen-excess conditions ( JP-A-1-139145) has been developed. Downstream of the NOx catalyst is an oxidation catalyst using palladium-alumina or the like that reduces HC and CO (Japanese Patent Laid-Open No. 63-1000091), and a three-way catalyst that simultaneously oxidizes and purifies NOx together with CO and HC (Japanese Patent Laid-Open No. Hei 5- No. 187229 and JP-A-6-190246 have been proposed.
[0004]
However, rhodium among the above-mentioned noble metals is not abundant in terms of resources and is expensive in terms of price, so that the amount of use thereof is suppressed. Therefore, platinum which is still resource-efficient compared to rhodium is used as an essential component. Development of a catalyst using an inexpensive noble metal catalyst is desired in order to suppress an increase in the amount of noble metal used for an exhaust gas purification catalyst due to future exhaust gas regulation strengthening.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned situation, without using expensive noble metals rhodium (Rh) and platinum (Pt), and further reducing the amount of palladium (Pd) used in the future. An object of the present invention is to provide an inexpensive exhaust gas purifying catalyst capable of complying with stricter exhaust gas regulations. That is, an object of the present invention is to provide a catalyst capable of improving exhaust gas purification performance when starting an engine at a low temperature and improving purification performance in a lean air-fuel ratio region while suppressing an increase in cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing an exhaust gas purifying catalyst of the present invention includes the steps of supporting Ru on a carrier and then supporting Pd on the carrier.
In another aspect of the method for producing an exhaust gas purifying catalyst of the present invention, a step of supporting Ru on a carrier, a step of heat-treating the supported Ru at a temperature of 30 ° C. to 150 ° C., and then impregnation with Pd Supporting by a supporting method.
Preferably, in the above-described two methods for producing an exhaust gas purifying catalyst of the present invention, Ru, Pd are supported on the carrier, and then Mg, Ca, Sr, Ba, Cu, Fe, It is desirable to further include the step of supporting one or more metal components selected from the group including La, Ce, Ni, Co, Li, Zn, and Mn on the carrier.
[0007]
The method for producing an exhaust gas purifying catalyst of the present invention includes, as another aspect, a step of supporting Ru on a carrier, and then Mg, Ca, Sr, Ba, Cu, Fe, La, and Ce. , Ni, Co, Li, Zn, and Mn. One or more metal components selected from the group including Mn are supported on the carrier, and then Pd is supported on the carrier.
Preferably, the above-described metal component is supported on the support by an impregnation support method.
[0008]
The present invention provides an exhaust gas purifying catalyst manufactured by any one of the above-described exhaust gas purifying catalyst manufacturing methods. The present invention also provides an exhaust gas purification catalyst comprising two or more exhaust gas purification catalysts produced by any one of the above-described exhaust gas purification catalyst production methods.
[0009]
As the carrier of the present invention, a ceramic carrier such as cordierite or a metal carrier can be used, and a porous material such as alumina, silica, zirconia, or zeolite may be coated on the carrier. For the purpose of improving purification performance, the carrier may be used by adding an oxygen storage material, a NOx storage material, or the like during coating.
In addition, there are mainly a water absorption support method and an impregnation support method as methods for supporting a noble metal or a metal component on a carrier. These methods have characteristics in production (time for impregnating the carrier with the catalyst solution for loading, impregnation rate, etc.), and any of them can be used according to the application, and is not particularly limited in the present invention. However, if the loading amount of the metal component is too large, the exhaust gas purification effect of Ru and Pd is reduced, so that the loading amount of the metal component needs to be appropriately determined. In the method for producing an exhaust gas purifying catalyst according to the present invention, the impregnation supporting method is preferable in order to prevent aggregation of metal components on Ru and Pd. The impregnation supporting method is a method in which a support is brought into contact with a solution containing a catalytically active noble metal for a long time, a metal component is supported on the support by adsorption, heat-treated, and post-treatment is performed. In the impregnation support method, an organic solvent may be used as the solution, but an aqueous solution is usually used. The water absorption supporting method is a method in which a metal component is supported in a short time by impregnating a carrier with a solution containing a noble metal as a catalytically active component.
[0010]
As described above, according to the present invention, the use of expensive noble metals, rhodium (Rh) and platinum (Pt), and the amount of palladium (Pd) used are suppressed, and the cost is relatively low. By using ruthenium (Ru), which is a precious metal, an inexpensive exhaust gas purifying catalyst and a method for producing the same can be provided. In addition to palladium (Pd) and ruthenium (Ru), another metal component can be used. In this way, it is possible to provide a catalyst and a method for producing the same that can improve the exhaust gas purification performance at the time of starting the engine at a low temperature and improve the purification performance in a lean air-fuel ratio region while suppressing an increase in cost.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an experiment for selecting an expensive noble metal (Pt, Rh, Pd) to be used with Ru was conducted, and it was found that the low temperature activity was particularly excellent when used with Pd. From this finding, the catalyst of the present invention has Ru and Pd supported on a carrier with Ru first. As a result of selection of Ru-Pd-based catalyst and intensive research aimed at further improving its purification performance, it is possible to further purify the oxidation of CO and HC by supporting the metal component M while supporting Ru and Pd on the support. It has also been found that performance and heat resistance are improved. Accordingly, the present invention provides a method for producing a catalyst, characterized in that a metal component M is supported after Ru is supported on a carrier, and then Pd is supported. In addition to Ru and Pd, the performance of simultaneously purifying NOx as well as CO and HC functions by supporting another metal component M on the carrier.
[0012]
As another aspect of the present invention, there is also provided a method for producing a catalyst, characterized in that Ru and Pd are supported on a support and then M which is another metal component is supported. By supporting other metal component M in addition to Ru and Pd, the performance of purifying NOx as well as CO and HC functions.
[0013]
The metal component M described above is a group including Mg, Ca, Sr, Ba, Cu, Fe, La, Ce, Ni, Co, Li, Zn, and Mn. One or more metals selected.
Examples of the carrier that can be used in the present invention include a ceramic carrier such as cordierite and a metal carrier. Furthermore, in the present invention, a porous material such as alumina, silica, zirconia, or zeolite can be coated on the support. Furthermore, for the purpose of improving purification performance, an oxygen storage material, a NOx storage material, or the like may be added and used during coating.
[0014]
The exhaust gas purification performance is basically proportional to the amount of Ru and Pd supported. The influence of the exhaust gas purification performance can be determined by measuring exhaust gas components and amounts. In addition, as a method for supporting a noble metal or a metal carrier, there are mainly a water absorption support method and an impregnation support method. However, since they have advantages and disadvantages in terms of impregnation time and impregnation rate in production, in the present invention, water absorption is particularly preferable. It is not limited whether it is a supporting method or an impregnation supporting method.
[0015]
However, if the loading amount of the metal component becomes too large, the exhaust gas purification effect of Ru and Pd is diminished, so that the loading amount of the metal component needs to be appropriately determined. In the method for producing an exhaust gas purifying catalyst according to the present invention, the impregnation supporting method is generally preferable in order to prevent aggregation of metal components on Ru and Pd. Here, the water absorption supporting method is a method in which a metal component is supported in a short time by impregnating a carrier with a solution containing a noble metal as a catalytically active component.
The impregnation supporting method is a method in which a support is brought into contact with a solution of a noble metal as an active ingredient for a long time, heat-treated and post-treated. In the impregnation support method, an organic solvent may be used as the solution, but an aqueous solution is usually used.
[0016]
Furthermore, the exhaust gas catalyst production method of the present invention is characterized in that the drying temperature and heat treatment temperature after the Ru catalyst is supported on the carrier are limited to a specific range. Purification performance as a three-way catalyst that simultaneously purifies NOx as well as CO and HC by heat-treating the Ru component at a temperature of 30 ° C. to 150 ° C. and then impregnating and supporting Pd after supporting the Ru catalyst on the support. Will improve. The reason why the purification performance as this three-way catalyst is improved is that the impregnation ratio of Pd supported thereafter is increased by limiting the drying / heat treatment temperature of Ru to a specific range of 30 ° C. to 150 ° C., and CO, This is because the purification function as a three-way catalyst that simultaneously purifies NOx as well as HC is improved.
[0017]
Next, an installation example of the exhaust gas purifying catalyst of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of the configuration when the exhaust gas purifying catalyst of the present invention is installed. The conventional three-way catalyst 1 is arranged as a first catalyst in the front stage of the exhaust gas purification pipe 3, and the Ru-Pd catalyst 2 of the present invention is arranged as the second catalyst in the rear stage. The conventional three-way catalyst 1 is arranged in the preceding stage for the purpose of preferentially purifying NOx when the catalyst activity is high, and the Ru-Pd-based catalyst 2 of the present invention is capable of removing CO and HC that are difficult to purify with the three-way catalyst at low temperature start. It arranges in the latter part for the purpose of purifying preferentially. As a result, it is possible to improve the exhaust gas purification performance when starting the engine at a low temperature and to improve the purification performance in a lean air-fuel ratio region by using an oxygen storage material, NOx storage material, or the like. Further, as shown in FIG. 1, the conventional three-way catalyst 1 is disposed, the distance from the Ru-Pd catalyst 2 is provided, and the two carriers are disposed separately. This is because the case where the rise becomes a problem becomes excessive.
[0018]
FIG. 2 is a modification of the catalyst configuration of FIG. One carrier so that the conventional three-way catalyst or NOx purification catalyst 11 is arranged as the first catalyst in the front stage of the exhaust gas purification pipe 13 and the Ru-Pd-based catalyst 12 according to the present invention is arranged as the second catalyst in the rear stage. Alternatively, two carriers may be arranged in the same exhaust gas purification pipe 13. As shown in FIG. 2, the reason why the NOx purification catalyst 11 and the Ru—Pd catalyst 12 according to the present invention in the subsequent stage are installed without providing a distance is because of manufacturing merit.
[0019]
【Example】
Examples of the exhaust gas purifying catalyst device of the present invention will be described below. In the following description of Examples 1 to 6, there are indications such as Ru-Pd, Ru-Pd-M, Ru-M-Pd using a hyphen (-). This shows the order of loading on the carrier from left to right. That is, Ru—Pd-M indicates a catalyst obtained by first supporting Ru on the carrier, then supporting Pd, and supporting the metal component (M).
[0020]
[Preparation of carrier]
The carrier used in Examples 1 to 6 of the present invention is a commercially available cordierite ceramic honeycomb (25 cm 3 , 400 cells / inch 2 (62.0 cells / cm 2 )), and powdery γ-alumina (ratio) A surface area of 200 m 2 / g) coated by a conventional wash coat method was used. Here, the wash-coating method uses a slurry in which moderate clay is present and γ-alumina is uniformly dispersed, and the carrier is immersed in and pulled up to coat the carrier with γ-alumina. It is.
[0021]
[Evaluation method of exhaust gas purification performance of catalyst]
The exhaust gas purification performance of the catalysts in Examples 1 to 6 of the present invention is as follows. The catalyst produced in the following manner is loaded into a fixed bed reactor, and the model gas having the composition ratio shown in Table 1 is converted into a space velocity SV. = 60,000 h -1, and the gas concentration before and after the reaction was evaluated by measuring with an analyzer. The composition of the model gas shown in Table 1 simulates the exhaust gas component after passing through the three-way catalyst several tens of seconds after starting the engine. The gas composition of Table 1 is A / F equivalent to 14.6, the reaction temperature is 250 ° C. or 400 ° C., CO is 0.6%, HC is 1600 ppm, NO is 1000 ppm, O 2 is 0.6%, CO 2 Was 13.9%, H 2 was 0.2%, H 2 O was 10%, and the balance was N 2 .
[Table 1]
Figure 0004624598
[0022]
[Example 1: Preparation of Ru-Pd-M catalyst and measurement of its exhaust gas purification performance]
As Example 1, a catalyst represented by Ru-Pd-M was prepared and the exhaust gas purification performance of the catalyst was measured. The total supported weight of the precious metals of Ru and Pd was 2 g / L with respect to 1 L of the carrier volume. The molar ratio of the supported noble metal was Ru: Pd = 5: 1. As the raw materials for each noble metal, Ru was obtained by using ruthenium nitrate and Pd by using dinitrodiammine palladium. First, Ru was supported on a carrier by a water absorption supporting method using a Ru solution as a washed coated carrier. After the heat treatment, Pd was impregnated and supported as a catalyst component with a Pd solution. The immersion time was 2.5 hours. The two components were supported on a carrier and then calcined at 200 ° C. for 1 hour.
[0023]
Here, the metal component M was selected from the group consisting of Ca, Sr, Ba, Cu, Fe, La, Ce, Ni, Co, Li, Zn, and Mn. Each raw material component of the metal used was nitrate, and the support carrying Ru—Pd was immersed in a nitrate solution of metal component M at 0.2 g / L, that is, supported by an impregnation support method. The immersion time was 2.5 hours. After loading the catalyst, it was heat-treated and calcined at 500 ° C. for 1 hour.
[0024]
Table 2 shows the results of evaluating the exhaust gas purification performance of the catalyst represented by Ru-Pd-M under the test conditions of 250 ° C. and 400 ° C. using the model gas containing CO, HC and NO x shown in Table 1. Show. From Table 2, it can be seen that the NO x purification rate is improved while maintaining the higher CO and HC purification rates than the Ru—Pd two components shown in the bottom column. In Table 2, as an example when the metal component M is a two-component metal, a catalyst supporting a mixture of Sr and Ba (third row from the bottom row) and Cu and Zn (second row from the bottom row) However, it can be seen that the NO x purification rate is improved while maintaining the CO and HC purification rates higher than those of the Ru—Pd two components.
[Table 2]
Figure 0004624598
[0025]
[Example 2: Preparation of catalyst containing two components selected from Ru, Pd, Pt, Rh and measurement of exhaust gas purification performance thereof]
Example 2 is performed to prove that in the exhaust gas purifying catalyst of the present invention, a supported catalyst in the order of Ru-Pd has a high purification function as a three-way catalyst in the two precious metals supported. It has been broken. The exhaust gas purification performance of a catalyst carrying a binary noble metal selected from the group of Ru, Pd, Pt and Rh was evaluated.
First, the supported weight of the noble metal was 2 g / L with respect to 1 L of the carrier unit volume, and the supported noble metal ratio was Ru: (Pd, Pt, Rh) = 5: 1. As each noble metal raw material, Ru was ruthenium nitrate, Pd was dinitrodiammine palladium, Pt was dinitrodiammine platinum, and Rh was rhodium nitrate. First, a Ru solution was supported on a washcoated carrier by a water absorption supporting method. After drying, the support was impregnated with a Pd solution, Pt solution or Rh solution, and the catalyst component was supported on each of the impregnation time over 2.5 hours. After loading the two components, it was fired at 500 ° C. for 1 hour to prepare a sample.
[0026]
Table 3 shows the results of evaluating the exhaust gas purification performance of each catalyst of the two-component catalyst in Example 2. Test conditions similar to those in Table 1 (250 ° C., 400 ° C., etc.) were used.
From the results of Table 3, the exhaust gas purification rates of Ru-Pt and Ru-Rh were lower than the exhaust gas purification rates of Pt and Rh single components (0.33 g / L). However, Ru—Pd is higher than the exhaust gas purification rate of the single Pd component, and it has been confirmed that the exhaust gas purification rate is improved by the supported two-component noble metal. However, if the noble metal loading order is reversed to Pd—Ru, it can be seen that the exhaust gas purification performance is remarkably inferior. Therefore, it can be seen that it is effective to first support Ru of the present invention on a carrier and then support Pd.
[Table 3]
Figure 0004624598
[0027]
[Example 3: Preparation of Ru-M-Pd catalyst and measurement of its exhaust gas purification performance]
Next, as Example 3, the results of loading the metal component M after loading Ru and before loading Pd are shown in Table 4. The catalyst was produced by supporting it on the support in the order indicated by Ru-M-Pd. As in Example 2, the supported weight of the noble metal was 2 g / L with respect to 1 L of the carrier unit volume, and the supported noble metal ratio was Ru: Pd = 5: 1. As each noble metal raw material, Ru used ruthenium nitrate and Pd used dinitrodiammine palladium. The metal component M was selected from the group comprising Mg, Ca, Sr, Ba, Cu, Fe, La, Ce, Ni, Co, Li, Zn, Mn.
First, a Ru solution was supported on a washcoated carrier by a water absorption supporting method. The raw material component of each metal used was nitrate, and a carrier carrying Ru was immersed in a nitrate solution of metal component M having a concentration of 0.2 g / L, and after carrying by an impregnation loading method, heat treatment was performed. It was. Thereafter, it was impregnated with a Pd solution and supported for 2.5 hours. After loading, it was fired at 500 ° C. for 1 hour to prepare a sample.
[0028]
Table 4 shows the results of evaluating the purification performance of the prepared exhaust gas purification catalyst represented by Ru-M-Pd using the model gas shown in Table 1. From Table 4, it was found that the CO and HC purification rates were particularly higher than those of Ru—Pd, compared with Table 3.
[Table 4]
Figure 0004624598
[0029]
[Example 4: Measurement of exhaust gas purification performance of Ru-M-Pd catalyst]
The catalyst represented by Ru-La-Pd, Ru-Sr-Pd, and Ru-Ba-Pd prepared in Example 3 is compared with the two-component catalyst of Pd and Rh for the exhaust gas purification performance at a low temperature of 200 ° C. did. Pd—Rh using only expensive noble metals Rh and Pd was produced by the same preparation method as in Example 2. The amount of the noble metal supported by adding Pd and Rh was 2 g / L with respect to the carrier volume, and the supported noble metal ratio was Pd: Rh = 5: 1. Exhaust gas purification performance was tested in the same manner except that the temperature in Table 1 was changed to 200 ° C. As shown in Table 5, Ru-La-Pd, Ru-Sr-Pd, and Ru-Ba-Pd related to the exhaust gas purifying catalyst of the present invention are only expensive noble metals despite the low temperature of 200 ° C. The performance was almost equal to the purification performance of the used Pd—Rh catalyst.
[Table 5]
Figure 0004624598
[0030]
[Example 5: Effect of heat treatment temperature change during Ru preparation on Ru-Pd catalyst on exhaust gas purification performance]
As Example 5, the exhaust gas purification performance of the two components Ru and Pd was evaluated according to the change in the heat treatment temperature during Ru preparation. The supported weight of the noble metal was 2 g / L in total of Ru and Pd with respect to the carrier volume, and the supported noble metal ratio was Ru: Pd = 5: 1. As each noble metal raw material, Ru used ruthenium nitrate and Pd used dinitrodiammine palladium. First, a Ru solution is supported on a wash-coated carrier by a water-absorbing method, and the temperatures shown in the left column of Table 6 are room temperature, 30 ° C., 50 ° C., 80 ° C., 100 ° C., 150 ° C., 200 ° C. and 500 ° C. After the heat treatment, Pd was supported on the support with a Pd solution by an impregnation supporting method for 2.5 hours as the impregnation time. After supporting two components of Ru and Pd, the sample was baked at 500 ° C. for 1 hour to prepare a sample. As shown in Table 6, catalysts with different heat treatment temperatures after Ru loading were prepared, and the exhaust gas purification performance was evaluated under the same conditions as shown in Table 1.
[0031]
As shown in Table 6, as a result of evaluating the purification performance of each Ru-Pd prepared at each heat treatment temperature after Ru loading, it was found that the purification performance was high within a heat treatment temperature range of 30 ° C to 150 ° C.
The reason why the heat treatment temperature within the range of 30 ° C. to 150 ° C. after loading Ru is good is that if it is left in air at room temperature after loading Ru, the loaded Ru changes chemically and becomes black, but at room temperature The time required for the chemical change becomes longer and the work efficiency becomes lower. On the other hand, when the temperature causing the chemical change is low, such as less than 30 ° C., the supported Ru dissolves in the Pd support solution when immersed in the Pd support solution, and the Pd solution becomes black.
Therefore, Ru and Pd cannot be supported in a predetermined amount on the carrier, and the exhaust gas purification function is deteriorated.
And if it is 150 degreeC or more, it is thought that an exhaust gas purification function will fall because of aggregation of Ru. A more preferable temperature range is 50 ° C to 80 ° C.
[Table 6]
Figure 0004624598
[0032]
[Example 6: Preparation of Ru-Pd-M catalyst and measurement of its exhaust gas purification performance]
Next, as Example 6, the heat treatment temperature after Ru loading was set to 80 ° C., and the purification performance of the catalyst represented by Ru—Pd-M carrying the metal component M after Pd loading was measured.
First, the total supported weight of the precious metals of Ru and Pd was 2 g / L with respect to 1 L of the carrier volume. The molar ratio of the supported noble metal was Ru: Pd = 5: 1. As the raw materials for each noble metal, Ru was obtained by using ruthenium nitrate and Pd by using dinitrodiammine palladium. First, Ru was supported on a carrier by a water absorption supporting method using a Ru solution as a washed coated carrier. After heat treatment at a temperature of 80 ° C., Pd was impregnated and supported by the Pd solution. The immersion time was 2.5 hours. The two components were supported on a carrier and then calcined at 200 ° C. for 1 hour.
[0033]
Next, the metal component M was supported by an impregnation support method. Here, Sr, Ba, and La were used as the metal component M. Each raw material component used was nitrate, and a carrier carrying Ru was immersed in a nitrate solution of metal component M at 0.2 g / L, carried by an impregnation loading method, and then heat-treated. The immersion time was 2.5 hours. After loading the catalyst, it was heat-treated and calcined at 500 ° C. for 1 hour.
[0034]
Table 7 shows the results of evaluating the exhaust gas purification performance of the catalyst represented by Ru-Pd-M under the test conditions of 250 ° C. and 400 ° C. using the model gas containing CO, HC and NO x shown in Table 1. Show.
The Ru-Pd-M catalyst of Example 6 shown in Table 7 has a higher CO and HC purification rate than the Ru-Pd catalyst having the same heat treatment temperature of 80 ° C of the Ru-Pd binary catalyst shown in Table 6. I found out that
[Table 7]
Figure 0004624598
[0035]
【The invention's effect】
By using the method for producing an exhaust gas purifying catalyst according to the present invention, the cost can be reduced without using expensive precious metals such as rhodium (Rh) and platinum (Pt), and reducing the amount of palladium (Pd) used. By using ruthenium (Ru), which is a relatively precious metal in terms of surface, and other metal components M, it is possible to provide an inexpensive exhaust gas purifying catalyst that can meet exhaust gas regulations that will become stricter in the future. That is, it is possible to provide an exhaust gas purification catalyst capable of improving the exhaust gas purification performance at the time of engine low temperature start and improving the purification performance in a lean air-fuel ratio region while suppressing an increase in cost.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a configuration of an exhaust gas purifying catalyst according to the present invention.
FIG. 2 is a schematic view showing another embodiment of the configuration of the exhaust gas purifying catalyst according to the present invention.
[Explanation of symbols]
1 First catalyst (three-way catalyst)
2 Second catalyst (Ru-Pd catalyst)
3 Exhaust gas purification pipe 11 Three-way catalyst, NOx purification catalyst 12 Ru-Pd catalyst 13 Exhaust gas purification pipe

Claims (3)

担体に対して最初にRuを担持させるステップと、
前記Ruを前記担体担持させた後、さらに30℃〜150℃の温度で熱処理するステップと、
前記担体にRuを担持させた後、さらにPdを含浸担持法により担持させるステップと、
前記担体にRuとPdとを担持させた後、さらにMgと、Caと、Srと、Baと、Cuと、Feと、Laと、Ceと、Niと、Coと、Liと、Znと、Mnとを含む群から選択される一種以上の金属成分を担持させるステップと
を含む排ガス浄化用触媒製造方法。
First carrying Ru on the carrier;
After the Ru is supported on the carrier, further heat-treating at a temperature of 30 ° C. to 150 ° C .;
After supporting Ru on the carrier, further supporting Pd by an impregnation supporting method;
After supporting Ru and Pd on the carrier, Mg, Ca, Sr, Ba, Cu, Fe, La, Ce, Ni, Co, Li, Zn, And a step of supporting one or more metal components selected from the group containing Mn.
担体に対して最初にRuを担持させるステップと、
前記Ruを前記担体担持させた後、さらに30℃〜150℃の温度で熱処理するステップと、
前記担体にRuを担持させた後、さらにMgと、Caと、Srと、Baと、Cuと、Feと、Laと、Ceと、Niと、Coと、Liと、Znと、Mnとを含む群から選択される一種以上の金属成分を担持させるステップと、
前記担体にRuと前記一種以上の金属成分とを含浸担持法により担持させた後、さらにPdを含浸担持法により担持させるステップと
を含む排ガス浄化用触媒製造方法。
First carrying Ru on the carrier;
After the Ru is supported on the carrier, further heat-treating at a temperature of 30 ° C. to 150 ° C .;
After supporting Ru on the carrier, Mg, Ca, Sr, Ba, Cu, Fe, La, Ce, Ni, Co, Li, Zn, and Mn are further added. Carrying one or more metal components selected from the group comprising:
A method for producing an exhaust gas purifying catalyst, comprising: supporting Ru and the one or more metal components on the support by an impregnation supporting method; and further supporting Pd by an impregnation supporting method.
前記一種以上の金属成分を前記担体に含浸担持法により担持させる請求項1または2に記載の排ガス浄化用触媒製造方法。  The method for producing a catalyst for exhaust gas purification according to claim 1 or 2, wherein the one or more metal components are supported on the carrier by an impregnation supporting method.
JP2001156652A 2001-05-25 2001-05-25 Exhaust gas purification catalyst and production method thereof Expired - Fee Related JP4624598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156652A JP4624598B2 (en) 2001-05-25 2001-05-25 Exhaust gas purification catalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156652A JP4624598B2 (en) 2001-05-25 2001-05-25 Exhaust gas purification catalyst and production method thereof

Publications (2)

Publication Number Publication Date
JP2002346391A JP2002346391A (en) 2002-12-03
JP4624598B2 true JP4624598B2 (en) 2011-02-02

Family

ID=19000639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156652A Expired - Fee Related JP4624598B2 (en) 2001-05-25 2001-05-25 Exhaust gas purification catalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP4624598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101824472B1 (en) 2015-12-23 2018-02-01 희성촉매 주식회사 A three-way catalyst comprising a thin layer having precious metal components
JP6688640B2 (en) * 2016-03-15 2020-04-28 太平洋セメント株式会社 Catalyst carrier, method for producing the same, catalyst carrier and water treatment material

Also Published As

Publication number Publication date
JP2002346391A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3956437B2 (en) Exhaust gas purification catalyst
JP3391878B2 (en) Exhaust gas purification catalyst
JPH0910594A (en) Catalyst for purifying exhaust gas
JPH0653229B2 (en) Exhaust gas purification catalyst
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4716087B2 (en) Exhaust gas purification catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH11285644A (en) Production of catalyst
JP3546908B2 (en) Ammonia purification catalyst device
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP2910278B2 (en) Exhaust gas purification method
JP5628487B2 (en) Nitrogen oxide purification method
JP2002282697A (en) Catalyst for cleaning exhaust gas
JPH0871424A (en) Catalyst for purification of exhaust gas
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JPH11324663A (en) Catalyst for controlling of exhaust gas emission
JP4285044B2 (en) Method for producing exhaust gas purification catalyst
JP2001058131A (en) Catalyst for exhaust gas treatment
JPH1099691A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP4231959B2 (en) Exhaust gas purification catalyst
JPH1052643A (en) Catalyst for exhaust gas purification and method for purifying exhaust gas
JP2001009288A (en) Catalyst for purification of exhaust gas
JP2000279813A (en) Exhaust gas cleaning catalyst and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees