JP3395525B2 - Internal combustion engine exhaust gas purification catalyst and purification method - Google Patents

Internal combustion engine exhaust gas purification catalyst and purification method

Info

Publication number
JP3395525B2
JP3395525B2 JP14698196A JP14698196A JP3395525B2 JP 3395525 B2 JP3395525 B2 JP 3395525B2 JP 14698196 A JP14698196 A JP 14698196A JP 14698196 A JP14698196 A JP 14698196A JP 3395525 B2 JP3395525 B2 JP 3395525B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
internal combustion
combustion engine
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14698196A
Other languages
Japanese (ja)
Other versions
JPH09327617A (en
Inventor
博史 花岡
黒田  修
良太 土井
秀宏 飯塚
敏雄 小川
寿生 山下
茂 小豆畑
雄一 北原
俊史 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14698196A priority Critical patent/JP3395525B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to DE69730539T priority patent/DE69730539T2/en
Priority to EP00109189A priority patent/EP1039104B1/en
Priority to AU30485/97A priority patent/AU721398C/en
Priority to PCT/JP1997/001955 priority patent/WO1997047864A1/en
Priority to EP04006545A priority patent/EP1433933A3/en
Priority to KR1019980710129A priority patent/KR100290272B1/en
Priority to CA002257949A priority patent/CA2257949C/en
Priority to EP97925297A priority patent/EP0904482B2/en
Priority to US09/202,243 priority patent/US6161378A/en
Priority to DE69703840T priority patent/DE69703840T3/en
Publication of JPH09327617A publication Critical patent/JPH09327617A/en
Priority to US09/620,650 priority patent/US6397582B1/en
Priority to US10/119,075 priority patent/US7093432B2/en
Application granted granted Critical
Publication of JP3395525B2 publication Critical patent/JP3395525B2/en
Priority to US10/900,320 priority patent/US20050089456A1/en
Priority to US11/746,313 priority patent/US20070204595A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関から排出される排ガス中の窒素酸化物(以下NOx)
を浄化する触媒であって、硫黄酸化物(以下SOx)に
対する耐久性に優れた触媒材料及びこれを用いた排ガス
浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitrogen oxides (hereinafter NOx) in exhaust gas discharged from internal combustion engines of automobiles and the like.
The present invention relates to a catalyst material for purifying exhaust gas, which is excellent in durability against sulfur oxides (hereinafter referred to as SOx), and an exhaust gas purification method using the same.

【0002】[0002]

【従来の技術】自動車等の内燃機関から排出される排ガ
ス中に含まれる、一酸化炭素(以下CO),炭化水素
(以下HC),NOx等は大気汚染物質として人体に悪
影響を及ぼす他、植物の発育を妨げる等の問題をもたら
す。そこで従来より、これら有害物質の排出量低減のた
め、数多くの研究が行われ、内燃機関における燃焼条件
等の改善による有害物質発生量の低減,排出された有害
物質を触媒で浄化する方法等の開発が進められてきた。
現在、自動車排ガスの場合、Pt,Rh,Pd等の貴金
属を主成分とした三元触媒により、HC及びCOを酸化
すると同時に、NOxを還元して無害化する方法が主流
となっている。
2. Description of the Related Art Carbon monoxide (hereinafter CO), hydrocarbons (hereinafter HC), NOx, etc. contained in exhaust gas discharged from an internal combustion engine of an automobile or the like adversely affect the human body as air pollutants, and plants Cause problems such as hindering the growth of. Therefore, many researches have been conducted to reduce the emission of these harmful substances, such as reduction of the amount of harmful substances generated by improving combustion conditions in internal combustion engines, purification of discharged harmful substances with a catalyst, etc. Development has been advanced.
At present, in the case of automobile exhaust gas, a method of oxidizing HC and CO with a three-way catalyst containing a noble metal such as Pt, Rh, and Pd as a main component and simultaneously reducing NOx to render it harmless is predominant.

【0003】一般に三元触媒は、酸素濃度の低い理論空
燃比(A(空気の重量)/F(燃料の重量)=14.7)
近傍でしか、有害物質の浄化に有効に作用しない。この
ため、通常の自動車エンジンの場合、空燃比をこの理論
空燃比近傍に制御して、有害物質の大気中への排出を抑
制してきた。
Generally, a three-way catalyst has a low oxygen concentration at a theoretical air-fuel ratio (A (weight of air) / F (weight of fuel) = 14.7).
Effective only in the vicinity to purify harmful substances. Therefore, in the case of an ordinary automobile engine, the air-fuel ratio has been controlled to be close to the stoichiometric air-fuel ratio to suppress the emission of harmful substances into the atmosphere.

【0004】しかし、理論空燃比よりも希薄な空燃比で
運転すると、燃費が向上できることから、近年希薄空燃
比で運転するリーンバーン車の開発が進められている。
このリーンバーン車では、排ガス中に酸素を高濃度(3
〜10容量%)で含むため、従来の三元触媒では、HC
やCOは酸化して無害化できるものの、NOxを還元す
る能力に乏しく、無害化できない。そこで、リーンバー
ン対応のNOx浄化技術として、酸素共存下でもNOx
を還元浄化できる触媒(以下リーンNOx触媒)につい
て研究が進められている。一例としては、特開平1−13
0735号や特開平1−266854号に、銅等の遷移金属を担持
したゼオライト触媒が開示されている。
However, since fuel consumption can be improved by operating at an air-fuel ratio leaner than the stoichiometric air-fuel ratio, in recent years, lean burn vehicles operating at lean air-fuel ratio have been developed.
This lean-burn vehicle has a high concentration of oxygen (3
In the conventional three-way catalyst, HC
Although CO and CO can be detoxified by oxidation, they have poor ability to reduce NOx and cannot be detoxified. Therefore, as a NOx purification technology for lean burn, NOx can be used even in the presence of oxygen.
Research is progressing on catalysts that can reduce and purify air (hereinafter referred to as lean NOx catalysts). As one example, Japanese Patent Laid-Open No. 1-13
No. 0735 and JP-A-1-266854 disclose zeolite catalysts carrying a transition metal such as copper.

【0005】[0005]

【発明が解決しようとする課題】リーンNOx触媒の開
発の課題としては、活性向上,耐熱性向上,耐被毒性向
上などがある。中でも、ガソリン中に含まれる硫黄分に
よる触媒の被毒は大きな問題であり、耐SOx性の向上
が重要な課題となっている。
Problems to be solved by the invention include the improvement of activity, the improvement of heat resistance, and the improvement of resistance to poisoning. Above all, poisoning of the catalyst by the sulfur content contained in gasoline is a big problem, and improvement of SOx resistance is an important issue.

【0006】一般的に触媒は、SO2よりもSO3に対し
て被毒されやすい。リーンバーン排ガスでは、高濃度の
酸素が共存するため、SO2は容易にSO3に酸化され、
従来の理論空燃比で運転されるエンジン排ガスに比べ
て、触媒を被毒しやすい。従ってリーンNOx触媒にお
いては、耐SOx性の向上が必要不可欠となる。
In general, catalysts are more susceptible to poisoning with SO 3 than SO 2 . In lean burn exhaust gas, high concentration of oxygen coexists, so SO 2 is easily oxidized to SO 3 ,
The catalyst is more likely to be poisoned than the conventional engine exhaust gas operated at the theoretical air-fuel ratio. Therefore, in the lean NOx catalyst, it is essential to improve the SOx resistance.

【0007】これまでに特開平7−51544号で分解しやす
い複合硫酸塩をつくる方法、特開平7−171349号ではS
2の酸化を抑制する方法等が提案されている。本発明
は、これらの範疇に属し、優れた耐SOx性を有する内
燃機関排ガス中のNOx浄化触媒及びこれを用いた排ガ
ス浄化方法を提供するものである。
A method for producing a complex sulfate which is easily decomposed in JP-A-7-51544, and an S-method in JP-A-171349 has been disclosed.
A method for suppressing the oxidation of O 2 has been proposed. The present invention provides a NOx purification catalyst in an exhaust gas of an internal combustion engine having excellent SOx resistance, which belongs to these categories, and an exhaust gas purification method using the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、排ガス浄
化触媒の耐SOx性を向上させる方法について鋭意検討
した結果、アルカリ土類金属とともにチタンを担持する
ことにより、S被毒が抑制されると同時に、300℃以
上の還元雰囲気にさらすとNOx浄化性能が回復するこ
とを見い出した。
Means for Solving the Problems As a result of intensive studies on the method for improving the SOx resistance of an exhaust gas purifying catalyst, the present inventors have found that S poisoning is suppressed by supporting titanium with an alkaline earth metal. At the same time, it was found that the NOx purification performance was restored when exposed to a reducing atmosphere at 300 ° C or higher.

【0009】本発明の特徴は、多孔質担体に活性成分と
してアルカリ土類金属及びチタンを担持することにより
耐SOx性を高めた排ガス浄化触媒にある。
A feature of the present invention is an exhaust gas purifying catalyst having improved SOx resistance by supporting an alkaline earth metal and titanium as active components on a porous carrier.

【0010】なお、アルカリ土類金属及びチタンを多孔
質担体に担持する方法としては、アルカリ土類金属を担
持した後、チタンを担持する。
[0010] As a method for carrying the alkaline earth metal and titanium on a porous support, after carrying A alkaline earth metal, it supported titanium.

【0011】本発明者らは、上記の耐SOx性に優れた
排ガス浄化触媒に、さらに貴金属を担持することによ
り、NOx浄化の触媒活性が向上することを見いだし
た。
The present inventors have found that the catalyst activity for NOx purification is improved by further supporting a noble metal on the exhaust gas purification catalyst excellent in SOx resistance.

【0012】従って、本発明の他の特徴は、多孔質担体
に活性成分としてアルカリ土類金属及びチタンを担持
し、さらに貴金属を担持したことにある。
Therefore, another feature of the present invention resides in that an alkaline earth metal and titanium as active ingredients are carried on a porous carrier, and a noble metal is further carried thereon.

【0013】さらに本発明者らは、アルカリ土類金属,
チタン及び貴金属を担持した排ガス浄化触媒に、希土類
金属を担持することにより、さらに触媒活性が向上する
ことを見いだした。
Furthermore, the present inventors have found that an alkaline earth metal,
It has been found that the catalyst activity is further improved by supporting the rare earth metal on the exhaust gas purifying catalyst supporting titanium and noble metal.

【0014】本発明のさらなる特徴は、多孔質担体に活
性成分として希土類金属,アルカリ土類金属及びチタン
を担持し、さらに貴金属を担持したことにある。
A further feature of the present invention is that a rare earth metal, an alkaline earth metal and titanium as active ingredients are carried on a porous carrier, and a noble metal is further carried thereon.

【0015】本発明は、アルカリ土類金属及びチタンの
担持量を限定するものではないが、多孔質担体に対して
アルカリ土類金属が3〜40重量%,チタンが0.1 〜
30重量%の範囲とすることにより、さらに良好な触媒
活性が得られる。
The present invention does not limit the supported amounts of alkaline earth metal and titanium, but the alkaline earth metal is contained in an amount of 3 to 40% by weight and the titanium content is in the range of 0.1 to 0.1 with respect to the porous carrier.
When the amount is in the range of 30% by weight, a better catalytic activity can be obtained.

【0016】本発明において担持するアルカリ土類金属
としては、マグネシウム,カルシウム,ストロンチウ
ム,バリウムが使用できるが、ストロンチウムを用いる
と特に良好な結果が得られる。
As the alkaline earth metal supported in the present invention, magnesium, calcium, strontium and barium can be used, but particularly good results can be obtained by using strontium.

【0017】また、上記排ガス浄化触媒に貴金属を担持
する場合、貴金属として白金,ロジウム,パラジウム等
が適用できるが、特に白金及びロジウムが好ましい。貴
金属の担持量について、本発明は限定するものではない
が、多孔質担体に対して白金が0.2〜4重量%、ロジ
ウムが0.05〜1重量%の範囲であることが好まし
い。
When a precious metal is supported on the exhaust gas purifying catalyst, platinum, rhodium, palladium or the like can be used as the precious metal, but platinum and rhodium are particularly preferable. The amount of the noble metal supported is not limited in the present invention, but is preferably 0.2 to 4% by weight of platinum and 0.05 to 1% by weight of rhodium with respect to the porous carrier.

【0018】さらに本発明は、希土類金属の担持量につ
いても限定するものではないが、多孔質担体に対して希
土類金属が5〜40重量%の範囲であることが好まし
い。
[0018] The present invention is not intended to limit the carrying amount of the rare earth metals, it is preferable rare earth metal with respect to the porous support is in the range of 5 to 40 wt%.

【0019】本発明において担持する希土類金属として
は、セリウム,ランタン,イットリウム等が使用できる
が、セリウムを用いると特に良好な結果が得られる。
As the rare earth metal supported in the present invention, cerium, lanthanum, yttrium or the like can be used, but particularly good results can be obtained by using cerium.

【0020】上述の排ガス浄化触媒における多孔質担体
としては、アルミナ,シリカ等が使用できるが、アルミ
ナを用いると特に良好に実施できる。
Alumina, silica and the like can be used as the porous carrier in the above-mentioned exhaust gas purifying catalyst, but alumina can be used particularly favorably.

【0021】上記の排ガス浄化触媒は、COまたはHC
の少なくとも一種以上の還元剤が含まれる排ガスであれ
ば、浄化可能な排ガスの組成に制限はなく、酸素が高濃
度に存在する場合においても、良好なNOx浄化活性を
有する。該触媒を用いて、酸素が2容量%以上共存する
内燃機関排ガスを浄化する方法も、本発明の特徴とする
ところである。
The above exhaust gas purifying catalyst is CO or HC.
As long as it is an exhaust gas containing at least one or more reducing agents, the composition of the exhaust gas that can be purified is not limited, and even if oxygen is present at a high concentration, it has a good NOx purification activity. A method for purifying exhaust gas from an internal combustion engine in which oxygen coexists at 2% by volume or more using the catalyst is also a feature of the present invention.

【0022】上記の排ガス浄化触媒は、ボイラ,自動車
等のSOx共存下のさまざまな内燃機関の排ガス中のN
Oxを良好に浄化することができるが、特に自動車に搭
載することが有効である。また、排ガス中の酸素濃度が
高いリーンバーン自動車に搭載することも可能である。
The above exhaust gas purifying catalyst is used in the exhaust gas of various internal combustion engines in the presence of SOx such as in boilers and automobiles.
Although Ox can be satisfactorily purified, it is particularly effective to mount it on an automobile. It can also be mounted on a lean-burn automobile with high oxygen concentration in the exhaust gas.

【0023】一般に排ガス浄化触媒は、ハニカム状触媒
として使用されることが多く、特に自動車触媒において
は、ほとんどの場合ハニカム状触媒として実用に供され
ている。本発明をハニカム状触媒に適用するにあたって
は、予め粉末状触媒を調製し、通常のウォッシュコート
法等によってハニカム化できる。また、最初に多孔質担
体をハニカムにコーティングし、その後活性成分を含浸
してハニカム状触媒を得ることもできる。その他に、触
媒そのものを押し出し成形等によりハニカム形状とする
ことも可能である。本発明は、触媒をハニカム状に成形
して使用することを妨げるものではない。
In general, the exhaust gas purifying catalyst is often used as a honeycomb catalyst, and most of the automobile catalysts are practically used as a honeycomb catalyst. When the present invention is applied to a honeycomb-shaped catalyst, a powdery catalyst can be prepared in advance and made into a honeycomb by a usual wash coating method or the like. It is also possible to first coat the honeycomb with the porous carrier and then impregnate it with the active ingredient to obtain a honeycomb catalyst. Besides, the catalyst itself can be formed into a honeycomb shape by extrusion molding or the like. The present invention does not prevent the catalyst from being formed into a honeycomb shape and used.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれらの実施例によって制限されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the present invention will be shown below.
The invention is not limited by these examples.

【0025】「実施例1」ベーマイト粉末に水,希硝酸
を加えて撹拌混合し、コーティング用スラリーを得た。
該スラリーをコージェライト製ハニカムにウォッシュコ
ートし、乾燥後、600℃で1時間焼成しアルミナコー
ティングハニカムを得た。アルミナのコーティング量
は、ハニカム1リットルあたり150gとした。
Example 1 Water and dilute nitric acid were added to boehmite powder and mixed by stirring to obtain a coating slurry.
The cordierite honeycomb was wash-coated with the slurry, dried, and fired at 600 ° C. for 1 hour to obtain an alumina-coated honeycomb. The coating amount of alumina was 150 g per liter of honeycomb.

【0026】上記アルミナコーティングハニカムを、硝
酸セリウム水溶液に浸漬し、乾燥後、600℃で1時間
焼成した。続いて硝酸ストロンチウム水溶液に浸漬し、
乾燥後、600℃で1時間焼成し、さらにチタンの前駆
体としてのチタニアゾル水溶液に浸漬して、乾燥後、6
00℃で1時間焼成した。次にジニトロジアミン白金及
び硝酸ロジウムを含む水溶液に浸漬し、乾燥後、450
℃で1時間焼成した。最後に硝酸マグネシウム水溶液に
浸漬し、乾燥後、450℃で2時間焼成して、ハニカム
触媒Aを得た。ハニカム触媒Aの触媒組成は、アルミナ
に対して、Mg:1wt%(重量%),Rh:0.15
wt%,Pt:1.9wt%,Ti:5wt%,Sr:
15wt%,Ce:18wt%であり、他の実施例触媒
の基準となるものである。
The above alumina-coated honeycomb was dipped in an aqueous cerium nitrate solution, dried, and then fired at 600 ° C. for 1 hour. Then, soak in an aqueous strontium nitrate solution,
After drying, it is baked at 600 ° C. for 1 hour, further dipped in an aqueous solution of titania sol as a precursor of titanium, and dried,
It was baked at 00 ° C. for 1 hour. Next, it is immersed in an aqueous solution containing dinitrodiamine platinum and rhodium nitrate, dried, and then
Calcination was performed for 1 hour. Finally, it was immersed in an aqueous magnesium nitrate solution, dried, and then baked at 450 ° C. for 2 hours to obtain a honeycomb catalyst A. The catalyst composition of the honeycomb catalyst A is such that Mg: 1 wt% (wt%), Rh: 0.15 with respect to alumina.
wt%, Pt: 1.9 wt%, Ti: 5 wt%, Sr:
15 wt% and Ce: 18 wt%, which are the standards for the catalysts of other Examples.

【0027】なお、ハニカム触媒の製造方法としては、
上記のようなアルミナコーティングハニカムに触媒成分
を含浸する方法の他、アルミナ粉末に触媒成分を含浸し
て調製した触媒粉末を、スラリー化した後、ハニカムに
コーティングする方法も可能である。またチタンの前駆
体としては、上記チタニアゾルの他に、有機チタン化合
物,硫酸チタン,塩化チタン等でもよい。
As a method of manufacturing the honeycomb catalyst,
In addition to the method of impregnating the alumina coating honeycomb with the catalyst component as described above, a method of slurrying the catalyst powder prepared by impregnating the alumina powder with the catalyst component and then coating the honeycomb powder is also possible. The titanium precursor may be an organic titanium compound, titanium sulfate, titanium chloride, or the like, in addition to the titania sol.

【0028】「実施例2」アルカリ土類金属として、硝
酸ストロンチウムの代わり硝酸バリウムを用いた以外は
実施例1と同様の方法でハニカム触媒Bを得た。また同
様に、硝酸カルシウムを用いてハニカム触媒Cを得た。
Example 2 A honeycomb catalyst B was obtained in the same manner as in Example 1 except that barium nitrate was used instead of strontium nitrate as the alkaline earth metal. Similarly, a honeycomb catalyst C was obtained using calcium nitrate.

【0029】「実施例3」希土類金属として、硝酸セリ
ウムの代わり硝酸ランタンを用いた以外は実施例1と同
様の方法でハニカム触媒Dを得た。また同様に、硝酸イ
ットリウムを用いてハニカム触媒Eを得た。
[Example 3] A honeycomb catalyst D was obtained in the same manner as in Example 1 except that lanthanum nitrate was used instead of cerium nitrate as the rare earth metal. Similarly, a honeycomb catalyst E was obtained using yttrium nitrate.

【0030】「実施例4」実施例1において用いたチタ
ニアゾルの濃度を変えることによって、チタン担持量の
異なる3種類のハニカム触媒F〜Hを得た。
[Example 4] By changing the concentration of the titania sol used in Example 1, three types of honeycomb catalysts F to H having different titanium loadings were obtained.

【0031】「実施例5」実施例1において用いた硝酸
ストロンチウム水溶液の濃度を変えることによって、ス
トロンチウム担持量の異なる3種類のハニカム触媒I〜
Kを得た。
[Example 5] By changing the concentration of the strontium nitrate aqueous solution used in Example 1, three types of honeycomb catalysts I to
I got K.

【0032】「実施例6」実施例1において用いたジニ
トロジアミン白金水溶液の濃度を変えることによって、
白金担持量の異なる3種類のハニカム触媒L〜Nを得
た。
[Example 6] By changing the concentration of the dinitrodiamine platinum aqueous solution used in Example 1,
Three types of honeycomb catalysts L to N having different platinum loadings were obtained.

【0033】「実施例7」実施例1において用いた硝酸
ロジウム水溶液の濃度を変えることによって、ロジウム
担持量の異なる3種類のハニカム触媒O〜Qを得た。
[Example 7] By changing the concentration of the aqueous rhodium nitrate solution used in Example 1, three types of honeycomb catalysts O to Q having different amounts of supported rhodium were obtained.

【0034】「実施例8」実施例1において用いた硝酸
セリウム水溶液の濃度を変えることによって、セリウム
担持量の異なる3種類のハニカム触媒R〜Tを得た。
[Example 8] By changing the concentration of the cerium nitrate aqueous solution used in Example 1, three types of honeycomb catalysts R to T having different amounts of cerium supported were obtained.

【0035】「比較例1」実施例1と同様の方法で得た
アルミナコーティングハニカムを、実施例1と同様の操
作によりセリウム及びストロンチウムを含浸した。続い
て、チタンを担持することなく、実施例1と同様の操作
により白金,ロジウム及びマグネシウムを含浸してハニ
カム触媒Uを得た。ハニカム触媒Uの組成は、チタンを
含まない以外はハニカム触媒Aと同じとした。
Comparative Example 1 An alumina-coated honeycomb obtained by the same method as in Example 1 was impregnated with cerium and strontium by the same operation as in Example 1. Subsequently, without supporting titanium, platinum, rhodium and magnesium were impregnated by the same operation as in Example 1 to obtain a honeycomb catalyst U. The composition of the honeycomb catalyst U was the same as that of the honeycomb catalyst A except that titanium was not contained.

【0036】上記実施例及び比較例触媒によって得られ
たハニカム触媒A〜Uの触媒組成を表1にまとめる。
Table 1 shows the catalyst compositions of the honeycomb catalysts A to U obtained by the above-mentioned example and comparative example catalysts.

【0037】「試験例1」上記実施例及び比較例によっ
て得られたハニカム触媒A〜Uについて、次の条件で、
NOxの浄化反応活性を評価した。ハニカム触媒6ccを
内径25mmの石英製反応管に充填し、環状電気炉内に設
置した。反応管の入口ガス温度が300℃で一定になる
よう電気炉にて加熱し、以下のモデルガスを流通した。
内燃機関を理論空燃比で運転した時を想定した排ガスと
して、NO:0.1%,C36: 0.05%,CO:
0.6%,O2:0.5%,H2:0.2%,H2O:10
%,N2:残部の組成のモデルガスを空間速度30,000/
hで流通した。また内燃機関を希薄空燃比で運転した時
を想定した排ガスとして、NO:0.06%,C36
0.04%,CO:0.1%,O2:5%,H2O:10
%,N2 :残部の組成のモデルガスを空間速度30,000/
hで流通した。この理論空燃比及び希薄空燃比を想定し
たモデルガスを、3分毎に交互に流通した。
"Test Example 1" With respect to the honeycomb catalysts A to U obtained by the above-mentioned Examples and Comparative Examples, under the following conditions,
The NOx purification reaction activity was evaluated. 6 cc of the honeycomb catalyst was filled in a quartz reaction tube having an inner diameter of 25 mm and placed in an annular electric furnace. The gas at the inlet of the reaction tube was heated in an electric furnace at a constant temperature of 300 ° C., and the following model gas was passed.
As assumed exhaust gases when operating an internal combustion engine at the stoichiometric air-fuel ratio, NO: 0.1%, C 3 H 6: 0.05%, CO:
0.6%, O 2 : 0.5%, H 2 : 0.2%, H 2 O: 10
%, N 2 : The model gas with the balance of composition is space velocity 30,000 /
It was distributed at h. Further, as exhaust gas assuming that the internal combustion engine is operated at a lean air-fuel ratio, NO: 0.06%, C 3 H 6 :
0.04%, CO: 0.1%, O 2 : 5%, H 2 O: 10
%, N 2 : The model gas with the balance of composition is space velocity 30,000 /
It was distributed at h. The model gas assuming the stoichiometric air-fuel ratio and the lean air-fuel ratio was alternately flowed every 3 minutes.

【0038】この時の触媒入口及び出口のNOx濃度を
化学発光式のNOx分析計で測定し、理論空燃比モデル
排ガスから希薄空燃比モデル排ガスに切り換えてから1
分後のNOx浄化率を、次式により算出した。
The NOx concentrations at the catalyst inlet and outlet at this time were measured by a chemiluminescence type NOx analyzer, and after switching from the theoretical air-fuel ratio model exhaust gas to the lean air-fuel ratio model exhaust gas, 1
The NOx purification rate after minutes was calculated by the following formula.

【0039】[0039]

【数1】NOx浄化率(%)=100−(出口NOx濃度)
/(入口NOx濃度)×100 「試験例2」入口ガス温度を400℃で一定になるよう
電気炉にて加熱する以外は試験例1と同様の方法によっ
て、ハニカム触媒A〜UについてNOx浄化反応活性を
評価した。
[Equation 1] NOx purification rate (%) = 100− (outlet NOx concentration)
/ (Inlet NOx concentration) × 100 “Test Example 2” NOx purification reaction for honeycomb catalysts A to U was performed in the same manner as in Test Example 1 except that the inlet gas temperature was kept constant at 400 ° C. in an electric furnace. The activity was evaluated.

【0040】「試験例3」試験例1と同様に、入口ガス
温度を300℃で一定になるよう電気炉にて加熱し、希
薄空燃比運転を想定したモデルガスに、SO2を0.00
5%加えたガスを空間速度30,000/hで3時間流通し
た。その後、試験例1と同様の方法によって、ハニカム
触媒A〜Uについて入口ガス温度300℃でのNOx浄
化反応活性を評価した。
[Test Example 3] As in Test Example 1, the inlet gas temperature was heated to 300 ° C. at a constant temperature in an electric furnace, and SO 2 was added to the model gas assuming a lean air-fuel ratio operation at 0.002.
The gas added with 5% was circulated for 3 hours at a space velocity of 30,000 / h. Then, in the same manner as in Test Example 1, the honeycomb catalysts A to U were evaluated for NOx purification reaction activity at an inlet gas temperature of 300 ° C.

【0041】「試験例4」試験例3と同様に、SO20.
005%を加えた希薄空燃比モデルガスを300℃で3
時間流通した後、試験例2と同様の方法によって、ハニ
カム触媒A〜Uについて入口ガス温度400℃でのNO
x浄化反応活性を評価した。
[0041] Similar to the "Test Example 4" Test Example 3, SO 2 0.
Dilute air-fuel ratio model gas with 005% added at 300 ℃ 3
After circulating for a period of time, the honeycomb catalysts A to U were subjected to NO at an inlet gas temperature of 400 ° C. by the same method as in Test Example 2.
x Purification reaction activity was evaluated.

【0042】ハニカム触媒A〜Uについて、試験例1及
び3で評価した結果を表1に、試験例2及び4で評価し
た結果を表2に示す。
With respect to the honeycomb catalysts A to U, the results evaluated in Test Examples 1 and 3 are shown in Table 1, and the results evaluated in Test Examples 2 and 4 are shown in Table 2.

【0043】実施例触媒A〜Tはいずれも、比較例触媒
Uに比べてSO2 耐久後のNOx浄化率が高く、耐SO
x性が強いことがわかる。
The catalysts A to T of the examples all have a higher NOx purification rate after SO 2 durability than the catalyst U of the comparative example, and are resistant to SO.
It can be seen that the x property is strong.

【0044】「試験例5」ハニカム触媒A及びUについ
て、X線回折スペクトルを測定し、その結晶構造を同定
した。結果を図1及び図2に示す。ハニカム触媒AのX
線回折スペクトルには、チタンに起因するピークがな
く、チタンは非晶質状態で担持されているものと考えら
れる。アルカリ土類金属としてのストロンチウムは、炭
酸塩で担持されていることがわかる。
[Test Example 5] With respect to the honeycomb catalysts A and U, X-ray diffraction spectra were measured to identify their crystal structures. The results are shown in FIGS. 1 and 2. Honeycomb catalyst A X
The line diffraction spectrum has no peak due to titanium, and it is considered that titanium is supported in an amorphous state. It can be seen that strontium as an alkaline earth metal is supported by carbonate.

【0045】本発明が適用対象とする、該排ガス浄化触
媒を用いた排ガス浄化システムについての一例を図3に
示す。リーンバーンエンジン1から排出された排ガス中
には、有害物質であるCO,HC,NOxの他、酸素や
硫黄化合物(SO2,SO3,H2S 等)が含まれてい
る。この排ガスは排気管2を通り、本発明の排ガス浄化
触媒3を流通して有害物質を浄化した後、サイレンサー
4を経由して、マフラー5から車外に排出される。
FIG. 3 shows an example of an exhaust gas purifying system using the exhaust gas purifying catalyst to which the present invention is applied. The exhaust gas discharged from the lean burn engine 1 contains oxygen, sulfur compounds (SO 2 , SO 3 , H 2 S, etc.) in addition to harmful substances such as CO, HC and NOx. The exhaust gas passes through the exhaust pipe 2, flows through the exhaust gas purifying catalyst 3 of the present invention to purify harmful substances, and then is exhausted from the muffler 5 to the outside of the vehicle via the silencer 4.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】多孔質担体に活性成分としてアルカリ土
類金属及びチタンを担持することによって、SO2 と親
和性が低く、かつNOxとの親和性の高い触媒を調製す
ることが可能となる。すなわち、耐SOx性に優れ、N
Ox浄化性能の高い排ガス浄化触媒が得られる。
EFFECTS OF THE INVENTION By supporting an alkaline earth metal and titanium as an active component on a porous carrier, it becomes possible to prepare a catalyst having a low affinity for SO 2 and a high affinity for NOx. That is, it has excellent SOx resistance and N
An exhaust gas purification catalyst having high Ox purification performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明触媒の一実施例としてのハニカム触媒A
のX線回折スペクトルである。
FIG. 1 is a honeycomb catalyst A as an example of the catalyst of the present invention.
2 is an X-ray diffraction spectrum of

【図2】比較例としてのハニカム触媒UのX線回折スペ
クトルである。
FIG. 2 is an X-ray diffraction spectrum of a honeycomb catalyst U as a comparative example.

【図3】本発明による内燃機関排ガスの浄化触媒が適用
される自動車用エンジンシステムの一例を示す構成図で
ある。
FIG. 3 is a configuration diagram showing an example of an automobile engine system to which an internal combustion engine exhaust gas purification catalyst according to the present invention is applied.

【符号の説明】[Explanation of symbols]

1…リーンバーンエンジン、2…排気管、3…排ガス浄
化触媒、4…サイレンサー、5…マフラー。
1 ... lean burn engine, 2 ... exhaust pipe, 3 ... exhaust gas purifying catalyst, 4 ... silencer, 5 ... muffler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 秀宏 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 小川 敏雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株式会社 日立製作所 自動車機器事業 部内 (72)発明者 平塚 俊史 茨城県ひたちなか市大字高場2520番地 株式会社 日立製作所 自動車機器事業 部内 (56)参考文献 特開 平8−57314(JP,A) 特開 平8−192051(JP,A) 特開 平7−102958(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidehiro Iizuka, 1-1 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Toshio Ogawa 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. within Hitachi Research Laboratory (72) Inventor Toshio Yamashita 7-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. within Hitachi Research Laboratory (72) Inventor Shigeru Shodohata Seven Omika-cho, Hitachi City, Ibaraki Prefecture 1-1-1, Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Yuichi Kitahara 2520, Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Automotive Equipment Division, Hitachi Ltd. (72) Toshifumi Hiratsuka, Takahata, Ibaraki Prefecture Address 2520 Hitachi, Ltd. Automotive Equipment Division (56) References -57314 (JP, A) JP-A-8-192051 (JP, A) JP-A-7-102958 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00- 37/36 B01D 53/86

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リーンバーン排ガス中の窒素酸化物を浄化
する触媒であり、アルミナ及びシリカから選ばれた多孔
質担体に活性成分が担持された排ガス浄化触媒におい
て、前記活性成分としてアルカリ土類金属及びチタンを
有し、アルカリ土類金属を担持した後にチタンが非晶質
状態で担持されていることを特徴とする内燃機関排ガス
の浄化触媒。
1. A catalyst for purifying nitrogen oxides in a lean-burn exhaust gas, wherein the active component is supported on a porous carrier selected from alumina and silica, wherein the alkaline earth metal is used as the active component. And titanium , the titanium is amorphous after supporting the alkaline earth metal.
A catalyst for purifying exhaust gas from an internal combustion engine, which is supported in a state of being.
【請求項2】リーンバーン排ガス中の窒素酸化物を浄化
する触媒であり、アルミナ及びシリカから選ばれた多孔
質担体に活性成分が担持された排ガス浄化触媒におい
て、前記活性成分として希土類金属とアルカリ土類金属
とチタン及び貴金属を有し、アルカリ土類金属を担持し
た後にチタンが非晶質状態で担持されていることを特徴
とする内燃機関排ガスの浄化触媒。
2. A catalyst for purifying nitrogen oxides in a lean burn exhaust gas, wherein the active component is supported on a porous carrier selected from alumina and silica, wherein a rare earth metal and an alkali are used as the active components. It has an earth metal, titanium, and a precious metal, and carries an alkaline earth metal.
A catalyst for purifying exhaust gas from an internal combustion engine, characterized in that titanium is supported in an amorphous state .
【請求項3】請求項2において、アルカリ土類金属の担
持量が多孔質担体に対して3〜40重量%、チタンの担
持量が多孔質担体に対して0.1 〜30重量%、希土類
金属の担持量が多孔質担体に対して5〜40重量%の範
囲であることを特徴とする内燃機関排ガスの浄化触媒。
3. The method according to claim 2, wherein the amount of alkaline earth metal supported is 3 to 40% by weight of the porous carrier, and the amount of titanium supported is 0.1 to 30% by weight of the porous carrier. A catalyst for purifying exhaust gas from an internal combustion engine, wherein the amount of metal supported is in the range of 5 to 40% by weight with respect to the porous carrier.
【請求項4】請求項2において、貴金属は白金及びロジ
ウムであり、その担持量は多孔質担体に対して、白金が
0.2〜4重量%、ロジウムが0.05〜1重量%の範囲
であることを特徴とする内燃機関排ガスの浄化触媒。
4. The noble metal according to claim 2, wherein the noble metal is platinum and rhodium, and the loading amount thereof is within the range of 0.2 to 4% by weight of platinum and 0.05 to 1% by weight of rhodium with respect to the porous carrier. A catalyst for purifying exhaust gas from an internal combustion engine, characterized in that
【請求項5】請求項1〜4のいずれかに記載の触媒を用
いて、リーンバーン排ガスを浄化することを特徴とする
内燃機関排ガスの浄化方法。
5. A method for purifying exhaust gas from an internal combustion engine, comprising purifying lean burn exhaust gas using the catalyst according to claim 1.
【請求項6】内燃機関排ガスを浄化触媒に接触させるこ
とによって浄化する方法において、前記内燃機関の排ガ
ス通路に請求項1〜4のいずれかに記載の触媒を配置
し、該触媒にリーンバーン排ガスを流通させ、その後、
該触媒を還元雰囲気にさらすことを特徴とする内燃機関
排ガスの浄化方法。
6. A method for purifying exhaust gas of an internal combustion engine by bringing it into contact with a purification catalyst, wherein the catalyst according to any one of claims 1 to 4 is arranged in an exhaust gas passage of the internal combustion engine, and lean burn exhaust gas is provided in the catalyst. And then
A method for purifying exhaust gas from an internal combustion engine, which comprises exposing the catalyst to a reducing atmosphere.
【請求項7】内燃機関排ガスを浄化触媒に接触させるこ
とによって浄化する方法において、前記内燃機関の排ガ
ス通路に請求項1〜4のいずれかに記載の触媒を配置
し、該触媒にリーンバーン排ガスと理論空燃比の排ガス
を交互に流通させることを特徴とする内燃機関排ガスの
浄化方法。
7. A method for purifying an exhaust gas of an internal combustion engine by bringing it into contact with a purification catalyst, wherein the catalyst according to any one of claims 1 to 4 is arranged in an exhaust gas passage of the internal combustion engine, and lean burn exhaust gas is provided in the catalyst. And a method for purifying exhaust gas of an internal combustion engine, characterized in that exhaust gas having a stoichiometric air-fuel ratio is alternately flowed.
JP14698196A 1996-06-10 1996-06-10 Internal combustion engine exhaust gas purification catalyst and purification method Expired - Fee Related JP3395525B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP14698196A JP3395525B2 (en) 1996-06-10 1996-06-10 Internal combustion engine exhaust gas purification catalyst and purification method
DE69703840T DE69703840T3 (en) 1996-06-10 1997-06-09 Exhaust gas purification device for an internal combustion engine and catalyst for purifying the exhaust gas of the internal combustion engine
AU30485/97A AU721398C (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
PCT/JP1997/001955 WO1997047864A1 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
EP04006545A EP1433933A3 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
KR1019980710129A KR100290272B1 (en) 1996-06-10 1997-06-09 Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine
CA002257949A CA2257949C (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
EP97925297A EP0904482B2 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of an internal combustion engine and catalyst for purifying exhaust gas of an internal combustion engine
DE69730539T DE69730539T2 (en) 1996-06-10 1997-06-09 Emission control system of an internal combustion engine and catalyst for cleaning the exhaust gas of an internal combustion engine
EP00109189A EP1039104B1 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US09/202,243 US6161378A (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US09/620,650 US6397582B1 (en) 1996-06-10 2000-07-20 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US10/119,075 US7093432B2 (en) 1996-06-10 2002-04-10 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US10/900,320 US20050089456A1 (en) 1996-06-10 2004-07-28 Exhaust gas purifcation apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US11/746,313 US20070204595A1 (en) 1996-06-10 2007-05-09 Exhaust Gas Purification Apparatus of Internal Combustion Engine and Catalyst for Purifying Exhaust Gas of Internal Combustion Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14698196A JP3395525B2 (en) 1996-06-10 1996-06-10 Internal combustion engine exhaust gas purification catalyst and purification method

Publications (2)

Publication Number Publication Date
JPH09327617A JPH09327617A (en) 1997-12-22
JP3395525B2 true JP3395525B2 (en) 2003-04-14

Family

ID=15419937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14698196A Expired - Fee Related JP3395525B2 (en) 1996-06-10 1996-06-10 Internal combustion engine exhaust gas purification catalyst and purification method

Country Status (1)

Country Link
JP (1) JP3395525B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438114B2 (en) 1999-01-14 2010-03-24 株式会社日立製作所 Exhaust gas purification method, exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine
JP2000342966A (en) * 1999-06-08 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas and method for purifying exhaust gas
GB0211971D0 (en) * 2002-05-24 2002-07-03 Johnson Matthey Plc Spark ignition engine including three-way catalyst

Also Published As

Publication number Publication date
JPH09327617A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3311012B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3433956B2 (en) Exhaust gas purification method
JP2003190790A (en) Catalyst for purifying exhaust gas and system therefor
JP3227074B2 (en) Exhaust gas purification catalyst and exhaust gas purification method for lean burn and stoichiometric internal combustion engines
JP3977883B2 (en) Exhaust gas purification catalyst for internal combustion engine
JPH0957098A (en) Catalyst for purification of exhaust gas
JPH07155601A (en) Exhaust gas purifying catalyst
JP3488487B2 (en) Exhaust gas purification method
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP3154620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP3300027B2 (en) Exhaust gas purification catalyst
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2000042369A (en) Purifying device for exhaust gas from internal combustion engine, purifying method of exhaust gas and purifying catalyst for exhaust gas
JP3379125B2 (en) Exhaust gas purification catalyst
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3368750B2 (en) Exhaust gas purification method and catalyst
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
JP3534286B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2004167495A (en) Catalyst for cleaning exhaust gas from internal combustion engine
JPH1052643A (en) Catalyst for exhaust gas purification and method for purifying exhaust gas
JPH0985092A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees