JPH09253491A - Catalyst for clarification of exhaust gas and its preparation - Google Patents

Catalyst for clarification of exhaust gas and its preparation

Info

Publication number
JPH09253491A
JPH09253491A JP8062763A JP6276396A JPH09253491A JP H09253491 A JPH09253491 A JP H09253491A JP 8062763 A JP8062763 A JP 8062763A JP 6276396 A JP6276396 A JP 6276396A JP H09253491 A JPH09253491 A JP H09253491A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
gas
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062763A
Other languages
Japanese (ja)
Inventor
Toshitaka Tanabe
稔貴 田辺
Hirobumi Shinjo
博文 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8062763A priority Critical patent/JPH09253491A/en
Publication of JPH09253491A publication Critical patent/JPH09253491A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for clarification of exhaust gas for efficiently clarifying HC, CO and NOx and with low oxidation activity of SO2 . SOLUTION: A catalyst consisting of a porous oxide carrier incorporated with at least a basic oxide selected from alkali metals, alkaline earth metals and rare earth elements and a catalytic precious metal carried on the carrier is treated with an acid. It is estimated that the carrier or the catalytic precious metal is changed in properties with the acid treatment and the oxidation activity for SO2 is decreased without decreasing the oxidation activity for HC and CO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はディーゼルエンジ
ン、希薄燃焼型ガソリンエンジン、あるいはボイラーな
どから排出される排ガスを浄化する排ガス浄化用触媒と
その製造方法に関し、詳しくは酸素過剰雰囲気の排ガス
中の有害成分を効率よく浄化でき、かつ排ガス中の二酸
化硫黄の酸化を抑制してサルフェートの排出を抑制でき
る排ガス浄化用触媒及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from a diesel engine, a lean burn gasoline engine, a boiler, etc. TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst that can efficiently purify components, suppress the oxidation of sulfur dioxide in exhaust gas, and suppress the emission of sulfate, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを行って排
ガスを浄化する三元触媒が用いられている。このような
三元触媒としては、例えばコーディエライトなどからな
る耐熱性基材にγ−アルミナからなる多孔質担体層を形
成し、その多孔質担体層に白金(Pt)、ロジウム(R
h)などの触媒貴金属を担持させたものが広く知られて
いる。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by oxidizing CO and HC and reducing NO x has been used as an exhaust gas purifying catalyst for automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat resistant base material made of cordierite, and platinum (Pt) and rhodium (R) are formed on the porous carrier layer.
A catalyst carrying a precious metal such as h) is widely known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆる希薄燃焼(リー
ンバーン)が有望視されている。この希薄燃焼型ガソリ
ンエンジンにおいては、燃費が向上するために燃料の使
用量が低減され、その結果燃焼排ガスであるCO2 の発
生を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protecting the global environment. As a solution to this problem, so-called lean combustion in which oxygen is excessively burned is performed. Combustion (lean burn) is promising. In this lean-burn gasoline engine, the fuel consumption is improved so that the amount of fuel used is reduced, and as a result, the generation of CO 2 which is combustion exhaust gas can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し、浄化するものであっ
て、希薄燃焼時の排ガスやディーゼルエンジンからの排
ガスなど、酸素過剰雰囲気の排ガス中のNOx の還元除
去に対しては充分な浄化性能を示さない。このため、酸
素過剰雰囲気下においても効率よくNOx を浄化しうる
触媒及び浄化システムの開発が望まれている。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H in the exhaust gas
It purifies by oxidizing and reducing C and NO x at the same time, and is sufficient for reducing and removing NO x in exhaust gas in an oxygen excess atmosphere, such as exhaust gas during lean combustion and exhaust gas from a diesel engine. It shows no performance. Therefore, it is desired to develop a catalyst and a purification system that can efficiently purify NO x even in an oxygen excess atmosphere.

【0005】[0005]

【発明が解決しようとする課題】ところで、特開昭59
−36543号公報のように、ディーゼルエンジンや希
薄燃焼型ガソリンエンジンの排気系に従来の三元触媒を
用いた場合には、燃料中の硫黄分に起因するSO2 が酸
化されて排ガス中の水分と反応し、硫酸ミストや硫酸化
合物(サルフェート)として排出される。これらの硫酸
ミストやサルフェートはパティキュレートとして検出さ
れるために、触媒の装着によって逆に排ガス中のパティ
キュレート成分が増加するという不具合があった。
Incidentally, Japanese Unexamined Patent Publication No.
When a conventional three-way catalyst is used in the exhaust system of a diesel engine or a lean-burn gasoline engine, as disclosed in Japanese Patent No. 36543, SO 2 resulting from the sulfur content in the fuel is oxidized and the water content in the exhaust gas is increased. It reacts with and is discharged as sulfuric acid mist and sulfuric acid compound (sulfate). Since these sulfuric acid mists and sulfates are detected as particulates, there is a problem that the particulate component in the exhaust gas is increased by the mounting of the catalyst.

【0006】また、ディーゼルエンジンの燃料である軽
油には硫黄が多く含まれていることから、ディーゼルエ
ンジンからの排ガス中には、ガソリンエンジンからの排
ガスに比べて約10倍のSO2 が含まれているのが通常
である。したがって三元触媒をディーゼルエンジンの排
気系に用いると、排ガス中のパティキュレート成分が極
端に増大するという不具合がある。
Further, since diesel fuel, which is a fuel for diesel engines, contains a large amount of sulfur, the exhaust gas from a diesel engine contains about 10 times more SO 2 than the exhaust gas from a gasoline engine. It is normal. Therefore, when the three-way catalyst is used in the exhaust system of a diesel engine, there is a problem that the particulate component in the exhaust gas extremely increases.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、HC、CO及びNOxを効率よく浄化する
とともに、SO2 の酸化活性の低い排ガス浄化用触媒と
することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to efficiently purify HC, CO and NO x and to provide an exhaust gas purifying catalyst having a low SO 2 oxidation activity. .

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、アルカリ金属、アルカ
リ土類金属及び希土類元素から選ばれる金属の少なくと
も一種の塩基性元素を添加した多孔質酸化物よりなる担
体と、担体に担持された触媒貴金属と、を含む触媒を酸
処理してなることにある。
The characteristics of the catalyst for purifying exhaust gas of the present invention which solves the above-mentioned problems are characterized by a porosity containing at least one basic element selected from alkali metals, alkaline earth metals and rare earth elements. A catalyst containing a carrier made of a porous oxide and a catalytic noble metal supported on the carrier is treated with an acid.

【0009】また上記排ガス浄化用触媒を製造する本発
明の製造方法の特徴は、アルカリ金属、アルカリ土類金
属及び希土類元素から選ばれる金属の少なくとも一種の
塩基性元素を添加した多孔質酸化物よりなる担体と、担
体に担持された触媒貴金属と、を含む触媒を酸処理する
ことにある。なお、請求項3にいうように、酸処理は前
記触媒を二酸化硫黄ガスを含む酸化雰囲気中で二酸化硫
黄ガスと接触させ加熱して行うことが望ましい。この場
合請求項4に記載されたように、二酸化硫黄ガスの濃度
は体積分率で100ppm〜10%であることが望まし
い。
Further, the characteristic feature of the production method of the present invention for producing the above exhaust gas-purifying catalyst is that it comprises a porous oxide containing at least one basic element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements. Acid treatment is performed on the catalyst containing the carrier and the catalytic noble metal supported on the carrier. As described in claim 3, it is preferable that the acid treatment is performed by bringing the catalyst into contact with the sulfur dioxide gas and heating it in an oxidizing atmosphere containing the sulfur dioxide gas. In this case, as described in claim 4, the concentration of the sulfur dioxide gas is preferably 100 ppm to 10% in volume fraction.

【0010】また請求項5にいうように、酸処理は前記
触媒を硫酸溶液と接触させて行うことも望ましい。この
場合請求項6に記載のように、硫酸溶液の濃度は1重量
%〜50重量%であることが望ましい。
It is also preferable that the acid treatment is carried out by bringing the catalyst into contact with a sulfuric acid solution. In this case, as described in claim 6, the concentration of the sulfuric acid solution is preferably 1% by weight to 50% by weight.

【0011】[0011]

【発明の実施の形態】本発明にいう担体は、アルカリ金
属、アルカリ土類金属及び希土類元素から選ばれる少な
くとも一種の塩基性元素を添加した多孔質酸化物から構
成されている。アルカリ金属としてはLi、Na、K、
Rb及びCsなどが例示され、アルカリ土類金属として
はMg、Ca、Sr及びBaなどが例示され、希土類元
素としてはLa、Ce、Pr、Nd、Sm、Eu、Gd
及びTbなどが例示される。塩基性元素はこれらの少な
くとも一種から選ばれ、例えば酸化物として担体中に添
加されている。
BEST MODE FOR CARRYING OUT THE INVENTION The carrier according to the present invention is composed of a porous oxide to which at least one basic element selected from alkali metals, alkaline earth metals and rare earth elements is added. Alkali metals include Li, Na, K,
Examples of Rb and Cs, examples of alkaline earth metals include Mg, Ca, Sr, and Ba, and examples of rare earth elements include La, Ce, Pr, Nd, Sm, Eu, and Gd.
And Tb are exemplified. The basic element is selected from at least one of these, and is added to the carrier as an oxide, for example.

【0012】また多孔質酸化物としては、アルミナ、シ
リカ、ジルコニア、チタニア、シリカ−アルミナ、ゼオ
ライトなどが例示される。本発明にいう担体を構成する
塩基性元素と多孔質酸化物の好ましい組み合わせとして
は、アルカリ土類金属や、希土類元素の中でもLa、C
e、Pr、Ndなどと、アルミナ、シリカのような高比
表面積が得られやすい多孔質酸化物とを組み合わせたも
のが特に好ましい。KやNaなどのアルカリ金属を組み
合わせると、Ptなどの触媒貴金属との相互作用により
触媒活性が低下する場合がある。
Examples of the porous oxide include alumina, silica, zirconia, titania, silica-alumina, zeolite and the like. The preferred combination of the basic element and the porous oxide constituting the carrier according to the present invention includes alkaline earth metals and rare earth elements such as La and C.
Particularly preferred is a combination of e, Pr, Nd and the like with a porous oxide such as alumina or silica, which easily obtains a high specific surface area. When an alkali metal such as K or Na is combined, the catalytic activity may decrease due to the interaction with the catalytic noble metal such as Pt.

【0013】本発明にいう担体を構成する塩基性元素と
多孔質酸化物との成分比は、塩基性酸化物換算の重量分
率として0.01〜50%程度が適当である。塩基性酸
化物換算の重量分率が0.01%より低いとSO2 の酸
化活性が高くなってサルフェートが生成しやすくなり、
塩基性酸化物換算の重量分率が50%より高くなると触
媒活性が低下し好ましくない。
The component ratio of the basic element and the porous oxide constituting the carrier according to the present invention is preferably about 0.01 to 50% as a weight fraction in terms of basic oxide. If the weight fraction in terms of basic oxide is less than 0.01%, the SO 2 oxidation activity becomes high and sulfate is easily generated,
If the weight fraction in terms of basic oxide is higher than 50%, the catalytic activity is lowered, which is not preferable.

【0014】塩基性元素を多孔質酸化物に添加するに
は、ゾルゲル法、共沈法、あるいは多孔質酸化物にアル
カリ金属、アルカリ土類金属及び希土類元素から選ばれ
る金属の塩の水溶液を含浸担持して焼成する方法、およ
び粉末を混合して焼成する方法などが例示される。上記
担体に担持される触媒貴金属としては、Pt、Pd、R
h及びIrなどが例示され、中でもHC、CO及びNO
x を浄化する活性の高いPtが特に好ましい。またこの
触媒貴金属の担持量としては、触媒貴金属が0.1〜1
0重量%の範囲で任意に選択することができる。触媒貴
金属の担持量が0.1重量%より少ないとHC、CO及
びNOx の浄化性能が低下して実用的ではなく、10重
量%より多く担持しても浄化性能が飽和するとともにコ
ストの高騰を招く。
To add the basic element to the porous oxide, the sol-gel method, the coprecipitation method, or the porous oxide is impregnated with an aqueous solution of a salt of a metal selected from alkali metals, alkaline earth metals and rare earth elements. Examples include a method of supporting and firing, a method of mixing powders and firing. Examples of the catalytic noble metal supported on the carrier include Pt, Pd, and R.
h and Ir are exemplified, and among them, HC, CO and NO
Particularly preferred is Pt, which has a high activity of purifying x. The amount of the catalytic precious metal supported is 0.1 to 1 for the catalytic precious metal.
It can be arbitrarily selected within the range of 0% by weight. If the supported amount of the catalytic noble metal is less than 0.1% by weight, the purification performance of HC, CO, and NOx deteriorates, which is not practical. Even if the supported amount of more than 10% by weight saturates the purification performance and the cost rises. Invite.

【0015】本発明の製造方法にいう酸処理としては、
酸性を示す酸化性雰囲気中で上記触媒を熱処理する方
法、あるいは硫酸のような酸の水溶液と触媒を接触させ
た状態で熱処理する方法などが用いられる。硫酸水溶液
を用いる場合には、硫酸濃度は1重量%〜50重量%の
範囲が好ましい。1重量%未満では酸処理が困難とな
り、また50重量%を超えると触媒活性が低下する。
The acid treatment referred to in the production method of the present invention includes:
A method of heat-treating the catalyst in an oxidizing atmosphere exhibiting acidity, a method of heat-treating the catalyst in contact with an aqueous solution of an acid such as sulfuric acid, or the like is used. When a sulfuric acid aqueous solution is used, the sulfuric acid concentration is preferably in the range of 1% by weight to 50% by weight. If it is less than 1% by weight, acid treatment becomes difficult, and if it exceeds 50% by weight, the catalytic activity is lowered.

【0016】前者の場合、酸化性雰囲気としてはS
2 、O2 及びH2 を混合したガス、HClとH2 Oを
混合したガス、ならびにCl2 、O2 及びH2 Oを混合
したガスなどが例示される。SO2 ガスを用いる場合に
は、雰囲気中のSO2 ガス濃度としては体積分率で10
0ppm〜10%程度が適当であり、1000ppm〜
2%程度が特に好ましい。SO2 ガス濃度が100pp
mより低いと酸処理が困難となり、使用時にサルフェー
トの生成を防止することが困難となる。またSO2 ガス
濃度が10%より高くなると、触媒活性が大きく低下す
る場合がある。
In the former case, the oxidizing atmosphere is S
Examples thereof include a gas mixed with O 2 , O 2 and H 2 , a gas mixed with HCl and H 2 O, and a gas mixed with Cl 2 , O 2 and H 2 O. When SO 2 gas is used, the concentration of SO 2 gas in the atmosphere is 10 in terms of volume fraction.
0 ppm to 10% is suitable, and 1000 ppm to
About 2% is particularly preferable. SO 2 gas concentration is 100pp
If it is lower than m, acid treatment becomes difficult and it becomes difficult to prevent the formation of sulfate during use. Further, if the SO 2 gas concentration is higher than 10%, the catalytic activity may be significantly reduced.

【0017】またSO2 ガスと共存する酸素ガス濃度と
しては、酸化雰囲気中に体積分率で1%以上が適当であ
り、10%以上とするのが特に好ましい。酸素ガス濃度
が1%より低くなると、SO2 ガスの酸化が生じにくい
ために酸処理が困難となり、使用時にサルフェートの生
成を防止することが困難となる。さらに水蒸気による水
分量としては、酸化雰囲気中に体積分率で3%以上とす
ることが好ましい。水分が3%より少ないと、SO2
スの硫酸化が困難となるために酸処理が困難となり、使
用時にサルフェートの生成を防止することが困難とな
る。
The oxygen gas concentration coexisting with the SO 2 gas is preferably 1% or more in volume fraction in an oxidizing atmosphere, and particularly preferably 10% or more. When the oxygen gas concentration is lower than 1%, the acid treatment is difficult because the SO 2 gas is less likely to be oxidized, and it is difficult to prevent the formation of sulfate during use. Further, the water content of water vapor is preferably 3% or more in volume fraction in an oxidizing atmosphere. If the water content is less than 3%, it becomes difficult to sulphate SO 2 gas and thus acid treatment becomes difficult, and it becomes difficult to prevent the formation of sulfate during use.

【0018】さらに、酸処理時の熱処理温度としては、
300〜800℃が適当であり、400〜600℃が特
に好ましい。熱処理温度が300℃より低いとSO2
スの酸化が生じにくいために酸処理が困難となり、使用
時にサルフェートの生成を防止することが困難となる。
また800℃より高くなると、SO2 ガスあるいはその
酸化によって生成した硫黄酸化物が触媒中に蓄積されず
に飛散してしまうため、同様に酸処理が困難となり、使
用時にサルフェートの生成を防止することが困難とな
る。
Further, as the heat treatment temperature during the acid treatment,
300 to 800 ° C is suitable, and 400 to 600 ° C is particularly preferable. When the heat treatment temperature is lower than 300 ° C., the SO 2 gas is less likely to be oxidized, so that the acid treatment becomes difficult and it becomes difficult to prevent the formation of sulfate during use.
Also, when the temperature is higher than 800 ° C, SO 2 gas or sulfur oxides generated by the oxidation thereof scatters without being accumulated in the catalyst, which makes acid treatment similarly difficult and prevents the formation of sulfate during use. Will be difficult.

【0019】すなわち本発明の排ガス浄化用触媒では、
塩基性元素を添加した多孔質酸化物により担体を形成し
ているため、塩基性成分により担体の酸・塩基性が制御
でき、酸処理に用いられるSO2 ガスあるいは硫酸など
に対する反応性及び吸収性が制御される。したがってこ
のような触媒を酸処理すると、担体の性質が変化すると
ともに担持された触媒貴金属の化学的性質が変化するも
のと推定され、その結果排ガス中のHC、CO及びNO
x が効率よく浄化されるとともにSO2 の酸化活性を低
下させることができ、サルフェートの生成が抑制され
る。
That is, in the exhaust gas purifying catalyst of the present invention,
Since the carrier is formed by the porous oxide to which the basic element is added, the basic component can control the acidity / basicity of the carrier, and the reactivity and absorbability to SO 2 gas or sulfuric acid used for acid treatment. Is controlled. Therefore, it is presumed that the acid treatment of such a catalyst changes the properties of the carrier and the chemical properties of the supported catalytic noble metal, and as a result, HC, CO and NO in the exhaust gas are changed.
x can be efficiently purified and SO 2 oxidation activity can be reduced, and the production of sulfate can be suppressed.

【0020】[0020]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)先ず、アルミナが99.96重量部、酸化
ランタン(La2 3 )が0.04重量部となるよう
に、硝酸アルミニウムと硝酸ランタンとを混合し、共沈
法により析出させた。次いで得られた沈殿物を大気中に
て900℃で5時間焼成し、酸化物担体粉末を調製し
た。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (Example 1) First, aluminum nitrate and lanthanum nitrate were mixed so that 99.96 parts by weight of alumina and 0.04 parts by weight of lanthanum oxide (La 2 O 3 ) were mixed and precipitated by a coprecipitation method. It was Next, the obtained precipitate was calcined in the air at 900 ° C. for 5 hours to prepare an oxide carrier powder.

【0021】次に、この担体粉末10gにジニトロジア
ンミン白金の硝酸水溶液(濃度50g/L)を2ml加
え、さらに蒸留水を50ml加えた後、室温で約5時間
攪拌した。得られた懸濁液を110℃で一晩加熱して乾
燥させ、大気中にて500℃で3時間焼成して、Pt担
持粉末を調製した。Ptの担持量は、担体粉末100g
に対して金属Ptとして1gである。
Next, 2 ml of a nitric acid aqueous solution of dinitrodiammineplatinum (concentration: 50 g / L) was added to 10 g of the carrier powder, 50 ml of distilled water was further added, and the mixture was stirred at room temperature for about 5 hours. The obtained suspension was heated at 110 ° C. overnight to be dried, and calcined in the air at 500 ° C. for 3 hours to prepare a Pt-supported powder. The amount of Pt supported is 100 g of carrier powder
On the other hand, the amount of metal Pt is 1 g.

【0022】得られたPt担持粉末0.5gを石英管に
充填し、表1に示す組成の処理用ガスを500〜100
0ml/minの流量で流通させながら、500℃で3
時間加熱する熱処理を行った。
A quartz tube was filled with 0.5 g of the obtained Pt-supported powder, and a processing gas having the composition shown in Table 1 was added in an amount of 500 to 100.
While circulating at a flow rate of 0 ml / min, 3 at 500 ° C
A heat treatment of heating for a time was performed.

【0023】[0023]

【表1】 通常の常圧固定床流通式の反応装置に、得られた熱処理
済みPt担持粉末を2g装填し、表2に示すディーゼル
エンジンからの排ガスを模したモデルガスを10L/m
inの流量で流通させて、入りガス温度を100〜50
0℃の間で変化させ、各温度における排ガス中のSO2
のサルフェートへの転化率を測定した。結果を図1に示
す。またHCのH2 O及びCO2 への転化率も測定し、
SO2 の転化率との比較を図2に示す。
[Table 1] 2 g of the obtained heat-treated Pt-supported powder was loaded into a normal atmospheric fixed bed flow reactor, and a model gas simulating exhaust gas from a diesel engine shown in Table 2 was supplied at 10 L / m.
circulating at an inflow rate of 100 to 50
SO 2 in the exhaust gas at each temperature was changed between 0 ℃
The conversion of sulphate into sulfate was measured. The results are shown in FIG. Also, the conversion rate of HC to H 2 O and CO 2 was measured,
A comparison with the conversion of SO 2 is shown in FIG.

【0024】[0024]

【表2】 (実施例2)実施例1と同様のPt担持粉末を用い、S
2 ガス濃度が1000ppmであること以外は表1と
同様の処理用ガスを用いて、実施例1と同様に熱処理を
行った。そして実施例1と同様に各温度における排ガス
中のSO2 の転化率を測定した。結果を図1に示す。ま
たHCの転化率も測定し、SO2 の転化率との比較を図
2に示す。
[Table 2] (Example 2) The same Pt-supported powder as in Example 1 was used, and S
Heat treatment was performed in the same manner as in Example 1 using the same processing gas as in Table 1 except that the O 2 gas concentration was 1000 ppm. Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured. The results are shown in FIG. The conversion of HC also measured, shows a comparison of the conversion of SO 2 in FIG.

【0025】(実施例3)実施例1と同様のPt担持粉
末を用い、SO2 ガス濃度が5000ppmであること
以外は表1と同様の処理用ガスを用いて、実施例1と同
様に熱処理を行った。そして実施例1と同様に各温度に
おける排ガス中のSO2 の転化率を測定した。結果を図
1に示す。またHCの転化率も測定し、SO2 の転化率
との比較を図2に示す。
(Example 3) Heat treatment was carried out in the same manner as in Example 1 except that the same Pt-supported powder as in Example 1 was used and the same processing gas as in Table 1 was used except that the SO 2 gas concentration was 5000 ppm. I went. Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured. The results are shown in FIG. The conversion of HC also measured, shows a comparison of the conversion of SO 2 in FIG.

【0026】(実施例4)実施例1と同様のPt担持粉
末を用い、SO2 ガス濃度が1体積%であること以外は
表1と同様の処理用ガスを用いて、実施例1と同様に熱
処理を行った。そして実施例1と同様に各温度における
排ガス中のSO2 の転化率を測定した。結果を図1に示
す。またHCの転化率も測定し、SO2 の転化率との比
較を図2に示す。
Example 4 The same Pt-supporting powder as in Example 1 was used, and the same processing gas as in Table 1 was used, except that the SO 2 gas concentration was 1% by volume. Was heat treated. Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured. The results are shown in FIG. The conversion of HC also measured, shows a comparison of the conversion of SO 2 in FIG.

【0027】(比較例1)実施例1と同様のPt担持粉
末を用い、SO2 ガスを含まないこと以外は表1と同様
の処理用ガスを用いて、実施例1と同様に熱処理を行っ
た。そして実施例1と同様に各温度における排ガス中の
SO2 の転化率を測定した。結果を図1に示す。またH
Cの転化率も測定し、SO2 の転化率との比較を図2に
示す。
(Comparative Example 1) Using the same Pt-supported powder as in Example 1 and using the same processing gas as in Table 1 except that SO 2 gas was not included, heat treatment was performed in the same manner as in Example 1. It was Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured. The results are shown in FIG. Also H
C conversion rate was measured, showing a comparison of the SO 2 conversion in FIG.

【0028】(比較例2)塩基性元素を添加しないアル
ミナ粉末を担体粉末として用いたこと以外は実施例1と
同様にして、Pt担持粉末を調製した。そして、実施例
1と同様にSO2を含む酸化性雰囲気中で熱処理を行っ
た。なお、SO2 の濃度は100ppm、1000pp
m及び1%の3水準で行った。そして実施例1と同様に
各温度における排ガス中のSO2 の転化率を測定し、結
果を図3に示す。
Comparative Example 2 A Pt-supported powder was prepared in the same manner as in Example 1 except that alumina powder containing no basic element was used as the carrier powder. Then, as in Example 1, heat treatment was performed in an oxidizing atmosphere containing SO 2 . The concentration of SO 2 is 100 ppm, 1000 pp
m and 1%. Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured, and the results are shown in FIG.

【0029】(実施例5)先ず、シリカが71重量部、
マグネシア(MgO)が29重量部となるように、テト
ラエトキシシランと酢酸マグネシウムとを混合し、ゾル
ゲル法により得られたゲル体を大気中にて900℃で5
時間焼成し担体粉末を調製した。この担体粉末を用いて
実施例1と同様にしてPt担持粉末を調製し、SO2
ス濃度が1体積%であること以外は表1と同様の処理用
ガスを用いて、実施例1と同様に熱処理を行った。そし
て実施例1と同様に各温度における排ガス中のSO2
転化率を測定した。結果を図4に示す。またHCの転化
率も測定し、SO 2 の転化率との比較を図5に示す。
Example 5 First, 71 parts by weight of silica,
Magnesia (MgO) is adjusted to 29 parts by weight,
A mixture of laethoxysilane and magnesium acetate
The gel obtained by the gel method is heated in the air at 900 ° C. for 5 hours.
The carrier powder was prepared by firing for a period of time. With this carrier powder
A Pt-supported powder was prepared in the same manner as in Example 1, and SOTwoMoth
For the same treatment as in Table 1 except that the concentration is 1% by volume
Heat treatment was performed in the same manner as in Example 1 using gas. Soshi
As in Example 1, SO in exhaust gas at each temperatureTwoof
The conversion was measured. FIG. 4 shows the results. In addition, conversion of HC
The rate is also measured, and SO TwoThe comparison with the conversion rate is shown in FIG.

【0030】(比較例3)実施例5と同様のPt担持粉
末を用い、SO2 ガスを含まないこと以外は表1と同様
の処理用ガスを用いて、実施例1と同様に熱処理を行っ
た。そして実施例1と同様に各温度における排ガス中の
SO2 の転化率を測定した。結果を図4に示す。またH
Cの転化率も測定し、SO2 の転化率との比較を図5に
示す。
(Comparative Example 3) The same heat treatment as in Example 1 was performed using the same Pt-supporting powder as in Example 5 and the same processing gas as in Table 1 except that SO 2 gas was not included. It was Then, in the same manner as in Example 1, the conversion rate of SO 2 in the exhaust gas at each temperature was measured. FIG. 4 shows the results. Also H
The conversion rate of C was also measured, and the comparison with the conversion rate of SO 2 is shown in FIG.

【0031】(評価)図より、実施例の排ガス浄化用触
媒は各温度でSO2 の酸化が比較例に比べて防止され、
またHCのSO2 に対する反応選択性も格段に向上して
いることが明らかである。また各実施例の比較より、処
理用ガス中のSO2 ガス濃度が高くなるにつれてSO2
の転化率が低下し、SO2 ガス濃度は1体積%以上が特
に好ましいこともわかる。
As can be seen from the (evaluation) diagram, the exhaust gas purifying catalysts of the examples are prevented from oxidizing SO 2 at each temperature as compared with the comparative examples.
Further, it is clear that the reaction selectivity of HC with respect to SO 2 is significantly improved. Further, from comparison of each example, as the SO 2 gas concentration in the processing gas becomes higher, the SO 2
It can also be seen that the conversion rate of is decreased and the SO 2 gas concentration is particularly preferably 1% by volume or more.

【0032】さらに実施例4と比較例2との比較より、
塩基性元素を添加した担体を用いることによって酸処理
が有効となっていることもわかる。また図6及び図7に
示すように、本実施例の触媒はいずれも比較例1の触媒
と同等のHC及びNOx 浄化活性を有していることがわ
かり、酸処理は浄化性能に悪影響を与えないことが明ら
かである。
From the comparison between Example 4 and Comparative Example 2,
It can also be seen that the acid treatment is effective by using the carrier to which the basic element is added. Further, as shown in FIG. 6 and FIG. 7, it was found that the catalysts of this example both had the same HC and NOx purification activities as the catalyst of Comparative Example 1, and the acid treatment adversely affected the purification performance. Clearly not.

【0033】[0033]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、酸素過剰雰囲気の排ガス中のHC、CO及びNO
x を効率よく浄化できるとともに、排ガス中のSO2
酸化が防止されサルフェートの生成を抑制することがで
きる。また本発明の排ガス浄化用触媒の製造方法によれ
ば、上記排ガス浄化用触媒を容易にかつ確実に製造する
ことができる。
[Effects of the Invention] That is, according to the exhaust gas purifying catalyst of the present invention, HC, CO and NO in exhaust gas in an oxygen excess atmosphere
It is possible to efficiently purify x, and it is possible to prevent the oxidation of SO 2 in the exhaust gas and suppress the production of sulfate. Further, according to the method for producing an exhaust gas purifying catalyst of the present invention, the above exhaust gas purifying catalyst can be easily and reliably produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度とSO2 転化率の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between temperature and SO 2 conversion rate.

【図2】SO2 転化率とHC転化率との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between SO 2 conversion rate and HC conversion rate.

【図3】温度とSO2 転化率の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between temperature and SO 2 conversion rate.

【図4】温度とSO2 転化率の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between temperature and SO 2 conversion rate.

【図5】SO2 転化率とHC転化率との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between SO 2 conversion rate and HC conversion rate.

【図6】処理SO2 濃度と最高NOx 浄化率との関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between the treated SO 2 concentration and the maximum NO x purification rate.

【図7】処理SO2 濃度とHCの50%浄化温度との関
係を示すグラフである。
FIG. 7 is a graph showing the relationship between the treated SO 2 concentration and the 50% purification temperature of HC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 104A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B01D 53/36 104A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属、アルカリ土類金属及び希
土類元素から選ばれる少なくとも一種の塩基性元素を添
加した多孔質酸化物よりなる担体と、該担体に担持され
た触媒貴金属と、を含む触媒を酸処理してなることを特
徴とする排ガス浄化用触媒。
1. A catalyst comprising a carrier made of a porous oxide to which at least one basic element selected from alkali metals, alkaline earth metals and rare earth elements is added, and a catalytic noble metal carried on the carrier. An exhaust gas-purifying catalyst characterized by being treated with an acid.
【請求項2】 アルカリ金属、アルカリ土類金属及び希
土類元素から選ばれる少なくとも一種の塩基性元素を添
加した多孔質酸化物よりなる担体と、該担体に担持され
た触媒貴金属と、を含む触媒を酸処理することを特徴と
する排ガス浄化用触媒の製造方法。
2. A catalyst comprising a carrier made of a porous oxide to which at least one basic element selected from alkali metals, alkaline earth metals and rare earth elements is added, and a catalytic noble metal supported on the carrier. A method for producing an exhaust gas-purifying catalyst, characterized by performing an acid treatment.
【請求項3】 酸処理は前記触媒を二酸化硫黄ガスを含
む酸化雰囲気中で該二酸化硫黄ガスと接触させ加熱して
行うことを特徴とする請求項2記載の排ガス浄化用触媒
の製造方法。
3. The method for producing a catalyst for purifying exhaust gas according to claim 2, wherein the acid treatment is performed by bringing the catalyst into contact with the sulfur dioxide gas in an oxidizing atmosphere containing the sulfur dioxide gas and heating the catalyst.
【請求項4】 二酸化硫黄ガスの濃度は体積分率で10
0ppm〜10%であることを特徴とする請求項3記載
の排ガス浄化用触媒の製造方法。
4. The concentration of sulfur dioxide gas is 10 in terms of volume fraction.
The method for producing an exhaust gas purifying catalyst according to claim 3, wherein the content is 0 ppm to 10%.
【請求項5】 酸処理は前記触媒を硫酸溶液と接触させ
て行うことを特徴とする請求項2記載の排ガス浄化用触
媒の製造方法。
5. The method for producing an exhaust gas purifying catalyst according to claim 2, wherein the acid treatment is performed by bringing the catalyst into contact with a sulfuric acid solution.
【請求項6】 硫酸溶液の濃度は1重量%〜50重量%
であることを特徴とする請求項5記載の排ガス浄化用触
媒の製造方法。
6. The sulfuric acid solution has a concentration of 1% by weight to 50% by weight.
The method for producing a catalyst for purifying exhaust gas according to claim 5, wherein
JP8062763A 1996-03-19 1996-03-19 Catalyst for clarification of exhaust gas and its preparation Pending JPH09253491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062763A JPH09253491A (en) 1996-03-19 1996-03-19 Catalyst for clarification of exhaust gas and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062763A JPH09253491A (en) 1996-03-19 1996-03-19 Catalyst for clarification of exhaust gas and its preparation

Publications (1)

Publication Number Publication Date
JPH09253491A true JPH09253491A (en) 1997-09-30

Family

ID=13209761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062763A Pending JPH09253491A (en) 1996-03-19 1996-03-19 Catalyst for clarification of exhaust gas and its preparation

Country Status (1)

Country Link
JP (1) JPH09253491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150861B2 (en) 2001-09-28 2006-12-19 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases and process for purification of exhaust gases
US7740819B2 (en) 2002-02-26 2010-06-22 Nippon Shokubai Co., Ltd. Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
JP4655436B2 (en) * 2001-08-31 2011-03-23 株式会社豊田中央研究所 Method for treating exhaust gas purification catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655436B2 (en) * 2001-08-31 2011-03-23 株式会社豊田中央研究所 Method for treating exhaust gas purification catalyst
US7150861B2 (en) 2001-09-28 2006-12-19 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases and process for purification of exhaust gases
US7740819B2 (en) 2002-02-26 2010-06-22 Nippon Shokubai Co., Ltd. Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process

Similar Documents

Publication Publication Date Title
JPH0899034A (en) Catalyst for purifying exhaust gas
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09926A (en) Catalyst for purification of exhaust gas
JPH10128114A (en) Catalyst for purifying exhaust gas
JPH10109032A (en) Exhaust gas purification catalyst for internal combustion engine
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3496348B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP3812791B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3817679B2 (en) Exhaust gas purification catalyst
JP2005288382A (en) Catalyst for purifying exhaust gas
JP4556084B2 (en) Exhaust gas purification catalyst
JP2001212459A (en) Catalyst and method for cleaning exhaust gas
JPH06190279A (en) Exhaust gas purifying catalyst
JPH1052643A (en) Catalyst for exhaust gas purification and method for purifying exhaust gas
JPS5833015B2 (en) Exhaust gas purification catalyst
JPH09253498A (en) Catalyst for clarification of exhaust gas and its preparation and method for using it
JPH08281105A (en) Clarification catalyst for combustion exhaust gas
JP2000153160A (en) Exhaust gas purifying catalyst and its production
JP2004321986A (en) Exhaust gas purification catalyst