JPS5820307B2 - Catalyst for vehicle exhaust gas purification - Google Patents

Catalyst for vehicle exhaust gas purification

Info

Publication number
JPS5820307B2
JPS5820307B2 JP50030384A JP3038475A JPS5820307B2 JP S5820307 B2 JPS5820307 B2 JP S5820307B2 JP 50030384 A JP50030384 A JP 50030384A JP 3038475 A JP3038475 A JP 3038475A JP S5820307 B2 JPS5820307 B2 JP S5820307B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
rhodium
cerium
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50030384A
Other languages
Japanese (ja)
Other versions
JPS51104491A (en
Inventor
道一 田口
国生 船引
栄 川越
棟幸 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP50030384A priority Critical patent/JPS5820307B2/en
Publication of JPS51104491A publication Critical patent/JPS51104491A/ja
Publication of JPS5820307B2 publication Critical patent/JPS5820307B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は車輌の機関等、特に自動車の機関から排出され
る排気ガス中の窒素酸化物(NOx)、炭化水素(HC
)および一酸化炭素(CO)を効率よく低減させる車輌
排気ガス浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce nitrogen oxides (NOx) and hydrocarbons (HC) in exhaust gas emitted from vehicle engines, etc., especially automobile engines.
) and carbon monoxide (CO) efficiently.

近年自動車をはじめとする内燃機関から排出されるNO
x、HCおよびCO等の有害ガスは大気を汚染し、光化
学スモッグ等の原因となり、人体等に与える影響は大き
く、有害排出ガスの低減は緊急の課題である。
In recent years, NO emitted from internal combustion engines such as automobiles
BACKGROUND ART Harmful gases such as x, HC, and CO pollute the atmosphere and cause photochemical smog, etc., and have a large impact on the human body, so reducing harmful exhaust gases is an urgent issue.

このため各種の対策が提案され、例えば自動車において
は機関を改良して排出ガスを浄化しようとする方法と、
触媒により排出ガスを浄化しようとする方法とがある。
Various countermeasures have been proposed for this purpose, such as improving the engine of automobiles to purify the exhaust gas;
There is a method that attempts to purify exhaust gas using a catalyst.

自動車の排気ガスはガソリンと空気との混合気が機関の
燃焼室内で燃焼することによって発生するが、この際の
空焼比と排気特性との関係は添付図面に示す通りである
Exhaust gas from automobiles is generated by combustion of a mixture of gasoline and air in the combustion chamber of an engine, and the relationship between air firing ratio and exhaust characteristics at this time is as shown in the attached drawings.

図面から明らかな様に、HCおよびCOの生成とNOx
の生成との間には特異な関係がみられ、HCおよびCO
の濃度が下がる様な燃焼にする場合には逆にNOx濃度
は高くなるという相反する現象を示し、有害3成分を同
時に低減することは著しい困難を伴うものである。
As is clear from the drawing, the generation of HC and CO and NOx
There is a unique relationship between the production of HC and CO.
When combustion is performed in such a way that the concentration of NOx decreases, the concentration of NOx increases, which is a contradictory phenomenon, and it is extremely difficult to simultaneously reduce the three harmful components.

この様な条件下で現在までの触媒開発の流れは、通称デ
ュアルベット触媒システムと呼ばれている。
The current flow of catalyst development under these conditions is commonly referred to as a dual-bed catalyst system.

還元触媒と酸化触媒を組合せた2段処理方式が主である
The main method is a two-stage treatment method that combines a reduction catalyst and an oxidation catalyst.

この方式によると排気ガスを先ず還元触媒において酸素
不足のもとてNOxを還元した後空気を供給してから酸
化触媒床においてHCおよびCOの酸化を行なわせる。
According to this method, the exhaust gas is first reduced to NOx due to oxygen deficiency in the reduction catalyst, then air is supplied, and then HC and CO are oxidized in the oxidation catalyst bed.

特に還元触媒は使用温度が600〜900℃と著しく高
く耐久性が問題である上に、場合によっては多量のアン
モニア(NH3)が生成し、このNH3が酸化触媒を通
過した後、NOxに再酸化されるという問題点を含んで
いる。
In particular, reduction catalysts have extremely high operating temperatures of 600 to 900°C, which poses durability problems, and in some cases, a large amount of ammonia (NH3) is produced, and after this NH3 passes through the oxidation catalyst, it is reoxidized to NOx. This includes the problem of being

一方これまで排気ガス中の酸素が不足している場合にN
Oxの浄化に効率が良く、また排出ガス中に十分酸素が
ある場合には、HCおよびCOの除去に効果を発揮する
触媒は開発されている。
On the other hand, until now, when there is a lack of oxygen in the exhaust gas, N
Catalysts have been developed that are highly efficient in purifying Ox and are effective in removing HC and CO when there is sufficient oxygen in the exhaust gas.

しかしながら従来の触媒は上記条件外では効率が悪いと
いう欠点があり、NOxを除去するには排出ガス中の酸
素量が比較的多く、HCおよびcoを除去するには排出
ガス中の酸素量が比較的少ない状態、すなわち排出カス
中の酸化性物質と還元性物質の比がほぼ等しい状態にお
いて、効率良くNOx、HCおよびCOを除去できる触
媒6j無く、排出ガスを単一触媒で除去することはでき
なかったため上述のようにデュアルベット触媒システム
が用いられていた。
However, conventional catalysts have the disadvantage that they are inefficient outside of the above conditions; to remove NOx, the amount of oxygen in the exhaust gas is relatively large; to remove HC and co, the amount of oxygen in the exhaust gas is relatively high. It is not possible to remove exhaust gas with a single catalyst without a catalyst 6j that can efficiently remove NOx, HC, and CO in a state where the ratio of oxidizing substances and reducing substances in the exhaust gas is almost equal. Since this was not the case, a dual-bed catalyst system was used as described above.

本発明者等はかかる現況に鑑み単一触媒床で酸化し、還
元を同時に行ない排出ガスを無害化処理すべく種々研究
の結果、白金、ロジウムおよびセリウムからなる組成物
を耐火性担体に担持させて成る触媒を用いることにより
NOx 、HCおよびCOを同時に効果良く無害化でき
ることを見出し、本発明を達成するに至った。
In view of the current situation, the present inventors conducted various studies to detoxify exhaust gas by simultaneously performing oxidation and reduction using a single catalyst bed. The present inventors have discovered that NOx, HC and CO can be effectively rendered harmless at the same time by using a catalyst consisting of the following, and have achieved the present invention.

本発明の触媒は、上述のように高温度における酸化、中
性および還元性雰囲気中で安定な性質を有するセラミッ
ク質の耐火性担体に白金、ロジウムおよびセリウムを担
持させたもので、特に上記セラミック質としてはγ−ア
ルミナが適しており、その形状はペレットおよびハニカ
ム等がある。
The catalyst of the present invention has platinum, rhodium, and cerium supported on a ceramic refractory carrier that is stable in oxidizing, neutral, and reducing atmospheres at high temperatures as described above. As for the quality, γ-alumina is suitable, and its shape includes pellets, honeycomb, etc.

なお白金、ロジウムおよびセリウムをペレットまたはハ
ニカム状担体に担持させる方法は種々あるが、一例を挙
げて次に説明する。
There are various methods for supporting platinum, rhodium, and cerium on pellets or honeycomb-shaped carriers, and one example will be described below.

ペレット触媒の製造方法としては、まず所定量の触媒用
試薬をペレット量の2倍量の水に溶解する。
As a method for producing a pellet catalyst, first, a predetermined amount of a catalyst reagent is dissolved in water in an amount twice the amount of pellets.

かかる溶液にペレット担体を常温かあるいは50℃位ま
での温度に加温した状態で約1時間含浸する。
The pellet carrier is immersed in this solution for about 1 hour at room temperature or heated to a temperature of about 50°C.

担体を溶液から引き上げ乾燥した後、水素雰囲気中で5
50℃3時間焼成する。
After removing the support from the solution and drying it, it was heated for 5 minutes in a hydrogen atmosphere.
Bake at 50°C for 3 hours.

ハニカム形触媒においては、まず30%のアルミナ分を
含むアルミナゾル3重量部、γ−アルミナ1重量部、そ
の他珪酸塩少量からなるアルミナコーティング組成物を
ボールミルに入れ、常温で2時間組成物中の固形物を粉
砕する。
For the honeycomb catalyst, first, an alumina coating composition consisting of 3 parts by weight of alumina sol containing 30% alumina, 1 part by weight of γ-alumina, and a small amount of other silicate is placed in a ball mill, and the solids in the composition are heated at room temperature for 2 hours. crush things.

次いでアルミナあるいはコーチイエライト等からなるハ
ニカム担体に、上記操作により得られたコーテイング液
を流しかけてから、常温で約1日乾燥した後650℃で
3時間焼成する。
Next, the coating liquid obtained by the above operation is poured onto a honeycomb carrier made of alumina, cochillerite, etc., dried at room temperature for about one day, and then fired at 650° C. for 3 hours.

かかるハニカム担体を、所定量の触媒金属を溶解した溶
液に含浸し、所要に応じて硫化水素気流中に晒らしてか
ら乾燥して常温で24時間乾燥する。
Such a honeycomb carrier is impregnated with a solution in which a predetermined amount of catalytic metal is dissolved, and if necessary, exposed to a hydrogen sulfide gas stream and then dried at room temperature for 24 hours.

このように処理した後触媒金属が付着した担体を水素中
550℃の温度で3時間焼成して完成触媒とする。
After this treatment, the carrier to which the catalytic metal is attached is calcined in hydrogen at a temperature of 550° C. for 3 hours to obtain a finished catalyst.

次に本発明を実施例および試験例により説明する。Next, the present invention will be explained with reference to Examples and Test Examples.

実施例 1 水21に白金およびロジウムが金属として各々0.9g
、セリウムが金属として0.2g存在するように各塩素
化合物(即ち塩化白金酸、塩化ロジウムおよび塩化セリ
ウム)を溶解し、さらにγ−アルミナよりなるペレット
11を室温で1時間浸漬し含浸させた。
Example 1 0.9 g each of platinum and rhodium as metals in 21 water
Each chlorine compound (namely, chloroplatinic acid, rhodium chloride, and cerium chloride) was dissolved so that 0.2 g of cerium was present as a metal, and the pellets 11 made of γ-alumina were further immersed at room temperature for 1 hour to impregnate.

しかる後処理担体を乾燥し、水素雰囲気中で550°C
13時間焼成し触媒とした。
The post-treated support was dried and heated at 550°C in a hydrogen atmosphere.
It was calcined for 13 hours and used as a catalyst.

実施例 2 水21に白金およびロジウムが金属として各々o、B、
セリウムが金属として0.4g存在するように各塩素化
合物(即ち塩化白金酸、塩化ロジウムおよび塩化セリウ
ム)を溶解し、さらにγ−アルミナよりなるペレットを
室温で1時間浸漬し、含浸させた。
Example 2 Platinum and rhodium are added as metals to water 21, respectively: o, B,
Each chlorine compound (namely, chloroplatinic acid, rhodium chloride, and cerium chloride) was dissolved so that 0.4 g of cerium was present as a metal, and the pellets made of γ-alumina were further immersed at room temperature for 1 hour to impregnate.

しかる後処理担体を乾燥し、水素雰囲気中550℃で3
時間焼成し触媒とした。
The post-treated support was dried and incubated at 550°C in a hydrogen atmosphere for 3
It was fired for a period of time and used as a catalyst.

実施例 3 水21に白金およびロジウムが金属として各々0.6g
、セリウムが金属として0.8g存在するように各塩素
化合物(即ち塩化白金酸、塩化ロジウムおよび塩化セリ
ウム)を溶解し、さらにγ−アルミナよりなるペレット
を室温で1時間浸漬し、含浸させた。
Example 3 0.6 g each of platinum and rhodium as metals in water 21
Each chlorine compound (i.e., chloroplatinic acid, rhodium chloride, and cerium chloride) was dissolved so that 0.8 g of cerium was present as a metal, and the pellets made of γ-alumina were further immersed at room temperature for 1 hour to impregnate.

しかる後処理担体を乾燥し、水素雰囲気中550℃で3
時間焼成し、触媒とした。
The post-treated support was dried and incubated at 550°C in a hydrogen atmosphere for 3
It was fired for a period of time and used as a catalyst.

実施例 4 水21に白金およびロジウムが金属として各0.2g、
セリウムが金属として1,6g存在するように各塩素化
合物(即ち塩化白金酸、塩化ロジウムおよび塩化セリウ
ム)を溶解し、さらにγ−アルミナよりなるべくペレッ
トを室温で1時間浸漬し、含浸させた。
Example 4 0.2 g each of platinum and rhodium as metals in water 21,
Each chlorine compound (i.e., chloroplatinic acid, rhodium chloride, and cerium chloride) was dissolved so that 1.6 g of cerium was present as metal, and the pellets, preferably made of γ-alumina, were immersed for 1 hour at room temperature to impregnate.

しかる後処理担体を乾燥し、水素雰囲気中550℃で3
時間焼成し、触媒とした。
The post-treated support was dried and incubated at 550°C in a hydrogen atmosphere for 3
It was fired for a period of time and used as a catalyst.

試験例 1 上記実施例1〜4の触媒を自動車排気ガス浄化リアクタ
内に各々充填し、次のような条件で性能を評価した。
Test Example 1 The catalysts of Examples 1 to 4 above were each filled into an automobile exhaust gas purification reactor, and their performance was evaluated under the following conditions.

排気量2000ccのエンジンの排出ガスを空間速度毎
時30000で前記リアクタに導いた。
Exhaust gas from an engine with a displacement of 2,000 cc was introduced into the reactor at a space velocity of 30,000 per hour.

触媒入口における排出ガス温度は450℃であり、排出
ガスの成分は HC1500ppm C0O,7% NO500ppm CO214% H2O,5% 02 0.62〜0.72% N2 残部 であった。
The exhaust gas temperature at the catalyst inlet was 450° C., and the components of the exhaust gas were HC 1500 ppm COO, 7% NO 500 ppm CO2 14% H2O, 5% 0.62 to 0.72% N2 balance.

尚上記排出ガス組成は酸化性物質と還元性物質の割合が
0.95〜1.05の範囲である。
In addition, in the exhaust gas composition, the ratio of oxidizing substances to reducing substances is in the range of 0.95 to 1.05.

上記条件により評価した各成分の除去率を下表に示す。The removal rate of each component evaluated under the above conditions is shown in the table below.

尚上記実施例においては担体としてペレットを使用した
が、ハニカムでも同様な性能を示す。
In the above examples, pellets were used as the carrier, but honeycomb also exhibits similar performance.

また上記実施例の評価においては、排出ガスにおける酸
化性物質と還元性物質との比を0.95〜1.05の範
囲で行ったが、還元性物質すなわち一酸化炭素、水素お
よび炭化水素の量が多い状態では窒素酸化物(NOx)
の除去は効率が良いが、逆に酸化性物質、すなわち酸素
(0□)および一酸化窒素(NO)が多い状態では炭化
水素および一酸化炭素の除去の効率は良くなる。
In addition, in the evaluation of the above examples, the ratio of oxidizing substances to reducing substances in the exhaust gas was set in the range of 0.95 to 1.05, but the ratio of reducing substances, that is, carbon monoxide, hydrogen, and hydrocarbons, was In large quantities, nitrogen oxides (NOx)
The removal of hydrocarbons and carbon monoxide becomes more efficient when oxidizing substances, ie, oxygen (0□) and nitrogen monoxide (NO) are present in large amounts.

従って本発明の触媒は窒素酸化物(NOx)除去専用に
用いても各々高性能を示す。
Therefore, the catalyst of the present invention exhibits high performance even when used exclusively for removing nitrogen oxides (NOx).

比較例 1 実施例1においてセリウムを入れずに白金およびロジウ
ムだけを各々1.0g含むような水21を作り、他は全
く同様にして触媒とした。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that water 21 containing only 1.0 g of platinum and rhodium each was prepared without adding cerium.

比較例 2 実施例1においてロジウムを入れずに白金1.8g、セ
リウム0.2gを含むような水21を作り他は全く同様
にして触媒とした。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that water 21 containing 1.8 g of platinum and 0.2 g of cerium was prepared without adding rhodium.

比較例 3 実施例1において白金を入れずにロジウム1.8g、セ
リウム0.2gを含むような水21を作り他は全く同様
にして触媒とした。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 1 except that water 21 containing 1.8 g of rhodium and 0.2 g of cerium was prepared without adding platinum.

試験例 2 上記比較例1〜3の3種の触媒を試験例1と同様の条件
で評価した。
Test Example 2 The three catalysts of Comparative Examples 1 to 3 above were evaluated under the same conditions as Test Example 1.

得た結果を次に示す。このように実施例の触媒は白金−
ロジウム−セリウムを活性成分としたため比較例の触媒
に比し明らかに性能が優れていることがわかる。
The results obtained are shown below. In this way, the catalyst of the example is platinum-
It can be seen that since rhodium-cerium was used as an active ingredient, the performance was clearly superior to that of the catalyst of the comparative example.

上述の如く、本発明の触媒は、窒素酸化物、一酸化炭素
および炭化水素を高い効率で転換、無害化し車輌排出ガ
ス浄化用触媒として著しい効果を有するものである。
As described above, the catalyst of the present invention converts nitrogen oxides, carbon monoxide, and hydrocarbons with high efficiency and renders them harmless, and has a remarkable effect as a catalyst for purifying vehicle exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は空燃比と、一酸化炭素(CO)、炭化水素(
HC)および窒素酸化物(NOx) との関係を示す
曲線図である。
The attached drawing shows the air-fuel ratio, carbon monoxide (CO), and hydrocarbon (
HC) and nitrogen oxides (NOx).

Claims (1)

【特許請求の範囲】[Claims] 1 白金、ロジウムおよびセリウムから成る組成物を耐
火性担体に担持させたことを特徴とする車輌排出ガス浄
化用触媒。
1. A catalyst for purifying vehicle exhaust gas, characterized in that a composition comprising platinum, rhodium, and cerium is supported on a refractory carrier.
JP50030384A 1975-03-13 1975-03-13 Catalyst for vehicle exhaust gas purification Expired JPS5820307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50030384A JPS5820307B2 (en) 1975-03-13 1975-03-13 Catalyst for vehicle exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50030384A JPS5820307B2 (en) 1975-03-13 1975-03-13 Catalyst for vehicle exhaust gas purification

Publications (2)

Publication Number Publication Date
JPS51104491A JPS51104491A (en) 1976-09-16
JPS5820307B2 true JPS5820307B2 (en) 1983-04-22

Family

ID=12302385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50030384A Expired JPS5820307B2 (en) 1975-03-13 1975-03-13 Catalyst for vehicle exhaust gas purification

Country Status (1)

Country Link
JP (1) JPS5820307B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588364B2 (en) * 1986-07-09 1993-12-22 Honda Motor Co Ltd
EP0715879A1 (en) 1994-12-09 1996-06-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gases and process for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148496A (en) * 1976-06-07 1977-12-09 Nissan Motor Co Ltd Purification catalyst for internal combustion engine exhaust gas
JPS5447889A (en) * 1977-09-22 1979-04-14 Toyota Motor Corp Catalyst for purification of internal combustion engine exhaust gas
JPS54159391A (en) * 1978-06-07 1979-12-17 Toyota Motor Corp Exhaust gas cleaning catalyst
JPS56102940A (en) * 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
JPS5756041A (en) * 1980-09-19 1982-04-03 Mitsui Mining & Smelting Co Ltd Palladium catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990695A (en) * 1972-12-19 1974-08-29
JPS51101780A (en) * 1975-03-06 1976-09-08 Nissan Motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990695A (en) * 1972-12-19 1974-08-29
JPS51101780A (en) * 1975-03-06 1976-09-08 Nissan Motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588364B2 (en) * 1986-07-09 1993-12-22 Honda Motor Co Ltd
EP0715879A1 (en) 1994-12-09 1996-06-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gases and process for producing the same

Also Published As

Publication number Publication date
JPS51104491A (en) 1976-09-16

Similar Documents

Publication Publication Date Title
JPS63100919A (en) Purifying method for exhaust gas and catalyst
JP2773428B2 (en) Exhaust gas purification method
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPS6260139B2 (en)
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH10109032A (en) Exhaust gas purification catalyst for internal combustion engine
JP3417702B2 (en) Nitrogen oxide storage composition and exhaust gas purification method
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JP2605956B2 (en) Exhaust gas purification catalyst
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH06165920A (en) Exhaust gas purifying method
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JPH01247710A (en) Purifying device for automobile exhaust
JPH1066867A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst
JP2001058131A (en) Catalyst for exhaust gas treatment
JP3298115B2 (en) Method for producing exhaust gas purifying catalyst
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JPH04197446A (en) Catalyst for exhaust purification
JPH06190246A (en) Exhaust gas purifying device for automobile
JPH11294150A (en) Exhaust emission control device and its use
JPH08224479A (en) Production of catalyst for purifying exhaust gas