JP4655436B2 - Method for treating exhaust gas purification catalyst - Google Patents

Method for treating exhaust gas purification catalyst Download PDF

Info

Publication number
JP4655436B2
JP4655436B2 JP2001263061A JP2001263061A JP4655436B2 JP 4655436 B2 JP4655436 B2 JP 4655436B2 JP 2001263061 A JP2001263061 A JP 2001263061A JP 2001263061 A JP2001263061 A JP 2001263061A JP 4655436 B2 JP4655436 B2 JP 4655436B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxide
catalyst
ceo
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001263061A
Other languages
Japanese (ja)
Other versions
JP2003074334A (en
Inventor
彰 森川
美穂 畑中
明彦 須田
英夫 曽布川
正洽 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001263061A priority Critical patent/JP4655436B2/en
Publication of JP2003074334A publication Critical patent/JP2003074334A/en
Application granted granted Critical
Publication of JP4655436B2 publication Critical patent/JP4655436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排ガス浄化用触媒の処理方法に関し、詳しくは、担持されている貴金属が粒成長して活性が低下した触媒の活性を回復させるための処理方法に関する。
【0002】
【従来の技術】
従来より自動車の排ガス浄化用触媒として、排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性ハニカム基材にγ-Al2O3からなる担体層を形成し、その担体層に白金(Pt)やロジウム(Rh)などの貴金属を担持させたものが広く知られている。
【0003】
排ガス浄化触媒に用いられる担体の条件としては、比表面積が大きく耐熱性が高いことが挙げられ、一般には Al2O3、SiO2、ZrO2、TiO2などが用いられることが多い。また排ガスの雰囲気変動を緩和するために、酸素吸蔵放出能をもつCeO2や、CeO2の酸素吸蔵放出能及び耐熱性を向上させたCeO2−ZrO2固溶体を添加することも知られている。
【0004】
ところで近年の排ガス規制の強化により、エンジン始動からごく短い時間にも排ガスを浄化する必要性がきわめて高くなっている。そのためには、より低温で触媒を活性化し、排出規制成分を浄化しなければならない。中でもPtなどをCeO2に担持した触媒は、低温からCOを浄化する性能に長けている。したがってこのような触媒を三元触媒などと組み合わせて用いれば、COが低温で着火されることによってPtのCO吸着被毒が緩和され、HCの着火性が向上する。また触媒表面の暖機が促進されるため、低温域からHCを浄化することができる。
【0005】
またPtなどをCeO2に担持した触媒では、水性ガスシフト反応によって低温域でH2が生成される。したがってこのような触媒を三元触媒などと組み合わせて用いれば、生成したH2を還元剤としてNOx との反応に利用することにより、低温域からNOx を還元浄化することができるようになる。
【0006】
しかし従来のCeO2にPtなどを担持した触媒においては、実際の排ガス中における耐久性に乏しく、熱によってCeO2がシンタリングしてしまい実用的ではない。実際の排ガス中で使用するためには、CeO2の性質を失うことなく耐熱性を向上させる必要性がある。またそのようにCeO2の性質を失うことなく担体としての耐熱性を向上させないと、CeO2のシンタリングに伴って貴金属の粒成長が生じ、活性が低下する場合があるため、担体上の貴金属の安定化は必須である。
【0007】
またCeO2に担持されたPtは、高温の排ガスに長時間晒されるとPt自身に粒成長が生じ、活性点の減少によって活性が低下するという不具合がある。これは、上記したように担体のシンタリングに伴っても生じるが、担持されているPt自体が担体上を移動するのが主原因であり、Ptを高密度で担持した場合に特に生じやすいことがわかっている。
【0008】
一方、特開平8-144748号公報には、Pt又はRhの少なくとも一方とPdとを担持してなる排ガス浄化用触媒に対して、強度が制御されたリッチ劣化回復処理とリーン劣化回復処理を行うことで、活性が回復することが記載されている。
【0009】
Pt又はRhは高温酸化雰囲気で酸化物となり、これによって活性が低下する。したがって上記公報では、高温還元雰囲気でリッチ劣化回復処理を行うことによってPt又はRhの活性を回復させている。またPdはPdO となることで活性化するが、高温還元雰囲気ではPdメタルとなって活性が低下する。したがって上記公報では、高温酸化雰囲気でリーン劣化回復処理を行うことによってPdの活性を回復させている。
【0010】
【発明が解決しようとする課題】
Pt又はRhが高温酸化雰囲気で酸化物となって活性が低下するのは、上記公報にも記載されているように一次劣化であって、上記公報に記載の処理によって活性を回復させることが可能である。しかしながら熱履歴などによる粒成長による劣化は、永久劣化であって、粒成長した貴金属を再び微細化することは困難であり、上記公報には、上記公報に記載の処理によって永久劣化した触媒の触媒性能は回復しないと記載されている。
【0011】
本発明はこのような事情に鑑みてなされたものであり、担体と貴金属との相互作用を利用することによって、粒成長によって永久劣化した貴金属を再び微粒子化して触媒の活性を回復させることを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の処理方法の特徴は、比表面積が10m2/g以上の塩基性酸化物を含む担体と該担体に担持された貴金属とよりなる排ガス浄化用触媒の処理方法であって、排ガスに晒され貴金属の粒成長によって触媒性能が低下した触媒を 600℃以上の高温の酸化性雰囲気中で処理する酸化処理と、酸化処理後の触媒を 800℃以下のストイキ雰囲気又は還元性雰囲気中で処理する還元処理と、を行うことにある。
【0013】
塩基性酸化物は希土類元素及びアルカリ土類金属から選ばれる少なくとも一種の金属の酸化物であることが好ましく、Ce,Pr,La,及びMgから選ばれる少なくとも一種の金属の酸化物であることが特に望ましい。
【0014】
また担体は、塩基性酸化物の一次粒子の粒界に塩基性酸化物と固相反応しない非反応性酸化物が介在していることが望ましく、非反応性酸化物はAl,Ti,Si,及びZrから選ばれる少なくとも一種の金属の酸化物であることが好ましい。
【0015】
【発明の実施の形態】
本発明の排ガス浄化用触媒の処理方法では、排ガスに晒され触媒性能が低下した触媒を先ず 600℃以上の高温の酸化性雰囲気中で処理している。例えば塩基性酸化物としてCeO2を、貴金属としてPtを例に取って推定される反応機構を説明すると、CeO2に担持されたPtは高温の排ガスに長時間晒されることで粒成長し、浄化活性が失活する。このように永久劣化した触媒を例えば 700℃以上の酸化性雰囲気中で処理すると、Ptが酸化されてCeO2との間に固相反応が生じ、CeO2表面にPt成分が濡れた状態となる。
【0016】
しかる後、例えば 700℃以下の還元性雰囲気中で処理すると、還元反応によってPtがメタル粒子として再析出する。この際、PtとCeO2との親和性が高いために、CeO2表面に濡れた状態のPt成分の表面から還元反応が徐々に進行し、Ptメタルは微粒子として析出すると考えられる。これにより活性が回復する。
【0017】
本発明に用いられる排ガス浄化用触媒の担体は、塩基性酸化物を含んでいる。塩基性酸化物は貴金属との相互作用が高いため、酸化処理によって貴金属成分が塩基性酸化物粒子の表面に濡れた状態とすることができ、上記した作用が円滑に奏される。
【0018】
そして塩基性酸化物の比表面積は10m2/g以上である。比表面積がこの範囲より小さいと、酸化処理において貴金属成分が塩基性酸化物粒子の表面に濡れた状態における表面積が小さくなる。したがって還元処理によって析出する貴金属メタル粒子の分散性が低下し、活性の回復度合いが小さくなるため好ましくない。
【0019】
このように大きな比表面積をもつ塩基性酸化物は、塩基性酸化物を構成する金属の水溶性金属塩の水溶液から前駆体を沈殿させ、それを焼成することで調製することができる。また沈殿後に水の存在下で室温以上、好ましくは 100〜 200℃で加熱する熟成工程を行うことも好ましい。この熟成工程を行うことにより得られる塩基性酸化物は、比較的結晶性が高く大きな粒径の結晶子をもつため、酸化処理時における担体自身のシンタリングを一層抑制することができる。
【0020】
この塩基性酸化物としては、CeO2,PrO2,La2O3 ,MgO ,CeO2−ZrO2複合酸化物,SrO2, Nd2O3,Y2O3,CeO2-CaO,CeO2−SrO2などの一種あるいは複数種の混合物が例示される。中でも塩基性酸化物は希土類元素及びアルカリ土類金属から選ばれる少なくとも一種の金属の酸化物であることが好ましく、Ce,Pr,La,及びMgから選ばれる少なくとも一種の金属の酸化物であることが特に望ましい。
【0021】
担体は上記塩基性酸化物を含めばよく、通常は上記塩基性酸化物の粉末と Al2O3,ZrO2,SiO2,TiO2など他の酸化物粉末とが混合されて担体とされ、これによって三元触媒、酸化触媒などとして利用される。担体中の塩基性酸化物の比率は、塩基性酸化物を少しでも含めば特に制限されず、用途に応じて決められる。
【0022】
担体は、塩基性酸化物の一次粒子の粒界に塩基性酸化物と固相反応しない非反応性酸化物が介在している構造とすることも好ましい。このような複合酸化物から形成された担体は、同種の酸化物どうしが接触する確率が低いためシンタリングが抑制される。これによりこの複合酸化物は、 600℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.07cc/g以上となり、 800℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.04cc/g以上となる特性を有している。
【0023】
したがってこのような複合酸化物からなる担体を用いれば、耐久後も高い比表面積を有しているため高い活性が発現される。そして酸化処理時における担体自身のシンタリングが抑制されるため、酸化処理において貴金属成分が塩基性酸化物粒子の表面に濡れた状態における表面積が大きくなり、還元処理で析出する貴金属メタル粒子をさらに高分散化することができる。
【0024】
上記複合酸化物からなる担体は、 600℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.13cc/g以上となり、 800℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.10cc/g以上となる特性を有することがより望ましい。
【0025】
非反応性酸化物は、塩基性酸化物と固相反応しないものであり、Al,Ti,Si,及びZrから選ばれる少なくとも一種の金属の酸化物であることが望ましい。また複合酸化物における塩基性酸化物と非反応性酸化物との構成比率は、塩基性酸化物が50原子%以上とすることが望ましい。塩基性酸化物が50原子%未満であると、本発明の処理方法の作用がうまく奏されず活性の回復が困難となる。
【0026】
上記複合酸化物は、塩基性酸化物を構成する金属の水溶性金属塩と非反応性酸化物を構成する金属の水溶性金属塩との混合水溶液を調製し、共沈法によって得られた沈殿を焼成することで調製することができる。また共沈後に水の存在下で室温以上、好ましくは 100〜 200℃で加熱する熟成工程を行うことも好ましい。この熟成工程を行うことにより得られる複合酸化物は、比較的結晶性が高く大きな粒径の結晶子をもつため、酸化処理時における担体自身のシンタリングを一層抑制することができる。
【0027】
なお本発明にいう担体は、上記複合酸化物のみから構成してもよいし、 Al2O3,ZrO2,SiO2,TiO2など他の酸化物粉末と混合されて担体とすることもでき、これによって三元触媒、酸化触媒などとして利用される。担体中の上記複合酸化物の比率は、上記複合酸化物を少しでも含めば特に制限されず、用途に応じて決められる。
【0028】
担体に担持された貴金属としては、塩基性酸化物との相互作用が大きなPt,Rh,Pd,Cu,Ruなどを用いることができる。Pt及びRhの少なくとも一方であることが好ましいが、本発明の処理方法はPtの場合に特に効果的であるので、少なくともPtを含むことが望ましい。また貴金属の担持量は特に制限されず、従来の排ガス浄化用触媒と同等でよい。
【0029】
酸化処理は、触媒を 600℃以上の高温の酸化性雰囲気中で処理する。温度が 600℃より低いと粒成長した貴金属と塩基性酸化物との反応が生じず、還元工程における貴金属微粒子の再析出、高分散化が困難となる。温度の上限は特に制限されないが、担体の分解温度未満とする必要があることはいうまでもない。しかし温度が高いほど処理時間を短縮できるので 600℃以上、さらには 800℃以上の高温で処理することが望ましい。
【0030】
酸化処理における酸化性雰囲気とは、化学量論的にO2などの酸化成分の当量がCO,HCなどの還元成分の当量より大きい雰囲気をいい、当量比(酸化成分/還元成分)が1.05以上であることが望ましい。この当量比が1.05より小さいと酸化処理が困難となる。なお酸化処理は、例えば大気中で触媒を加熱するなどして行うこともできるが、排ガス中で行うことが望ましい。この場合は、空燃比( A/F)が15以上で燃焼された排ガス雰囲気とすることが好ましい。
【0031】
酸化処理における処理時間は、処理温度及び酸化性雰囲気の程度に応じて決定される。例えば大気中で加熱する場合には、1分間以上とするのが好ましい。処理時間がこれより短いと、貴金属と酸化物との固相反応が充分に起こらず、還元処理において貴金属メタルの微粒子化が不十分となり、活性の回復が困難となる。
【0032】
還元処理は、酸化処理後の触媒を 800℃以下のストイキ雰囲気又は還元性雰囲気中で処理する。処理温度が 800℃を超えると、酸化物粒子自身の熱凝集が起こり比表面積が低下するため好ましくない。また処理温度の下限は特に制限されないが、実際の排ガス中での処理を考えると 300〜 600℃が実用的である。
【0033】
還元処理におけるストイキ雰囲気とは、化学量論的にO2などの酸化成分の当量がCO,HCなどの還元成分の当量と等しい雰囲気をいい、還元性雰囲気とは、化学量論的にO2などの酸化成分の当量がCO,HCなどの還元成分の当量より小さい雰囲気をいう。還元性雰囲気は、当量比(酸化成分/還元成分)が1以下であることが望ましい。この当量比が1より大きいと還元処理時間が長くなってしまい、還元が起こらない場合もある。なお還元処理は、例えばCOガス中で触媒を加熱するなどして行うこともできるが、排ガス中で行うことが望ましい。この場合は、空燃比( A/F)が14.6以下で燃焼された排ガス雰囲気とすることが好ましい。
【0034】
還元処理における処理時間は、処理温度及び還元性雰囲気の程度に応じて決定される。例えばストイキ雰囲気の排ガス中で加熱する場合には、1分間以上とするのが好ましい。処理時間がこれより短いと、貴金属メタル微粒子がほとんど析出せず、活性の回復が困難となる。
【0035】
酸化処理と還元処理は、触媒を排ガス流路から取り出して行ってもよいが、排ガス流路に配置した状態で行うことが好ましい。例えば現実の触媒の活性に関する物理量を検出し、触媒が劣化していると判断された場合には、リーン雰囲気の 700℃以上の高温の排ガスを触媒に流通させて酸化処理を行う。そして所定時間経過後、次にストイキ又はリッチ雰囲気の 600℃以下の排ガスを流通させて還元処理を行う。このようにすれば触媒の使用に連続して酸化処理と還元処理を行うことができ、劣化した触媒を自動的に回復させることも可能である。
【0036】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0037】
(実施例1)
硝酸セリウム( III)と、セリウムイオンの 1.1倍モルのH2O2とを含む水溶液を十分に撹拌しながら、中和当量の 1.2倍モルのNH3 を含むアンモニア水を加えて沈殿を生成させた。生成した沈殿を0.12MPa , 110℃で2時間水熱処理して熟成し、濾過後大気中にて 300℃で3時間仮焼し、さらに大気中にて 500℃で1時間焼成し、 600℃で5時間熱処理してCeO2粉末を調製した。このCeO2粉末の比表面積は60m2/gであった。
【0038】
このCeO2粉末74gと、活性アルミナ粉末 120gと、全固形分の7重量%相当のアルミナゾルを混合し、ボールミルにて所定粒度まで粉砕してスラリーを調製した。得られたスラリーをコージェライト製ハニカム基材(35cm3 のテストピース)にウオッシュコートし、乾燥・焼成してコート層を形成した。コート量はハニカム基材1Lあたり 200gである。
【0039】
そしてPt(NO2)2(NO3)2 水溶液の所定量をコート層に含浸させ、乾燥後 300℃で1時間焼成してPtを担持した。Ptの担持量はハニカム基材1Lあたり2gである。
【0040】
得られた触媒を評価装置に配置し、表1に示すモデルガスを空間速度35,000 h-1で流通させながら 700℃で25時間保持する耐久試験を行った。耐久試験後の触媒をStep1触媒という。
【0041】
そしてStep1触媒を評価装置に配置し、表2に示すストイキモデルガスを空間速度200,000h-1で流通させながら、 500℃で10分間の還元処理を行った後、 100℃から 500℃までの昇温時のNO,CO及びC3H6の浄化挙動を測定し、各成分の50%浄化温度で比較した。
【0042】
次にStep1触媒を耐久試験装置に配置し、大気を空間速度35,000 h-1で流通させながら 800℃で5時間保持する酸化処理を行った。酸化処理後の触媒をStep2触媒という。
【0043】
このStep2触媒を評価装置に配置し、表2に示すストイキモデルガスを空間速度200,000h-1で流通させながら、 500℃で10分間の還元処理を行った後、 100℃から 500℃までの昇温時のNO,CO及びC3H6の浄化挙動を測定し、各成分の50%浄化温度で比較した。
【0044】
以下、Step1触媒を得る耐久試験と、Step2触媒を得る酸化処理とを再度繰り返し、各処理後の触媒について、表2に示すストイキモデルガスを空間速度200,000h-1で流通させながら、 500℃で10分間の還元処理を行った後、 100℃から 500℃までの昇温時のNO,CO及びC3H6の浄化挙動を測定し、各成分の50%浄化温度で比較した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0045】
【表1】

Figure 0004655436
【0046】
【表2】
Figure 0004655436
【0047】
(実施例2)
沈殿に水熱処理を施さなかったこと以外は実施例1と同様にして、CeO2粉末を調製した。このCeO2粉末の比表面積は50m2/gであった。このCeO2粉末を用いて実施例1と同様に触媒を調製した後、同様にしてC3H6の50%浄化温度を測定した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0048】
(実施例3)
セリウムイオンの 0.4倍モルの硝酸アルミニウムをさらに加えた水溶液を用いたこと以外は実施例1と同様にして沈殿させ、同様に水熱処理後焼成し、CeO2の一次粒子の粒界に Al2O3が介在した複合酸化物粉末を調製した。このCeO2-Al2O3複合酸化物粉末の比表面積は 100m2/gであった。
【0049】
CeO2粉末に代えてこのCeO2-Al2O3複合酸化物粉末を用いたこと以外は実施例1と同様にして触媒を調製した後、同様にしてC3H6の50%浄化温度を測定した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0050】
またFE−STEMの EDSを用い、上記のCeO2-Al2O3複合酸化物粉末の重なりのない一つの粒子を直径 0.5nmのビーム径により元素分析を行った。分析条件は、(株)日立製作所製「 HD-2000」を使用し、加速電圧 200kVで測定した。この装置は EDX検出器( NCRAN社製 Vatage EDX system)を備え、試料から発生する特性X線によって高感度で元素分析ができるようになっている。
【0051】
その結果、直径 0.5nmのビーム径によりきわめて微小な部分を分析しても、CeとAlの組成分布は理論原子比(Ce:Al=5:2)を中心として±10%以内と、狭い範囲に集中していた。もし例えばCeO2及び Al2O3が 0.5nm以上の粒子として存在するとすれば、上記測定によってCeが 100%あるいは Alが 100 %の部分が多数検出されるはずである。したがってCeO2及び Al2O3は、共に 0.5nm未満の微粒子として存在している。
【0052】
また上記複合酸化物粉末について、 600℃, 800℃及び1000℃でそれぞれ5時間の焼成を行い、その後それぞれX線回折(40kV-350mA)測定を行った。その結果、CeO2の回折線は誤差範囲内であってピークシフトは認められず、CeO2と Al2O3とは互いに固溶していないことが明らかであった。
【0053】
(実施例4)
沈殿に水熱処理を施さなかったこと以外は実施例3と同様にしてCeO2-Al2O3複合酸化物粉末を調製した。このCeO2-Al2O3複合酸化物粉末の比表面積は85m2/gであった。
【0054】
CeO2粉末に代えてこのCeO2-Al2O3複合酸化物粉末を用いたこと以外は実施例1と同様にして触媒を調製した後、同様にしてC3H6の50%浄化温度を測定した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0055】
(比較例1)
硝酸セリウム( III)に代えて硝酸アルミニウム( III)を用いたこと以外は実施例1と同様にして Al2O3粉末を調製した。この Al2O3粉末の比表面積は 130m2/gであった。
【0056】
CeO2粉末に代えてこの Al2O3粉末を用いたこと以外は実施例1と同様にして触媒を調製した後、同様にしてC3H6の50%浄化温度を測定した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0057】
(比較例2)
実施例1と同様にして調製したCeO2粉末を大気中にて1000℃で5時間処理して比表面積を3m2/gとしたこと以外は実施例1と同様にして触媒を調製した後、同様にしてC3H6の50%浄化温度を測定した。結果を図1に示す。なおNO及びCOも、C3H6と同様の序列であったため、図示を割愛した。
【0058】
<評価>
図1より、比較例1では耐久試験及び酸化還元処理を繰り返すごとに活性が劣化し、酸化還元処理による触媒性能の回復は認められない。また比較例2でも回復効果は認められず、塩基性酸化物の比表面積が低すぎてPtとの充分な接触界面が確保できていないことが示唆される。
【0059】
一方で各実施例では、酸化還元処理を行った後の活性評価ではその触媒性能が回復していることがわかる。また耐久試験と酸化還元処理を2周期以上繰り返しても回復した活性の程度が同レベルであることから、活性の回復過程が再現性のあるものであることが示唆される。
【0060】
次に触媒上のPtの状態を調査した例として、実施例3の触媒で耐久試験後に活性評価を行った場合と、酸化還元処理後に活性評価を行った場合のXPSによるPtの酸化状態測定結果を図2に示す。
【0061】
図2によれば、耐久試験後の触媒上のPtと、酸化還元処理後の触媒上のPtとは、明らかに酸化状態が異なっている。耐久試験後に活性評価を行った場合では、Pt-Metal(71eV)とPtO (74eV)の中間的な状態を示す位置(73eV)にピークが確認され、Ptが酸化状態にあることが示唆される。
【0062】
一方、酸化還元処理後に活性評価を行った場合では、先のピークが消失しPt-Metalに帰属されるピーク(71eV)が出現している。また、耐久試験後に活性評価時と同様のストイキ前処理を行っても、Pt-Metalの析出は認められない。
【0063】
両者の結果を併せて考えると、耐久試験で活性が劣化した触媒に酸化処理を行うことにより、Ptが酸化されることに伴う担体との固相反応が進行してPtが担体上に濡れた状態となり、活性評価時のストイキ前処理(還元処理)によりPt-Metalとして再析出したことが示唆される。
【0064】
なお本来ならPtO2に帰属されるピークが現れる75eV付近のピークは共存する Al2O3由来のものであり、PtO2が存在していないことは別途確認されている。
【0065】
そして実施例1と実施例3、及び実施例2と実施例4との比較から、CeO2-Al2O3複合酸化物を含有する担体を用いた触媒は、CeO2を含有する担体を用いた触媒に比べて本発明の手法による活性回復効果が大きく、かつ活性そのものも高いことがわかる。これは Al2O3とCeO2が複合化されていることにより、CeO2の耐熱性が向上したためと考えられる。
【0066】
さらに実施例1と実施例2、あるいは実施例3と実施例4の比較から、CeO2あるいはCeO2-Al2O3複合酸化物を調製する際に熟成処理を行うことにより、これらを担体として用いた触媒の活性そのものが向上していることも明らかである。
【0067】
【発明の効果】
すなわち本発明の排ガス浄化用触媒の処理方法によれば、粒成長した貴金属を再び微細化することができるため、劣化した触媒の浄化活性を容易に回復させることができる。
【図面の簡単な説明】
【図1】実施例及び比較例の処理方法におけるC3H6の50%浄化温度の推移を示すグラフである。
【図2】実施例3における耐久試験後及び酸化処理後のPtの酸化状態を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating an exhaust gas purifying catalyst, and more particularly, to a treatment method for recovering the activity of a catalyst whose activity has decreased due to grain growth of supported noble metals.
[0002]
[Prior art]
As an exhaust gas purifying catalyst conventionally automobiles, three-way catalyst for purifying performing the reduction of the oxidized and NO x CO and HC in the exhaust gas simultaneously is used. As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite, and platinum (Pt), rhodium (Rh), etc. are formed on the carrier layer. Those carrying a noble metal are widely known.
[0003]
The conditions of the carrier used for the exhaust gas purification catalyst include a large specific surface area and high heat resistance, and in general, Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 and the like are often used. In order to alleviate fluctuations of the atmosphere of the exhaust gas, and CeO 2 having an oxygen storage and release capacity, it is also known that the addition of CeO 2 -ZrO 2 solid solution with improved oxygen storage capacity and heat resistance of the CeO 2 .
[0004]
By the way, due to the recent tightening of exhaust gas regulations, the necessity of purifying exhaust gas is extremely high even in a very short time after the engine is started. For this purpose, the catalyst must be activated at a lower temperature to purify the emission control component. Above all, a catalyst in which Pt or the like is supported on CeO 2 has an excellent ability to purify CO from a low temperature. Therefore, when such a catalyst is used in combination with a three-way catalyst or the like, CO is ignited at a low temperature, so that CO adsorption poisoning of Pt is mitigated and ignitability of HC is improved. Moreover, since warming up of the catalyst surface is promoted, HC can be purified from a low temperature range.
[0005]
In addition, in a catalyst in which Pt or the like is supported on CeO 2 , H 2 is generated in a low temperature region by a water gas shift reaction. Thus the use in combination with such Such catalysts a three-way catalyst, consisting of generated H 2 by utilizing the reaction between NO x as a reducing agent, to be able to reduce and purify NO x from a low temperature range .
[0006]
However, in the conventional CeO 2 was supported and Pt catalyst, poor durability in actual in the exhaust gas, CeO 2 is not practical would be sintered by heat. In order to use in actual exhaust gas, it is necessary to improve the heat resistance without losing the properties of CeO 2 . Further When so does not improve the heat resistance of the carrier without losing the properties of CeO 2, the grain growth of the noble metal occurs with the sintering of CeO 2, since in some cases the activity is lowered, the noble metal on the support Stabilization is essential.
[0007]
Further, Pt supported on CeO 2 has a problem that when it is exposed to high temperature exhaust gas for a long time, grain growth occurs in Pt itself, and the activity decreases due to a decrease in active sites. This occurs even with the sintering of the carrier as described above, but the main cause is that the supported Pt itself moves on the carrier, which is particularly likely to occur when Pt is carried at a high density. I know.
[0008]
On the other hand, in JP-A-8-147484, an exhaust gas purifying catalyst carrying at least one of Pt or Rh and Pd is subjected to rich deterioration recovery processing and lean deterioration recovery processing with controlled strength. It is described that the activity is recovered.
[0009]
Pt or Rh becomes an oxide in a high-temperature oxidizing atmosphere, thereby reducing the activity. Therefore, in the above publication, the activity of Pt or Rh is recovered by performing a rich deterioration recovery process in a high temperature reducing atmosphere. Pd is activated by becoming PdO 2, but its activity decreases as Pd metal in a high temperature reducing atmosphere. Therefore, in the above publication, the activity of Pd is recovered by performing a lean deterioration recovery process in a high-temperature oxidizing atmosphere.
[0010]
[Problems to be solved by the invention]
Pt or Rh becomes an oxide in a high-temperature oxidizing atmosphere, and the activity decreases as described in the above publication, and can be recovered by the treatment described in the above publication. It is. However, deterioration due to grain growth due to thermal history or the like is permanent deterioration, and it is difficult to refine the grain-grown noble metal again. In the above publication, the catalyst of the catalyst permanently deteriorated by the treatment described in the above publication It is stated that performance will not recover.
[0011]
The present invention has been made in view of such circumstances, and an object of the present invention is to recover the activity of the catalyst by making the precious metal permanently deteriorated by grain growth into fine particles again by utilizing the interaction between the support and the precious metal. And
[0012]
[Means for Solving the Problems]
A feature of the method for treating an exhaust gas purifying catalyst of the present invention that solves the above problems is that an exhaust gas purifying catalyst comprising a support containing a basic oxide having a specific surface area of 10 m 2 / g or more and a noble metal supported on the support. The oxidation method involves treating a catalyst that has been exposed to exhaust gas and whose catalytic performance has deteriorated due to noble metal grain growth in an oxidizing atmosphere at a high temperature of 600 ° C or higher, and a catalyst after the oxidation treatment at a temperature of 800 ° C or lower. A reduction treatment in a stoichiometric atmosphere or a reducing atmosphere.
[0013]
The basic oxide is preferably an oxide of at least one metal selected from rare earth elements and alkaline earth metals, and is an oxide of at least one metal selected from Ce, Pr, La, and Mg. Particularly desirable.
[0014]
In addition, it is desirable that the carrier has intervening non-reactive oxides that do not react with the basic oxide at the grain boundaries of the primary particles of the basic oxide, and the non-reactive oxides are Al, Ti, Si, And an oxide of at least one metal selected from Zr.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the method for treating an exhaust gas purifying catalyst of the present invention, a catalyst that has been exposed to exhaust gas and has deteriorated catalyst performance is first treated in an oxidizing atmosphere at a high temperature of 600 ° C. or higher. For example, let us explain the presumed reaction mechanism using CeO 2 as the basic oxide and Pt as the noble metal as an example. Pt supported on CeO 2 grows and is purified by being exposed to high-temperature exhaust gas for a long time. The activity is deactivated. With this process a permanent deteriorated catalyst, for example, 700 ° C. in a more oxidizing atmosphere, Pt solid state reaction occurs between the the CeO 2 is oxidized, in a state in which Pt component wetted on the CeO 2 surface .
[0016]
Thereafter, when treated in a reducing atmosphere of, for example, 700 ° C. or less, Pt is reprecipitated as metal particles by a reduction reaction. At this time, since the affinity between Pt and CeO 2 is high, it is considered that the reduction reaction gradually proceeds from the surface of the Pt component wetted on the CeO 2 surface, and Pt metal is precipitated as fine particles. This restores activity.
[0017]
The carrier of the exhaust gas purifying catalyst used in the present invention contains a basic oxide. Since the basic oxide has a high interaction with the noble metal, the noble metal component can be wetted on the surface of the basic oxide particle by the oxidation treatment, and the above-described action is smoothly performed.
[0018]
The specific surface area of the basic oxide is 10 m 2 / g or more. When the specific surface area is smaller than this range, the surface area in a state where the noble metal component is wetted on the surface of the basic oxide particles in the oxidation treatment becomes small. Therefore, the dispersibility of the noble metal metal particles precipitated by the reduction treatment is lowered, and the degree of recovery of activity is reduced, which is not preferable.
[0019]
Such a basic oxide having a large specific surface area can be prepared by precipitating a precursor from an aqueous solution of a water-soluble metal salt of a metal constituting the basic oxide and firing it. It is also preferable to carry out an aging step of heating at room temperature or higher, preferably 100 to 200 ° C. in the presence of water after precipitation. Since the basic oxide obtained by performing this aging step has a crystallite having a relatively high crystallinity and a large particle size, sintering of the carrier itself during the oxidation treatment can be further suppressed.
[0020]
As the basic oxide, CeO 2, PrO 2, La 2 O 3, MgO, CeO 2 -ZrO 2 composite oxide, SrO 2, Nd 2 O 3 , Y 2 O 3, CeO 2 -CaO, CeO 2 -A mixture of one or more of SrO 2 is exemplified. Among them, the basic oxide is preferably an oxide of at least one metal selected from rare earth elements and alkaline earth metals, and is an oxide of at least one metal selected from Ce, Pr, La, and Mg. Is particularly desirable.
[0021]
The carrier may contain the above basic oxide, and usually the above basic oxide powder and other oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 , TiO 2 are mixed to form a carrier, As a result, it is used as a three-way catalyst, an oxidation catalyst or the like. The ratio of the basic oxide in the carrier is not particularly limited as long as the basic oxide is included, and is determined according to the application.
[0022]
It is also preferable that the carrier has a structure in which a non-reactive oxide that does not undergo a solid phase reaction with the basic oxide is present at the grain boundary of the primary particles of the basic oxide. Since the carrier formed from such a complex oxide has a low probability that the same kind of oxides come into contact with each other, sintering is suppressed. As a result, this composite oxide has a pore diameter of 3.5 to 100 nm after firing at 600 ° C. for 5 hours and a pore volume of 0.07 cc / g or more, and after firing at 800 ° C. for 5 hours, the pore diameter is 3.5 to 100 nm. Has a characteristic that the pore volume is 0.04 cc / g or more.
[0023]
Therefore, when a carrier made of such a composite oxide is used, high activity is exhibited because it has a high specific surface area even after durability. Since sintering of the support itself during the oxidation treatment is suppressed, the surface area of the noble metal component wetted on the surface of the basic oxide particles during the oxidation treatment is increased, and the noble metal metal particles precipitated by the reduction treatment are further increased. Can be decentralized.
[0024]
The carrier composed of the composite oxide has a pore diameter of 3.5 to 100 nm after firing at 600 ° C. for 5 hours and a pore volume of 0.13 cc / g or more, and a pore diameter of 3.5 to 3 after firing at 800 ° C. for 5 hours. It is more desirable to have a characteristic that the pore volume at 100 nm is 0.10 cc / g or more.
[0025]
The non-reactive oxide does not cause a solid phase reaction with the basic oxide, and is preferably an oxide of at least one metal selected from Al, Ti, Si, and Zr. Further, it is desirable that the basic oxide and the non-reactive oxide in the composite oxide have a basic oxide content of 50 atomic% or more. When the basic oxide is less than 50 atomic%, the treatment method of the present invention does not work well and it is difficult to recover the activity.
[0026]
The composite oxide is prepared by preparing a mixed aqueous solution of a water-soluble metal salt of a metal constituting a basic oxide and a water-soluble metal salt of a metal constituting a non-reactive oxide, and obtaining a precipitate obtained by a coprecipitation method. Can be prepared by firing. It is also preferable to carry out a aging step in which heating is performed at room temperature or higher, preferably 100 to 200 ° C. in the presence of water after coprecipitation. The composite oxide obtained by performing this aging step has relatively high crystallinity and crystallites with a large particle size, and therefore the sintering of the carrier itself during the oxidation treatment can be further suppressed.
[0027]
The carrier referred to in the present invention may be composed of only the above complex oxide, or may be mixed with other oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 , TiO 2 to form a carrier. Thus, it is used as a three-way catalyst, an oxidation catalyst, and the like. The ratio of the composite oxide in the carrier is not particularly limited as long as the composite oxide is included as much as possible, and is determined according to the application.
[0028]
As the noble metal supported on the carrier, Pt, Rh, Pd, Cu, Ru or the like having a large interaction with the basic oxide can be used. Although at least one of Pt and Rh is preferable, since the treatment method of the present invention is particularly effective in the case of Pt, it is desirable to include at least Pt. The amount of noble metal supported is not particularly limited, and may be the same as that of a conventional exhaust gas purification catalyst.
[0029]
In the oxidation treatment, the catalyst is treated in an oxidizing atmosphere at a high temperature of 600 ° C or higher. When the temperature is lower than 600 ° C., the reaction between the noble metal having grown grains and the basic oxide does not occur, and reprecipitation and high dispersion of the noble metal fine particles in the reduction process are difficult. The upper limit of the temperature is not particularly limited, but it is needless to say that it must be lower than the decomposition temperature of the support. However, the higher the temperature, the shorter the processing time, so it is desirable to process at a high temperature of 600 ° C or higher, or even 800 ° C or higher.
[0030]
The oxidizing atmosphere in the oxidation treatment means an atmosphere in which the stoichiometric equivalent of the oxidizing component such as O 2 is larger than that of the reducing component such as CO and HC, and the equivalent ratio (oxidizing component / reducing component) is 1.05 or more. It is desirable that If this equivalent ratio is less than 1.05, the oxidation treatment becomes difficult. The oxidation treatment can be performed, for example, by heating the catalyst in the atmosphere, but is preferably performed in exhaust gas. In this case, it is preferable that the exhaust gas atmosphere is burned with an air-fuel ratio (A / F) of 15 or more.
[0031]
The treatment time in the oxidation treatment is determined according to the treatment temperature and the degree of oxidizing atmosphere. For example, in the case of heating in the atmosphere, it is preferable that the heating time be 1 minute or longer. If the treatment time is shorter than this, the solid phase reaction between the noble metal and the oxide does not occur sufficiently, and the reduction of the noble metal metal becomes insufficient in the reduction treatment, making it difficult to recover the activity.
[0032]
In the reduction treatment, the oxidized catalyst is treated in a stoichiometric atmosphere or a reducing atmosphere at 800 ° C. or lower. When the treatment temperature exceeds 800 ° C., thermal aggregation of the oxide particles themselves occurs and the specific surface area decreases, which is not preferable. The lower limit of the treatment temperature is not particularly limited, but 300 to 600 ° C is practical considering treatment in actual exhaust gas.
[0033]
The stoichiometric atmosphere in the reduction treatment refers to an atmosphere in which the equivalent amount of oxidizing components such as O 2 is stoichiometrically equal to the equivalent amount of reducing components such as CO and HC. The reducing atmosphere is stoichiometrically O 2. An atmosphere in which the equivalent of the oxidizing component is smaller than the equivalent of the reducing component such as CO and HC. The reducing atmosphere preferably has an equivalent ratio (oxidation component / reduction component) of 1 or less. When the equivalent ratio is greater than 1, the reduction treatment time becomes long, and reduction may not occur. The reduction treatment can be performed, for example, by heating the catalyst in CO gas, but is preferably performed in exhaust gas. In this case, it is preferable that the exhaust gas atmosphere is burned with an air-fuel ratio (A / F) of 14.6 or less.
[0034]
The treatment time in the reduction treatment is determined according to the treatment temperature and the degree of reducing atmosphere. For example, when heating is performed in exhaust gas in a stoichiometric atmosphere, the heating time is preferably 1 minute or longer. If the treatment time is shorter than this, noble metal metal fine particles are hardly precipitated and it becomes difficult to recover the activity.
[0035]
The oxidation treatment and the reduction treatment may be performed by removing the catalyst from the exhaust gas flow path, but are preferably performed in a state where the catalyst is disposed in the exhaust gas flow path. For example, when a physical quantity relating to the actual catalyst activity is detected and it is determined that the catalyst is deteriorated, the exhaust gas at a temperature of 700 ° C. or higher in a lean atmosphere is circulated through the catalyst for oxidation treatment. Then, after a predetermined time has passed, a reduction process is performed by passing an exhaust gas of 600 ° C. or lower in a stoichiometric or rich atmosphere. In this way, it is possible to carry out the oxidation treatment and the reduction treatment continuously after the use of the catalyst, and it is possible to automatically recover the deteriorated catalyst.
[0036]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0037]
Example 1
While sufficiently stirring an aqueous solution containing cerium (III) nitrate and 1.1 times moles of H 2 O 2 as cerium ions, an aqueous ammonia solution containing 1.2 times the neutralization equivalent of NH 3 was added to form a precipitate. It was. The resulting precipitate was aged by hydrothermal treatment at 0.12 MPa and 110 ° C for 2 hours, and after filtration, calcined in air at 300 ° C for 3 hours, and further calcined in air at 500 ° C for 1 hour, at 600 ° C. CeO 2 powder was prepared by heat treatment for 5 hours. The specific surface area of this CeO 2 powder was 60 m 2 / g.
[0038]
A slurry was prepared by mixing 74 g of this CeO 2 powder, 120 g of activated alumina powder, and alumina sol corresponding to 7% by weight of the total solid content, and pulverizing to a predetermined particle size by a ball mill. The obtained slurry was wash coated on a cordierite honeycomb substrate (35 cm 3 test piece), dried and fired to form a coat layer. The coating amount is 200 g per liter of honeycomb substrate.
[0039]
Then, a predetermined amount of a Pt (NO 2 ) 2 (NO 3 ) 2 aqueous solution was impregnated into the coat layer, dried and then fired at 300 ° C. for 1 hour to carry Pt. The amount of Pt supported is 2 g per liter of honeycomb substrate.
[0040]
The obtained catalyst was placed in an evaluation apparatus, and an endurance test was performed in which the model gas shown in Table 1 was maintained at 700 ° C. for 25 hours while flowing at a space velocity of 35,000 h −1 . The catalyst after the durability test is referred to as Step 1 catalyst.
[0041]
Then, the Step 1 catalyst was placed in the evaluation device, and after 10 minutes of reduction treatment at 500 ° C while the stoichiometric model gas shown in Table 2 was circulated at a space velocity of 200,000h- 1 , the temperature was raised from 100 ° C to 500 ° C. The NO, CO and C 3 H 6 purification behaviors were measured during warming and compared at 50% purification temperature for each component.
[0042]
Next, the Step 1 catalyst was placed in an endurance test apparatus, and an oxidation treatment was performed in which the atmosphere was maintained at 800 ° C. for 5 hours while flowing at a space velocity of 35,000 h −1 . The catalyst after the oxidation treatment is referred to as Step 2 catalyst.
[0043]
This Step 2 catalyst was placed in the evaluation device, and after a reduction treatment at 500 ° C. for 10 minutes with the stoichiometric model gas shown in Table 2 flowing at a space velocity of 200,000 h −1 , the temperature rose from 100 ° C. to 500 ° C. The NO, CO and C 3 H 6 purification behaviors were measured during warming and compared at 50% purification temperature for each component.
[0044]
In the following, the durability test for obtaining the Step 1 catalyst and the oxidation treatment for obtaining the Step 2 catalyst are repeated again, and the catalyst after each treatment is passed at 500 ° C. while the stoichiometric model gas shown in Table 2 is circulated at a space velocity of 200,000 h −1. After reducing for 10 minutes, NO, CO, and C 3 H 6 purification behaviors were measured when the temperature was raised from 100 ° C to 500 ° C and compared at 50% purification temperature for each component. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0045]
[Table 1]
Figure 0004655436
[0046]
[Table 2]
Figure 0004655436
[0047]
(Example 2)
A CeO 2 powder was prepared in the same manner as in Example 1 except that the precipitate was not subjected to hydrothermal treatment. The specific surface area of this CeO 2 powder was 50 m 2 / g. A catalyst was prepared using this CeO 2 powder in the same manner as in Example 1, and the 50% purification temperature of C 3 H 6 was measured in the same manner. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0048]
(Example 3)
Except for using further solution plus 0.4 times moles of aluminum nitrate, cerium ions were precipitated in the same manner as in Example 1, similarly fired after the hydrothermal treatment, Al 2 O in the grain boundary of CeO 2 of the primary particles A composite oxide powder intervening 3 was prepared. The specific surface area of this CeO 2 —Al 2 O 3 composite oxide powder was 100 m 2 / g.
[0049]
A catalyst was prepared in the same manner as in Example 1 except that this CeO 2 —Al 2 O 3 composite oxide powder was used instead of CeO 2 powder, and then the 50% purification temperature of C 3 H 6 was similarly adjusted. It was measured. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0050]
In addition, using FE-STEM EDS, elemental analysis was performed on one particle of the CeO 2 —Al 2 O 3 composite oxide powder without overlapping with a beam diameter of 0.5 nm. The analysis conditions were measured using an “HD-2000” manufactured by Hitachi, Ltd. at an acceleration voltage of 200 kV. This device is equipped with an EDX detector (Vatage EDX system manufactured by NCRAN), which enables high-sensitivity elemental analysis using characteristic X-rays generated from the sample.
[0051]
As a result, even if a very small part is analyzed with a beam diameter of 0.5 nm, the composition distribution of Ce and Al is within a narrow range of ± 10% around the theoretical atomic ratio (Ce: Al = 5: 2). Concentrated on. If, for example, CeO 2 and Al 2 O 3 are present as particles of 0.5 nm or more, a large number of portions with 100% Ce or 100% Al should be detected by the above measurement. Therefore, both CeO 2 and Al 2 O 3 are present as fine particles of less than 0.5 nm.
[0052]
The composite oxide powder was fired at 600 ° C., 800 ° C., and 1000 ° C. for 5 hours, respectively, and then subjected to X-ray diffraction (40 kV-350 mA) measurement. As a result, the diffraction line of CeO 2 was within the error range, no peak shift was observed, and it was clear that CeO 2 and Al 2 O 3 were not dissolved in each other.
[0053]
Example 4
A CeO 2 —Al 2 O 3 composite oxide powder was prepared in the same manner as in Example 3 except that the hydrothermal treatment was not performed on the precipitate. The specific surface area of this CeO 2 —Al 2 O 3 composite oxide powder was 85 m 2 / g.
[0054]
A catalyst was prepared in the same manner as in Example 1 except that this CeO 2 —Al 2 O 3 composite oxide powder was used instead of CeO 2 powder, and then the 50% purification temperature of C 3 H 6 was similarly adjusted. It was measured. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0055]
(Comparative Example 1)
Al 2 O 3 powder was prepared in the same manner as in Example 1 except that aluminum nitrate (III) was used instead of cerium nitrate (III). The specific surface area of this Al 2 O 3 powder was 130 m 2 / g.
[0056]
A catalyst was prepared in the same manner as in Example 1 except that this Al 2 O 3 powder was used in place of CeO 2 powder, and the 50% purification temperature of C 3 H 6 was measured in the same manner. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0057]
(Comparative Example 2)
A catalyst was prepared in the same manner as in Example 1 except that CeO 2 powder prepared in the same manner as in Example 1 was treated in air at 1000 ° C. for 5 hours to give a specific surface area of 3 m 2 / g. Similarly, the 50% purification temperature of C 3 H 6 was measured. The results are shown in FIG. Since NO and CO were in the same order as C 3 H 6 , illustration was omitted.
[0058]
<Evaluation>
From FIG. 1, in Comparative Example 1, the activity deteriorates every time the durability test and the oxidation-reduction treatment are repeated, and recovery of the catalyst performance by the oxidation-reduction treatment is not recognized. In Comparative Example 2, no recovery effect was observed, suggesting that the specific surface area of the basic oxide was too low to ensure a sufficient contact interface with Pt.
[0059]
On the other hand, in each Example, it turns out that the catalyst performance has recovered | restored by the activity evaluation after performing an oxidation reduction process. In addition, the degree of activity recovered even when the endurance test and the oxidation-reduction treatment are repeated for two cycles or more is the same level, suggesting that the activity recovery process is reproducible.
[0060]
Next, as an example of investigating the state of Pt on the catalyst, the measurement result of the oxidation state of Pt by XPS when the activity was evaluated after the durability test with the catalyst of Example 3 and when the activity was evaluated after the oxidation-reduction treatment Is shown in FIG.
[0061]
According to FIG. 2, the oxidation state clearly differs between Pt on the catalyst after the durability test and Pt on the catalyst after the oxidation-reduction treatment. When the activity was evaluated after the endurance test, a peak was confirmed at the position (73eV) indicating an intermediate state between Pt-Metal (71eV) and PtO (74eV), suggesting that Pt is in an oxidized state. .
[0062]
On the other hand, when the activity is evaluated after the oxidation-reduction treatment, the previous peak disappears and a peak (71 eV) attributed to Pt-Metal appears. Further, even when the same stoichiometric pretreatment as in the activity evaluation is performed after the durability test, no precipitation of Pt-Metal is observed.
[0063]
Considering both results together, by oxidizing the catalyst whose activity was deteriorated in the durability test, the solid phase reaction with the carrier caused by the oxidation of Pt progressed, and Pt became wet on the carrier. It is suggested that it was re-deposited as Pt-Metal by the stoichiometric pretreatment (reduction treatment) at the time of activity evaluation.
[0064]
It should be noted that the peak near 75 eV where a peak attributed to PtO 2 originally appears is derived from coexisting Al 2 O 3 , and it has been separately confirmed that PtO 2 does not exist.
[0065]
From the comparison between Example 1 and Example 3 and Example 2 and Example 4, the catalyst using the support containing CeO 2 —Al 2 O 3 composite oxide uses the support containing CeO 2 . It can be seen that the activity recovery effect by the method of the present invention is large and the activity itself is high as compared with the conventional catalyst. This is presumably because the heat resistance of CeO 2 was improved by the composite of Al 2 O 3 and CeO 2 .
[0066]
Further, from the comparison between Example 1 and Example 2 or Example 3 and Example 4, when preparing CeO 2 or CeO 2 —Al 2 O 3 composite oxide, aging treatment is performed, and these are used as carriers. It is also clear that the activity of the catalyst used has improved.
[0067]
【The invention's effect】
That is, according to the method for treating an exhaust gas purifying catalyst of the present invention, the noble metal having grown grains can be refined again, so that the purifying activity of the deteriorated catalyst can be easily recovered.
[Brief description of the drawings]
FIG. 1 is a graph showing the transition of C 3 H 6 50% purification temperature in the treatment methods of Examples and Comparative Examples.
2 is a graph showing the oxidation state of Pt after an endurance test and after an oxidation treatment in Example 3. FIG.

Claims (6)

比表面積が10m2/g以上の塩基性酸化物を含む担体と該担体に担持された貴金属とよりなる排ガス浄化用触媒の処理方法であって、
排ガスに晒され該貴金属の粒成長によって触媒性能が低下した該触媒を 600℃以上の高温の酸化性雰囲気中で処理する酸化処理と、該酸化処理後の該触媒を 800℃以下のストイキ雰囲気又は還元性雰囲気中で処理する還元処理と、を行うことを特徴とする排ガス浄化用触媒の処理方法。
A method for treating an exhaust gas purifying catalyst comprising a support containing a basic oxide having a specific surface area of 10 m 2 / g or more and a noble metal supported on the support,
An oxidation treatment in which the catalyst performance deteriorated due to grain growth of the noble metal exposed to exhaust gas is treated in a high-temperature oxidizing atmosphere of 600 ° C. or higher, and the catalyst after the oxidation treatment is subjected to a stoichiometric atmosphere of 800 ° C. or lower or A method for treating an exhaust gas purifying catalyst, comprising: performing a reduction treatment in a reducing atmosphere.
前記塩基性酸化物は希土類元素及びアルカリ土類金属から選ばれる少なくとも一種の金属の酸化物である請求項1に記載の排ガス浄化用触媒の処理方法。  The method for treating an exhaust gas purifying catalyst according to claim 1, wherein the basic oxide is an oxide of at least one metal selected from rare earth elements and alkaline earth metals. 前記塩基性酸化物はCe,Pr,La,及びMgから選ばれる少なくとも一種の金属の酸化物である請求項2に記載の排ガス浄化用触媒の処理方法。  The method for treating an exhaust gas purifying catalyst according to claim 2, wherein the basic oxide is an oxide of at least one metal selected from Ce, Pr, La, and Mg. 前記担体は前記塩基性酸化物の一次粒子の粒界に前記塩基性酸化物と固相反応しない非反応性酸化物が介在している請求項1〜3のいずれかに記載の排ガス浄化用触媒の処理方法。  The exhaust gas-purifying catalyst according to any one of claims 1 to 3, wherein the carrier includes a non-reactive oxide that does not undergo a solid phase reaction with the basic oxide at a grain boundary of primary particles of the basic oxide. Processing method. 前記非反応性酸化物はAl,Ti,Si,及びZrから選ばれる少なくとも一種の金属の酸化物である請求項4に記載の排ガス浄化用触媒の処理方法。  The method for treating an exhaust gas purifying catalyst according to claim 4, wherein the non-reactive oxide is an oxide of at least one metal selected from Al, Ti, Si, and Zr. 前記貴金属はPt及びRhの少なくとも一方である請求項1に記載の排ガス浄化用触媒の処理方法。  The method for treating an exhaust gas purifying catalyst according to claim 1, wherein the noble metal is at least one of Pt and Rh.
JP2001263061A 2001-08-31 2001-08-31 Method for treating exhaust gas purification catalyst Expired - Fee Related JP4655436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263061A JP4655436B2 (en) 2001-08-31 2001-08-31 Method for treating exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263061A JP4655436B2 (en) 2001-08-31 2001-08-31 Method for treating exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2003074334A JP2003074334A (en) 2003-03-12
JP4655436B2 true JP4655436B2 (en) 2011-03-23

Family

ID=19089875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263061A Expired - Fee Related JP4655436B2 (en) 2001-08-31 2001-08-31 Method for treating exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4655436B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602022B2 (en) * 2004-07-22 2010-12-22 株式会社豊田中央研究所 Inorganic oxide, exhaust purification catalyst carrier and exhaust purification catalyst
JP4602021B2 (en) * 2004-07-22 2010-12-22 株式会社豊田中央研究所 Inorganic oxide, exhaust purification catalyst carrier and exhaust purification catalyst
EP1687083B1 (en) 2004-07-22 2009-09-09 Toyota Jidosha Kabushiki Kaisha Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst
EP2000202A4 (en) 2006-03-28 2011-05-18 Toyota Chuo Kenkyusho Kk Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
JP4372764B2 (en) 2006-03-30 2009-11-25 トヨタ自動車株式会社 Exhaust gas purification device
JP2007268460A (en) 2006-03-31 2007-10-18 Toyota Motor Corp Metal oxide catalyst carrier particle, and exhaust gas purification catalyst
JP4890209B2 (en) * 2006-11-24 2012-03-07 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP4843107B2 (en) * 2011-02-02 2011-12-21 トヨタ自動車株式会社 Method for regenerating exhaust gas purification catalyst
JP5775391B2 (en) * 2011-07-26 2015-09-09 トヨタ自動車株式会社 Exhaust purification equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154141A (en) * 1983-02-22 1984-09-03 Kiyataraa Kogyo Kk Production of catalyst for cleaning exhaust gas from internal-combustion engine
JPH09253491A (en) * 1996-03-19 1997-09-30 Toyota Central Res & Dev Lab Inc Catalyst for clarification of exhaust gas and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154141A (en) * 1983-02-22 1984-09-03 Kiyataraa Kogyo Kk Production of catalyst for cleaning exhaust gas from internal-combustion engine
JPH09253491A (en) * 1996-03-19 1997-09-30 Toyota Central Res & Dev Lab Inc Catalyst for clarification of exhaust gas and its preparation

Also Published As

Publication number Publication date
JP2003074334A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4006976B2 (en) Composite oxide powder, method for producing the same and catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
JP2002331238A (en) Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP3988202B2 (en) Exhaust gas purification catalyst
JP2007313386A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas
JP4831753B2 (en) Exhaust gas purification catalyst
JP5754691B2 (en) Exhaust gas purification three-way catalyst
JP4655436B2 (en) Method for treating exhaust gas purification catalyst
JP4867794B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007105632A (en) Exhaust gas cleaning catalyst
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP4589032B2 (en) Exhaust gas purification catalyst and oxygen storage material for the catalyst
JP4697503B2 (en) Composite oxide powder, method for producing the same and catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08229394A (en) Production of oxide-deposited catalyst carrier
JP5030573B2 (en) Composite oxide powder and method for producing the same
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JPH0768175A (en) Catalyst for purification of exhaust gas
JP2003305363A (en) Catalyst carrier and catalyst for exhaust gas treatment
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2003010646A (en) Apparatus and method for cleaning diesel exhaust
JP2009028575A (en) Catalyst for cleaning exhaust gas
JP4677779B2 (en) Composite oxide and exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees