JPH06210137A - Denitration method - Google Patents

Denitration method

Info

Publication number
JPH06210137A
JPH06210137A JP5023511A JP2351193A JPH06210137A JP H06210137 A JPH06210137 A JP H06210137A JP 5023511 A JP5023511 A JP 5023511A JP 2351193 A JP2351193 A JP 2351193A JP H06210137 A JPH06210137 A JP H06210137A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
denitration
platinum
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5023511A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
村 良 中
Masao Wakabayashi
林 正 男 若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5023511A priority Critical patent/JPH06210137A/en
Publication of JPH06210137A publication Critical patent/JPH06210137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a denitration method applicable to a reduction reaction of NOx in an atmosphere contg. excess oxygen over a wide temp. region. CONSTITUTION:Exhaust gas is first brought into contact with a catalyst obtd. by carrying Pt and at least one among Fe, Co, Cu and Mn on a carrier having a large specific surface area by 0.01-5wt.% and 0.01-10wt.% of the amt. of the carrier, respectively, and then the exhaust gas is brought into contact with a catalyst obtd. by carrying Pt on a carrier having a large specific surface area by 0.01-5wt.% of the amt. of the carrier. Since this denitration method enables a reduction reaction of NOx over a wide temp. range, it is fit to remove NOx in exhaust gas from an automobile, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス、特に自動車な
どの排気ガス中の窒素酸化物の浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying nitrogen oxides in exhaust gas, especially exhaust gas from automobiles and the like.

【0002】[0002]

【従来の技術】一般に窒素酸化物とは大気中に存在する
窒素酸化物を意味し、一酸化二窒素(N2O)、一酸化
窒素(NO)、三酸化二窒素(N23)、二酸化窒素
(NO2)、四酸化二窒素(N24)、五酸化二窒素
(N25)などの化合物を言う。このうちのNOおよび
NO2をノックス(NOx)と言う。このNOxはボイ
ラーや自動車などの内燃機関からの排ガスあるいは硝酸
製造工場等から排出される排ガス等、各種の排ガス中に
含まれていおり、人体に影響し、呼吸器疾患罹患率を増
加させるばかりでなく、地球環境保全の上から問題視さ
れる酸性雨の原因の一つとなってもいる。そのため、こ
れら各種の排ガスから効率よく窒素酸化物を除去する脱
硝技術の開発が望まれている。
2. Description of the Related Art Nitrogen oxides generally mean nitrogen oxides existing in the atmosphere, and include dinitrogen monoxide (N 2 O), nitric oxide (NO), and dinitrogen trioxide (N 2 O 3 ). , Nitrogen dioxide (NO 2 ), dinitrogen tetraoxide (N 2 O 4 ), dinitrogen pentoxide (N 2 O 5 ), and the like. Of these, NO and NO 2 are referred to as Knox (NOx). This NOx is contained in various exhaust gases such as exhaust gases from internal combustion engines such as boilers and automobiles, exhaust gases emitted from nitric acid manufacturing plants, etc., and affects not only the human body but also increases respiratory disease morbidity. It is also one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, it is desired to develop a denitration technique for efficiently removing nitrogen oxides from these various exhaust gases.

【0003】NOx中のNOの理想的な除去方法は
(1)式で示すところのNO直接分解である。(1)式
は平衡論的には右辺生成系に圧倒的に有利となってい
る。 2NO → N2 + O2 (1)
The ideal removal method of NO in NOx is the direct decomposition of NO as shown in the equation (1). Equation (1) is overwhelmingly advantageous to the right-hand side generator in terms of equilibrium. 2NO → N 2 + O 2 (1)

【0004】この反応に依拠するものとして特開昭60
ー125250号公報記載の脱硝技術がある。該脱硝技
術はCuをイオン交換法によりゼオライトに担持させた
触媒を用いるものであり、該触媒がNOの直接分解反応
を促進させるとしている。しかしながら、該脱硝技術で
は(1)式の反応により生成した酸素が触媒活性点に優
先的に吸着し、その結果徐々に除去効率が低下する。ま
た、反応系内に過剰の酸素が存在する条件(酸素過剰雰
囲気)では完全に(1)式の反応が阻害されてしまうと
いう欠点がある。
Japanese Patent Application Laid-Open No. Sho 60 (1993) discloses that it is based on this reaction.
There is a denitration technology described in Japanese Patent No. 125250. The denitration technology uses a catalyst in which Cu is supported on zeolite by an ion exchange method, and the catalyst promotes a direct decomposition reaction of NO. However, in the denitration technique, oxygen generated by the reaction of the formula (1) is preferentially adsorbed on the catalytic active site, and as a result, the removal efficiency gradually decreases. Further, there is a drawback that the reaction of the formula (1) is completely hindered under the condition that excess oxygen exists in the reaction system (oxygen excess atmosphere).

【0005】また、NOxの除去方法としてみた場合、
一酸化炭素、水素、炭化水素、アンモニア、ヒドラジン
などの還元剤の存在下で触媒を用いる多数の方法が提案
され、これらの方法に使用する脱硝触媒についても白金
族元素を担体に担持させた触媒をはじめとして、その他
種々の触媒が提案され、これらの触媒を用いた脱硝方法
が提案されている。
In addition, when it is tried to remove NOx,
A number of methods using a catalyst in the presence of a reducing agent such as carbon monoxide, hydrogen, hydrocarbons, ammonia, and hydrazine have been proposed, and the denitration catalyst used in these methods is also a catalyst in which a platinum group element is supported on a carrier. In addition, various other catalysts have been proposed, and denitration methods using these catalysts have been proposed.

【0006】しかしながらこれらの脱硝方法は、一酸化
炭素、炭化水素、水素などの還元剤を完全酸化するに必
要な理論酸素量よりも酸素が少ない雰囲気下、すなわち
還元性雰囲気下で使用した場合は良好な脱硝効率を示す
が、酸素量の多い酸素過剰雰囲気下においては急激に脱
硝効率が低下するという欠点がある。すなわち、酸素過
剰雰囲気下におけるNOxの接触還元においては、共存
する一酸化炭素、水素および炭化水素などの還元剤の燃
焼反応が優先され主反応となり、還元反応の選択性は著
しく低下し、副反応となるからである。
However, these denitration methods are not suitable for use in an atmosphere containing less oxygen than the theoretical amount of oxygen required to completely oxidize reducing agents such as carbon monoxide, hydrocarbons and hydrogen, that is, in a reducing atmosphere. Although it exhibits good denitration efficiency, it has a drawback that the denitration efficiency sharply decreases in an oxygen-excess atmosphere with a large amount of oxygen. That is, in the catalytic reduction of NOx in an oxygen-excess atmosphere, the combustion reaction of coexisting reducing agents such as carbon monoxide, hydrogen and hydrocarbons is prioritized and becomes the main reaction, the selectivity of the reduction reaction is significantly reduced, and the side reaction It is because

【0007】この欠点を解消すべく本出願人らは、酸素
過剰雰囲気下で還元剤として炭化水素を用い、脱硝触媒
としてPtを活性金属として担持した触媒を用いる脱硝
方法を特開平04-334562号公報に開示している。しか
し、該脱硝方法は温度に影響され、100〜250℃の温度範
囲ではNOxがN2へ高率で還元されるものの、250℃を
超えるとN2への還元率は急速に低下してしまう。よっ
て、該方法は実際の自動車エンジンの排ガス浄化システ
ムに適用できないということになる。なぜなら、触媒コ
ンバーターの置かれる位置によっては、排ガス温度は50
0℃程度になり、この温度を下げるための熱交換器や、
温度低下にともない発生するドレンの処理設備等を自動
車に設けることは現実的ではないからである。この点を
含め考察すると、現状では酸素過剰雰囲気下で有効に適
用し得る脱硝方法は未だ完成されていないと言わざるを
得ない。
In order to solve this drawback, the present applicants have disclosed a denitration method using a hydrocarbon as a reducing agent in an oxygen excess atmosphere and a catalyst supporting Pt as an active metal as a denitration catalyst, as disclosed in JP-A-04-334562. It is disclosed in the official gazette. However, the denitration method is affected by temperature, and although NOx is reduced to N 2 at a high rate in the temperature range of 100 to 250 ° C., when it exceeds 250 ° C., the reduction rate to N 2 is rapidly reduced. . Therefore, the method cannot be applied to an actual exhaust gas purification system for automobile engines. Because the exhaust gas temperature is 50 depending on the position of the catalytic converter.
It becomes about 0 ℃, a heat exchanger to lower this temperature,
This is because it is not realistic to provide the automobile with a drain treatment facility or the like that is generated as the temperature drops. Taking this point into consideration, it must be said that at present, a denitration method that can be effectively applied in an oxygen excess atmosphere has not been completed.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであり、炭化水素を還元剤とし、酸素
過剰雰囲気下でNOx還元反応に対して、広い温度領域
で適用し得る脱硝方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and it is a denitrification that can be applied in a wide temperature range to a NOx reduction reaction under an excess oxygen atmosphere using a hydrocarbon as a reducing agent. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すべく本
発明者らは種々の検討を試みた結果、300℃以上の高温
度領域ではPt触媒は炭化水素の酸化を促進し、NOx
の還元には寄与していないことを見いだし、かつPt
と、Fe、Co、Cu及びMnからなる群から選ばれた
少なくとも1種とを活性金属として担持した触媒を用い
ると、より高温度でもNOxの還元が進行することを見
いだし本発明に至った。即ち、本発明の方法は、酸素過
剰雰囲気下炭化水素の存在下で窒素酸化物を含む排ガス
と接触せしめられて該排ガスより該窒素酸化物を除去す
る脱硝方法において、排ガスを、まず高温度で脱硝機能
を発揮する触媒Aと接触させ、次いで低温度で脱硝機能
を発揮する触媒Bと接触させるものであり、高温度で脱
硝機能を発揮する触媒Aとして、担体量に対して0.01〜
5wt%の白金と、担体量に対して0.01〜10wt%の
鉄、コバルト、銅、マンガンからなる群から選ばれた少
なくとも1つとを高比表面積の担体に担持させた触媒を
使用し、低温度で脱硝機能を発揮する触媒Bとして高比
表面積の担体に担体量に対して0.01〜5wt%の白金を
担持させた触媒を用いるものである。
As a result of various investigations by the present inventors to solve the above problems, the Pt catalyst promotes the oxidation of hydrocarbons in the high temperature range of 300 ° C. or higher, and NOx
Found that they did not contribute to the reduction of
It was found that NOx reduction proceeds even at a higher temperature by using a catalyst which carries, as an active metal, at least one selected from the group consisting of Fe, Co, Cu and Mn. That is, the method of the present invention is a denitrification method of removing the nitrogen oxides from the exhaust gas by contacting the exhaust gas containing the nitrogen oxides in the presence of hydrocarbons in an oxygen excess atmosphere, and the exhaust gas is first heated at a high temperature. The catalyst A that exerts a denitration function, and then the catalyst B that exerts a denitration function at a low temperature are brought into contact with each other.
A catalyst in which 5 wt% of platinum and 0.01 to 10 wt% of at least one selected from the group consisting of iron, cobalt, copper and manganese with respect to the amount of the carrier is supported on a carrier having a high specific surface area is used, and a low temperature is used. As the catalyst B exhibiting the denitration function, a catalyst in which 0.01 to 5 wt% of platinum is supported on the carrier having a high specific surface area is used.

【0010】[0010]

【作用】本発明の方法に使用する触媒の担体の材質とし
て使用し得るものは、シリカ、アルミナ、チタニア、ジ
ルコニア、シリカーアルミナ、シリカ−チタニア等であ
る。これらのものが結晶質か非結晶質かは重要ではな
い。高比表面積の担体を得やすいという点からはシリ
カ、アルミナ或いはシリカ−アルミナを用いることが好
ましい。また、これらの材質を用いて得る担体の形状は
特にこだわらず、球状、円筒状、ハニカム状、棒状、ラ
セン状、粒状等任意である。
The materials that can be used as the carrier material of the catalyst used in the method of the present invention are silica, alumina, titania, zirconia, silica-alumina, silica-titania and the like. It is immaterial whether these are crystalline or amorphous. It is preferable to use silica, alumina, or silica-alumina from the viewpoint of easily obtaining a carrier having a high specific surface area. The shape of the carrier obtained by using these materials is not particularly limited, and may be spherical, cylindrical, honeycomb, rod-shaped, helical, granular or the like.

【0011】本発明で使用する白金原料は塩化白金(I
V)酸6水和物、塩化白金(II)カリウム、塩化白金(I
V)カリウム、塩化白金(II)ナトリウム6水和物、塩
化アンモニウム白金(IV)などの白金酸塩、あるいは白
金テトラアンミン錯体2塩化物、白金テトラアンミン錯
体硝酸塩などの白金錯塩を使用することができる。
The platinum raw material used in the present invention is platinum chloride (I
V) acid hexahydrate, potassium platinum (II) chloride, platinum chloride (I
V) Platinic acid salts such as potassium, platinum (II) chloride hexahydrate, ammonium chloride (IV) chloride, or platinum complex salts such as platinum tetraammine complex dichloride and platinum tetraammine complex nitrate can be used.

【0012】白金塩水溶液は上記の白金酸、白金酸塩あ
るいは白金錯塩を蒸留水あるいはイオン交換水に溶解し
て調製する。溶液中の白金の濃度は、使用する全溶液中
の白金総量が、完成触媒に対し白金の触媒有効量が担持
できるに足る量の範囲にあればよく、必要に応じて適宜
調整することができる。
The platinum salt aqueous solution is prepared by dissolving the above-mentioned platinum acid, platinum salt or platinum complex salt in distilled water or ion exchange water. The concentration of platinum in the solution may be adjusted so that the total amount of platinum in all the solutions used is within a range sufficient to support a catalytically effective amount of platinum with respect to the finished catalyst, and can be appropriately adjusted as necessary. .

【0013】本発明において白金の担持量は種々変化さ
せることができるが、担体に対して0.01〜5wt%、好
ましくは0.1〜1wt%が適当である。前記範囲より白
金担持量が少ないと十分に触媒活性が発揮されず、また
前記範囲より多くしても特に担持量の増加にともなう触
媒活性の向上はないので白金が高価であることを考慮す
ると、前記範囲が適当である。
In the present invention, the amount of platinum supported can be variously changed, but 0.01 to 5% by weight, preferably 0.1 to 1% by weight, relative to the carrier, is suitable. Considering that platinum is expensive because the catalyst activity is not sufficiently exerted when the amount of platinum supported is less than the above range, and there is no improvement in the catalytic activity particularly with an increase in the amount supported even when the amount is more than the above range, The above range is suitable.

【0014】本発明で高温度領域で使用する触媒Aに用
いる鉄源としては、塩化第一鉄(II)水和物、塩化第二鉄
(III)、硝酸第一鉄(II)、硝酸第二鉄(III)などの水溶性
鉄塩が使用でき、銅源としては塩化第一銅(I)水和物、
硫酸第一銅(I)、硫酸第二銅(II)、硝酸第一銅(I)、硝酸
第二銅(II)等の水溶性塩が使用でき、コバルト源として
は、炭酸コバルト(II)、塩化コバルト(II)水和物、硫酸
コバルト(II)、酢酸コバルト(II)、硝酸コバルト(II)等
の水溶性塩が使用でき、マンガン源としては塩化マンガ
ン(II)、酢酸マンガン(II)水和物、シュウ酸マンガン(I
I)水和物、炭酸マンガン(II)水和物、硝酸マンガン(II)
水和物、硫酸マンガン(II)水和物等の水溶性塩が使用で
きる。
The iron sources used in the catalyst A used in the present invention in the high temperature range include ferrous chloride (II) hydrate and ferric chloride.
(III), ferrous nitrate (II), water-soluble iron salts such as ferric nitrate (III) can be used, cuprous chloride (I) hydrate as a copper source,
Cuprous sulfate (I), cupric sulfate (II), cuprous nitrate (I), water-soluble salts such as cupric nitrate (II) can be used, and the cobalt source is cobalt (II) carbonate. , Water-soluble salts such as cobalt (II) chloride hydrate, cobalt (II) sulfate, cobalt (II) acetate, and cobalt (II) nitrate can be used, and manganese (II) chloride and manganese acetate (II) can be used as manganese sources. ) Hydrate, manganese oxalate (I
I) hydrate, manganese (II) carbonate hydrate, manganese (II) nitrate
Water-soluble salts such as hydrates and manganese (II) sulfate hydrates can be used.

【0015】これらの活性金属を含む含浸液は、これら
の水溶性塩を蒸留水、或いはイオン交換水に溶解し、調
製する。含浸液中の金属濃度は、使用する全溶液中の活
性金属の量が担体に担持すべき量となっておれば良く、
適宜調整する。イオン交換法や浸漬法で使用する活性金
属塩水溶液の量は担体に活性金属塩が十分に含浸できる
量であれば支障はない。通常担体の2〜20倍程度であ
る。インシピエント・ウエットネス法において使用する
活性金属塩水溶液の量は担体がその細孔内に吸蔵しうる
水量であって、含浸処理に先立ち測定して求められる。
The impregnating solution containing these active metals is prepared by dissolving these water-soluble salts in distilled water or ion-exchanged water. The metal concentration in the impregnating solution may be such that the amount of active metal in the total solution used is the amount to be supported on the carrier,
Adjust accordingly. There is no problem as long as the amount of the active metal salt aqueous solution used in the ion exchange method or the dipping method is such that the carrier can be sufficiently impregnated with the active metal salt. It is usually about 2 to 20 times that of the carrier. The amount of the active metal salt aqueous solution used in the incipient wetness method is the amount of water that the carrier can occlude in its pores, and is determined by measurement prior to the impregnation treatment.

【0016】本発明において、鉄、銅、コバルト、マン
ガンの担持量は種々変化させることができるが、担体重
量に対して0.01〜10wt%とすることが必要であり、好
ましくは0.1〜5wt%である。鉄、銅、コバルト、マ
ンガンは、いずれも単独では酸素過剰雰囲気下でのNO
xの還元活性は極めて小さい。それにもかかわらず、本
発明において脱硝触媒として使用し得るのは、これらの
金属がいずれも白金に対して助触媒となっているからで
あると推察される。従って、鉄、銅、コバルト、マンガ
ンの担持量は白金の担持量に応じて決定することが好ま
しく、これらの金属1に対して、原子比で白金を0.1〜
3とすることが好ましい。
In the present invention, the supported amounts of iron, copper, cobalt and manganese can be variously changed, but it is necessary to set it to 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on the weight of the carrier. is there. Iron, copper, cobalt, and manganese are all NO alone under oxygen excess atmosphere.
The reducing activity of x is extremely small. Nevertheless, it is speculated that all of these metals can be used as a denitration catalyst in the present invention because they are cocatalysts for platinum. Therefore, it is preferable to determine the supported amount of iron, copper, cobalt, and manganese according to the supported amount of platinum.
It is preferably set to 3.

【0017】上記の方法で所定量の鉄、銅、コバルト、
マンガンの内の少なくともいずれか1種と白金とを含有
させた担体、あるいは白金を含有させた担体を常法に従
い乾燥し、焼成して本発明の脱硝触媒A、Bを得るが、
焼成は大気中400〜600℃で行なうことが経済的にも、ま
た触媒活性、触媒の耐久性などからみても好適である。
According to the above method, a predetermined amount of iron, copper, cobalt,
A carrier containing at least one of manganese and platinum, or a carrier containing platinum is dried and calcined according to a conventional method to obtain the denitration catalysts A and B of the present invention.
It is preferable to carry out the calcination in the air at 400 to 600 ° C. economically, from the viewpoint of catalytic activity and durability of the catalyst.

【0018】本発明の方法では、上記の触媒Aを初めに
排ガスに接触させ、次いで触媒Bを接触させるが、用い
るそれぞれの触媒量の比は任意に選定することができ、
例えば触媒Aの量を多くし、触媒Bの量を少なくすれ
ば、高温度側で脱硝することになり、この逆とすれば低
温度側で脱硝する事になる。なお、本発明の方法で用い
る触媒Aと触媒Bとを混合し、該混合物に排ガスを接触
させても十分な効果は得られない。
In the method of the present invention, the catalyst A is first contacted with the exhaust gas, and then the catalyst B is contacted therewith, but the ratio of the respective catalyst amounts to be used can be arbitrarily selected.
For example, if the amount of catalyst A is increased and the amount of catalyst B is decreased, denitration is performed on the high temperature side, and conversely, denitration is performed on the low temperature side. Even if the catalyst A and the catalyst B used in the method of the present invention are mixed and exhaust gas is brought into contact with the mixture, a sufficient effect cannot be obtained.

【0019】本発明の脱硝方法は、ボイラーや自動車な
どの内燃機関からの排ガスあるいは硝酸製造工場等から
排出される排ガス等の各種の排ガスの脱硝用として適用
でき、特に酸素過剰雰囲気下におけるNOx還元反応に
有効な方法である。
The denitration method of the present invention can be applied to denitration of various exhaust gases such as exhaust gases from internal combustion engines such as boilers and automobiles, exhaust gases discharged from nitric acid manufacturing plants, etc., and particularly NOx reduction in an oxygen excess atmosphere. This is an effective method for the reaction.

【0020】[0020]

【実施例】以下に実施例を参照しながら本発明をさらに
詳細に説明するが、本発明はこれら実施例にのみに限定
されるものでないことは言うまでもない。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to these examples.

【0021】(実施例1)日本ケッチェン株式会社製の
擬ベーマイト構造を有するアルミナ水和物(商品名 G
ベース)200gを、500℃で3時間焼成し、アルミナ粉体
170gを製造した。窒素吸着法によれば、このアルミナ
粉体の比表面積は295m2/gであり、水銀圧入法によれ
ば、細孔容積は2.8ml/gであった。
Example 1 Alumina hydrate having a pseudo-boehmite structure manufactured by Nippon Ketjen KK (trade name G
200g of base) is calcined at 500 ° C for 3 hours to obtain alumina powder
170 g were produced. According to the nitrogen adsorption method, the specific surface area of this alumina powder was 295 m 2 / g, and according to the mercury intrusion method, the pore volume was 2.8 ml / g.

【0022】次に、Ptとして1gを含む塩化白金酸溶
液100mlをイオン交換水で280mlに希釈し、これを上
記アルミナ粉体の100gに攪拌しつつ徐々に添加し、白
金をアルミナ粉体に含浸させた。その後含浸物を120℃
で乾燥し、更に500℃で3時間焼成し、250〜500μmに
整粒して触媒Bを得た。
Next, 100 ml of a chloroplatinic acid solution containing 1 g of Pt was diluted to 280 ml with ion-exchanged water, and this was gradually added to 100 g of the above-mentioned alumina powder with stirring to impregnate the alumina powder with platinum. Let Then the impregnated material
And dried at 500 ° C. for 3 hours and sized to 250 to 500 μm to obtain catalyst B.

【0023】Ptとして1gを含む塩化白金溶液90ml
とFeとして1gを含む塩化第二鉄水溶液50mlとを混
合し、これにイオン交換水を加えて全体を280mlと
し、この溶液を上記アルミナ粉体の100gに攪拌しつつ
徐々に添加し、白金と鉄とをアルミナ粉体に含浸させ
た。その後120℃で乾燥し、次いで500℃で3時間焼成
し、250〜500μmに整粒して触媒Aを得た。ICP発光
分析法により、触媒Aの白金担持量は0.85wt%、鉄担
持量は0.48wt%であった。
90 ml of platinum chloride solution containing 1 g of Pt
And 50 ml of an aqueous ferric chloride solution containing 1 g of Fe were mixed, and ion-exchanged water was added to the mixture to make 280 ml. This solution was gradually added to 100 g of the alumina powder while stirring, and platinum was added. Alumina powder was impregnated with iron. After that, it was dried at 120 ° C., then calcined at 500 ° C. for 3 hours, and sized to 250 to 500 μm to obtain catalyst A. According to the ICP emission analysis method, the platinum loading amount of the catalyst A was 0.85 wt% and the iron loading amount was 0.48 wt%.

【0024】内径10mmのステンレス製反応管の前段に
触媒Aの0.5gを充填し、後段に触媒Bの0.5gを充填
し、これに反応ガス(ガス組成 NO:1,000ppm,
36:1,000ppm,O2:5vol%,He:残量)
を30ml/min(SV=1,000/h)の流速で反応管
の前段から後段に向けて反応ガスが流れるように通過さ
せて脱硝試験を行った。反応管出口ガス組成を、NOと
NO2の濃度については化学発光式のNOx分析計を用
いて測定し、N2O濃度については多孔性ポリマー充填
カラムを装着したガスクロマトグラフー熱伝導度検出器
を用いて測定した。触媒層の温度を100〜550℃の範囲の
所定温度に設定し、各所定温度毎に反応管出口ガス組成
が安定した時点の値を求め、測定値として採用した。各
温度で得られた結果を表1に示した。
A stainless steel reaction tube having an inner diameter of 10 mm was charged with 0.5 g of catalyst A in the front stage and 0.5 g of catalyst B in the rear stage, and a reaction gas (gas composition NO: 1,000 ppm,
C 3 H 6: 1,000ppm, O 2: 5vol%, He: remaining amount)
Was passed at a flow rate of 30 ml / min (SV = 1,000 / h) so that the reaction gas would flow from the front stage to the rear stage of the reaction tube, and a denitration test was conducted. The reaction tube outlet gas composition was measured for NO and NO 2 concentrations using a chemiluminescence type NOx analyzer, and for N 2 O concentration, a gas chromatograph thermal conductivity detector equipped with a porous polymer packed column. Was measured using. The temperature of the catalyst layer was set to a predetermined temperature within the range of 100 to 550 ° C., and the value at the time when the composition of the gas at the outlet of the reaction tube became stable was determined for each predetermined temperature and adopted as the measured value. The results obtained at each temperature are shown in Table 1.

【0025】反応ガスが触媒を通過することにより、反
応ガス中のNOはNO2、N2O、N2に転換せしめられ
るが、NO転化率、N2O生成率、N2生成率を以下のよ
うに定義した。なお、本発明ではNOの脱硝率は、上記
のN2生成率で評価する。
When the reaction gas passes through the catalyst, NO in the reaction gas is converted into NO 2 , N 2 O, and N 2. The NO conversion rate, N 2 O production rate, and N 2 production rate are as follows. Defined as In the present invention, the NOx removal rate of NO is evaluated by the above N 2 production rate.

【0026】 [0026]

【0027】 [0027]

【0028】 N2生成率(%)=NO転化率―N2O生成率N 2 production rate (%) = NO conversion rate−N 2 O production rate

【0029】(実施例2)塩化第二鉄水溶液の替わりに
塩化コバルト水溶液を用いて実施例1と同様にして触媒
Aを作成し、実施例1と同様にして脱硝試験を行い、そ
の結果を表1に示した。なお、コバルトの担持量は0.52
wt%であった。
Example 2 A catalyst A was prepared in the same manner as in Example 1 using an aqueous solution of cobalt chloride instead of the aqueous solution of ferric chloride, and a denitration test was conducted in the same manner as in Example 1 and the results were shown. The results are shown in Table 1. The amount of cobalt carried is 0.52.
It was wt%.

【0030】(実施例3)塩化第二鉄水溶液の替わりに
塩化第二銅水溶液を用いて実施例1と同様にして触媒A
を作成し、実施例1と同様にして脱硝試験を行い、その
結果を表1に示した。なお、銅の担持量は0.49wt%で
あった。
(Example 3) A catalyst A was prepared in the same manner as in Example 1 except that an aqueous solution of cupric chloride was used instead of the aqueous solution of ferric chloride.
Was prepared, a denitration test was conducted in the same manner as in Example 1, and the results are shown in Table 1. The amount of copper supported was 0.49 wt%.

【0031】(実施例4)塩化第二鉄水溶液の替わりに
塩化マンガン水溶液を用いて実施例1と同様にして触媒
Aを作成し、実施例1と同様にして脱硝試験を行い、そ
の結果を表1に示した。なお、マンガンの担持量は0.58
wt%であった。
Example 4 A catalyst A was prepared in the same manner as in Example 1 by using an aqueous solution of manganese chloride instead of the aqueous solution of ferric chloride, and a denitration test was conducted in the same manner as in Example 1, and the results were shown. The results are shown in Table 1. The supported amount of manganese is 0.58.
It was wt%.

【0032】(比較例1)実施例1の触媒Bのみを用い
て実施例1と同様にして脱硝試験を行った。得られた結
果を表1に示した。
Comparative Example 1 A denitration test was conducted in the same manner as in Example 1 using only the catalyst B of Example 1. The obtained results are shown in Table 1.

【0033】(比較例2)実施例1の触媒Aのみを用い
て実施例1と同様にして脱硝試験を行った。得られた結
果を表1に示した。
Comparative Example 2 A denitration test was conducted in the same manner as in Example 1 using only the catalyst A of Example 1. The obtained results are shown in Table 1.

【0034】(比較例3)実施例1の触媒Aと触媒Bと
を混合して充填し、実施例1と同様にして脱硝試験を行
った。得られた結果を表1に示した。
(Comparative Example 3) Catalyst A and catalyst B of Example 1 were mixed and filled, and a denitration test was conducted in the same manner as in Example 1. The obtained results are shown in Table 1.

【0035】(比較例4)実施例1の触媒Aを後段に充
填し、触媒Bを前段に充填し、実施例1と同様にして脱
硝試験を行った。得られた結果を表1に示した。表1よ
り100〜300℃の領域では反応管後段に充填された触媒B
によりNOxが還元され、300〜550℃の領域では反応管
前段に充填された触媒AによりNOxが還元されている
ことがわかる。
(Comparative Example 4) The catalyst A of Example 1 was filled in the latter stage, and the catalyst B was filled in the former stage, and a denitration test was conducted in the same manner as in Example 1. The obtained results are shown in Table 1. From Table 1, in the range of 100 to 300 ° C, the catalyst B packed in the latter stage of the reaction tube
It is understood that NOx is reduced by, and NOx is reduced by the catalyst A filled in the preceding stage of the reaction tube in the range of 300 to 550 ° C.

【0036】 [0036]

【0037】[0037]

【発明の効果】本発明の脱硝方法は広い温度範囲でのN
Ox還元反応を可能とするために、自動車等の排ガス中
のNOxの脱硝方法に好適である。
INDUSTRIAL APPLICABILITY The denitration method of the present invention has a wide range of N
It is suitable for a method for denitrifying NOx in exhaust gas of automobiles or the like because it enables an Ox reduction reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 ZAB A 8017−4G F01N 3/08 ZAB B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B01J 23/89 ZAB A 8017-4G F01N 3/08 ZAB B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素過剰雰囲気下炭化水素の存在下で
窒素酸化物を含む排ガスと接触せしめられて該排ガスよ
り該窒素酸化物を除去する脱硝方法において、排ガス
を、まず高温度で脱硝機能を発揮する触媒Aと接触さ
せ、次いで低温度で脱硝機能を発揮する触媒Bと接触さ
せることを特徴とする脱硝方法。
1. A denitrification method for removing nitrogen oxides from exhaust gas by bringing the exhaust gas into contact with exhaust gas containing nitrogen oxides in the presence of hydrocarbons in an oxygen-excess atmosphere, wherein the exhaust gas is first subjected to a denitration function at high temperature. A denitration method comprising contacting with a catalyst A that exerts, and then contacting with a catalyst B that exerts a denitration function at a low temperature.
【請求項2】 触媒Aとして、担体量に対して0.01〜
5wt%の白金と、担体量に対して0.01〜10wt%の
鉄、コバルト、銅、マンガンからなる群から選ばれた少
なくとも1つとを高比表面積の担体に担持させた触媒を
使用し、触媒Bとして担体量に対して0.01〜5wt%の
白金を高比表面積の担体に担持させた触媒を用いること
を特徴とする請求項1記載の脱硝方法。
2. The catalyst A as 0.01 to the amount of carrier.
Using a catalyst in which 5 wt% of platinum and 0.01 to 10 wt% of at least one selected from the group consisting of iron, cobalt, copper and manganese with respect to the amount of the carrier are supported on a carrier having a high specific surface area, a catalyst B is used. The denitration method according to claim 1, wherein a catalyst in which 0.01 to 5 wt% of platinum is supported on a carrier having a high specific surface area is used as the carrier.
JP5023511A 1993-01-20 1993-01-20 Denitration method Pending JPH06210137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5023511A JPH06210137A (en) 1993-01-20 1993-01-20 Denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5023511A JPH06210137A (en) 1993-01-20 1993-01-20 Denitration method

Publications (1)

Publication Number Publication Date
JPH06210137A true JPH06210137A (en) 1994-08-02

Family

ID=12112481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5023511A Pending JPH06210137A (en) 1993-01-20 1993-01-20 Denitration method

Country Status (1)

Country Link
JP (1) JPH06210137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075782A (en) * 2005-09-16 2007-03-29 Asahi Kasei Corp CATALYST FOR NOx CLEANING FOR AUTOMOBILE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075782A (en) * 2005-09-16 2007-03-29 Asahi Kasei Corp CATALYST FOR NOx CLEANING FOR AUTOMOBILE

Similar Documents

Publication Publication Date Title
US5068217A (en) Carrier catalysts for oxidizing carbon monoxide and process for their production
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JPS637826A (en) Removing method for nitrous oxide in gas mixture
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JPH06210137A (en) Denitration method
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JPS5812047B2 (en) Chitsuso San Kabutsu Ogan Yuusuru Higas no Jiyou Kahouhou
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
US6077493A (en) Method for removing nitrogen oxides
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JPH06210171A (en) Denitration catalyst
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JPH0671176A (en) Catalyst for purifying nitrogen oxide
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH04193347A (en) Catalyst for purification of exhaust gas
JP2004261754A (en) Exhaust gas purifying catalyst and purifying method
JP3291316B2 (en) Exhaust gas purification catalyst