JPH0671176A - Catalyst for purifying nitrogen oxide - Google Patents

Catalyst for purifying nitrogen oxide

Info

Publication number
JPH0671176A
JPH0671176A JP4248905A JP24890592A JPH0671176A JP H0671176 A JPH0671176 A JP H0671176A JP 4248905 A JP4248905 A JP 4248905A JP 24890592 A JP24890592 A JP 24890592A JP H0671176 A JPH0671176 A JP H0671176A
Authority
JP
Japan
Prior art keywords
catalyst
range
supported
carrier
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248905A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
良 中村
Masao Wakabayashi
正男 若林
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4248905A priority Critical patent/JPH0671176A/en
Publication of JPH0671176A publication Critical patent/JPH0671176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To display catalytic activity over a wide temp. range in the catalytic reduction of NOx as regards a catalyst having Pt and Sn supported on the carrier having a high specific surface area by a method wherein Pt and Sn are supported thereon within a specific range of ratio and the atomic ratio of Sn to Pt is given within a predetermined range. CONSTITUTION:The catalyst having Pt and Sn supported simultaneously on the carrier with a high specific surface area accelerates a selective reduction of hydrocarbons by NOx in an atmosphere of excessice oxygen. In particular, if the atomic ratio of Pt to Sn is changed, the active temp. range of Pt and Sn catalyst is shifted toward high temp. side. More specifically, 0.01-5wt.% Pt and 0.01-10wt.% Sn are supported on the carrier and the atomic ratio of Sn to Pt is given within the range of 0.1-2, whereby the active temp. of the Pt-Sn catalyst can be set within a desired range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス、特に詳しくは
空燃比がリーン側となる酸素過剰雰囲気においても広い
温度範囲でNOx を浄化できる触媒に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas, and more particularly to a catalyst capable of purifying NO x in a wide temperature range even in an oxygen excess atmosphere where the air-fuel ratio is lean.

【0002】[0002]

【従来の技術】窒素酸化物(NOx )は、ボイラーや自
動車などの内燃機関からの排ガスあるいは硝酸製造工場
等から排出される排ガス等の各種の排ガス中に含まれて
いるが、人体に有害な大気汚染物質であり、又、地球環
境保全の上から問題視される酸性雨の原因の一つでもあ
る。そのため、これら各種の排ガスから効率よくNOx
を除去する方法の開発が望まれている。理想的なNOx
除去技術は(1)式で示すところのNO直接分解であ
る。 2NO→N2 +O2 (1) (1)式は平衡論的には右辺生成系に圧倒的に有利であ
って、例えば特開昭60−125250号公報には、C
uをイオン交換によりゼオライトに担持させた触媒がN
Oの直接分解反応を促進させることが開示されている。
しかしながら、(1)式の反応は、生成した酸素が触媒
活性点に優先的に吸着するために徐々に除去効率が低下
し、さらに反応系内に過剰の酸素が存在する条件(酸素
過剰雰囲気)では完全に反応が阻害されてしまう。
2. Description of the Related Art Nitrogen oxides (NO x ) are contained in various exhaust gases such as exhaust gases from internal combustion engines such as boilers and automobiles or exhaust gases from nitric acid manufacturing plants, etc., but are harmful to humans. It is a major air pollutant and one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, NO x can be efficiently emitted from these various exhaust gases.
It is desired to develop a method for removing the above. Ideal NO x
The removal technique is direct decomposition of NO as shown in the equation (1). 2NO → N 2 + O 2 (1) The equation (1) is overwhelmingly advantageous to the right-hand side generation system in terms of equilibrium, and for example, in JP-A-60-125250, C
The catalyst in which u is supported on zeolite by ion exchange is N
It is disclosed that the direct decomposition reaction of O is promoted.
However, in the reaction of the formula (1), the generated oxygen is preferentially adsorbed on the catalytic active site, so that the removal efficiency is gradually reduced, and further, the condition that excess oxygen exists in the reaction system (oxygen excess atmosphere) Then the reaction is completely hindered.

【0003】また、NOx を、触媒の存在下に、一酸化
炭素、水素、炭化水素、アンモニア、ヒドラジンなどの
還元剤を用いて浄化する方法が多数提案されている。こ
れらNOx の浄化に使用するNOx 浄化用触媒について
も白金族元素を担体に担持させた触媒をはじめとして、
その他種々の触媒が提案されている。しかしながら従来
の触媒は、一酸化炭素、炭化水素、水素などの還元剤を
完全酸化するに必要な理論酸素量よりも酸素が少ない雰
囲気、すなわち還元性雰囲気で使用した場合は良好なN
x の浄化作用を示すが、酸素量の多い酸素過剰雰囲気
においては急激にNOx の浄化率が低下するという欠点
があった。すなわち、酸素過剰雰囲気におけるNOx
接触還元においては、共存する一酸化炭素、水素および
炭化水素などの還元剤の燃焼反応が併発するため、還元
反応の選択性は著しく低下するという欠点があり、酸素
過剰雰囲気におけるNOx 浄化反応に有効な触媒は、未
だ完成されていない。
Many methods have been proposed for purifying NO x using a reducing agent such as carbon monoxide, hydrogen, hydrocarbons, ammonia and hydrazine in the presence of a catalyst. The platinum group elements also the NO x purification catalyst to be used for the purification of these NO x including the catalyst supported on a carrier,
Various other catalysts have been proposed. However, the conventional catalyst has a good N 2 content when used in an atmosphere containing less oxygen than the theoretical amount of oxygen required to completely oxidize a reducing agent such as carbon monoxide, hydrocarbons and hydrogen, that is, in a reducing atmosphere.
Although it has a purifying effect on O x , it has a drawback that the purifying ratio of NO x sharply decreases in an oxygen-excess atmosphere in which the amount of oxygen is large. That is, in the catalytic reduction of NO x in an oxygen-excess atmosphere, there is a drawback that the selectivity of the reduction reaction is remarkably lowered because the combustion reactions of coexisting reducing agents such as carbon monoxide, hydrogen and hydrocarbon occur simultaneously. The catalyst effective for the NO x purification reaction in the oxygen excess atmosphere has not been completed yet.

【0004】本出願人らは既に、Ptを担体に担持した
触媒を用い、炭化水素を還元剤に用いる酸素過剰雰囲気
での脱硝プロセスを考案し提案している。本プロセスで
は100〜250℃程度の温度領域でNOx のN2 への
還元反応が高率で進行するものの、250℃以上の温度
領域ではN2 生成率が低下してしまうという短所が存在
した。本プロセスを実際のエンジン排ガス浄化システム
に適用した場合、触媒コンバーターの置かれる位置によ
っては排ガス温度は400℃程度の温度にまで上昇す
る。自動車などの移動発生源に熱交換器を設置して排ガ
スを冷却することはスペース上の制約から現実的ではな
く、また排ガス中の水蒸気をドレインとして処理する必
要も生じてくるので、排ガスは高温のままで処理するこ
とが好ましい。このため、酸素過剰雰囲気においても広
い温度領域でNOx 還元活性を発揮する触媒および触媒
プロセスが切望されている。
The present applicants have already devised and proposed a denitration process in an oxygen excess atmosphere using a catalyst in which Pt is supported on a carrier and using hydrocarbon as a reducing agent. In this process, the reduction reaction of NO x to N 2 proceeds at a high rate in the temperature range of 100 to 250 ° C., but the N 2 production rate decreases in the temperature range of 250 ° C. or higher. . When this process is applied to an actual engine exhaust gas purification system, the exhaust gas temperature rises to a temperature of about 400 ° C depending on the position where the catalytic converter is placed. Cooling the exhaust gas by installing a heat exchanger in a mobile source such as an automobile is not realistic due to space limitations, and it becomes necessary to treat the water vapor in the exhaust gas as a drain, so the exhaust gas is high in temperature. It is preferable to process as it is. Therefore, a catalyst and a catalytic process that exhibit NO x reduction activity in a wide temperature range even in an oxygen-excess atmosphere have been earnestly desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであり、酸素過剰雰囲気におけるNO
x の接触還元反応に対して、広範な温度領域で活性を発
揮する触媒を提供することを目的とする。
The present invention has been made in view of the above circumstances, and NO in an oxygen excess atmosphere is used.
It is an object of the present invention to provide a catalyst that exhibits activity in a wide temperature range for the catalytic reduction reaction of x .

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意研究を
重ねた結果、PtとSnとを高比表面積を有する担体に
同時に担持した触媒によって、酸素過剰雰囲気における
NOx の炭化水素選択還元反応が促進され、特に担持す
るPtとSnの原子比を変更すると、酸素過剰雰囲気に
おけるNOx の炭化水素選択還元反応においてPt−S
n触媒の活性温度領域が高温側にシフトすることを見い
だし、本発明を完成させたものである。すなわち本発明
はPtおよびSnを高比表面積担体に担持した触媒であ
って、Ptの担持率が0.01〜5wt%(wt%は金
属として表示)、Snの担持率が0.01〜10wt%
であり、Sn/Pt原子比が0.1〜2の範囲であるよ
うな窒素酸化物浄化用触媒により上記課題を解決できる
ようにしたものである。
Means for Solving the Problems As a result of intensive studies by the present inventors, NOx hydrocarbon selective reduction of NO x in an oxygen excess atmosphere by a catalyst in which Pt and Sn are simultaneously supported on a carrier having a high specific surface area. The reaction is promoted, and especially when the atomic ratio of Pt and Sn to be supported is changed, Pt—S is reduced in the selective reduction reaction of hydrocarbons of NO x in an oxygen excess atmosphere.
The inventors have found that the active temperature range of the n-catalyst shifts to the high temperature side and completed the present invention. That is, the present invention is a catalyst in which Pt and Sn are supported on a high specific surface area carrier, and the Pt loading rate is 0.01 to 5 wt% (wt% is expressed as a metal) and the Sn loading rate is 0.01 to 10 wt%. %
The above problem can be solved by a nitrogen oxide purifying catalyst having an Sn / Pt atomic ratio in the range of 0.1 to 2.

【0007】[0007]

【作用】本発明で担体原料として使用することのできる
耐熱性無機酸化物はシリカ、アルミナ、チタニア、ジル
コニア、あるいはシリカ−アルミナ、シリカ−チタニア
などであって結晶質であるか非晶質であるかは重要でな
い。高比表面積を有するシリカ、アルミナあるいはシリ
カ−アルミナの使用が好ましい。これら担体の形状は、
球状、円筒状、ハニカム状、棒状、ラセン状、粒状など
特に制限されることはなく、形状、大きさなどは使用条
件に応じて任意に選択することができる。本発明で使用
するPt原料は塩化白金(IV)酸6水和物、塩化白金
(II)カリウム、塩化白金(IV)カリウム、塩化白金
(II)ナトリウム6水和物、塩化アンモニウム白金(I
V)などの白金酸塩あるいは白金テトラアンミン錯体2
塩化物、白金テトラアンミン錯体硝酸塩などの白金錯塩
を使用することができる。本発明で使用するSn原料は
酢酸すず(II)、臭化すず(II)、臭化すず(IV)、塩
化第一すず水和物、塩化第二すず水和物あるいは硫酸す
ず(II)を使用することができる。
The heat-resistant inorganic oxide that can be used as the carrier raw material in the present invention is silica, alumina, titania, zirconia, silica-alumina, silica-titania, etc., which is crystalline or amorphous. It doesn't matter. Preference is given to using silica, alumina or silica-alumina having a high specific surface area. The shape of these carriers is
It is not particularly limited to spherical, cylindrical, honeycomb, rod, spiral, granular, etc., and the shape, size, etc. can be arbitrarily selected according to the use conditions. The Pt raw material used in the present invention is platinum (IV) chloride hexahydrate, platinum (II) chloride chloride, platinum (IV) chloride chloride, platinum (II) chloride sodium hexahydrate, ammonium chloride platinum (I).
V) and other platinum salts or platinum tetraammine complexes 2
Platinum complex salts such as chloride and platinum tetraammine complex nitrate can be used. The Sn raw material used in the present invention is tin (II) acetate, tin (II) bromide, tin (IV) bromide, stannous chloride hydrate, stannous chloride hydrate or tin (II) sulfate. Can be used.

【0008】活性金属含浸液は、上記の白金酸、白金酸
塩あるいは白金錯塩と、すず塩とを蒸留水あるいはイオ
ン交換水に溶解して調製する。溶液中のPtおよびSn
の濃度は、使用する全溶液中のPtおよびSn総量が、
完成触媒に対しPtとSnの触媒有効量が担持できるに
足る量の範囲にあればよく、必要に応じて適宜調整する
ことができる。イオン交換法や浸潰法において使用する
活性金属塩水溶液の量は担体としての無機酸化物に活性
金属塩が十分に含浸することができる量であれば特に限
定するものではないが、通常担体の約2〜20倍程度が
適当である。インシピエント・ウェットネス法において
使用する活性金属塩水溶液の量は担体としての多孔質無
機酸化物が、その細孔構造中に吸蔵することのできる水
分量であって、含浸処理に先だって担体として使用する
無機酸化物の吸水量を測定して決定される。
The active metal impregnating solution is prepared by dissolving the above-mentioned platinic acid, platinate or platinum complex salt and tin salt in distilled water or ion-exchanged water. Pt and Sn in solution
The concentration of Pt and Sn in all solutions used is
It suffices that the amount of Pt and Sn that can be effectively supported by the finished catalyst be within a range that can be supported, and it can be appropriately adjusted as necessary. The amount of the active metal salt aqueous solution used in the ion exchange method or the immersing method is not particularly limited as long as the active metal salt can be sufficiently impregnated into the inorganic oxide as the carrier, but usually the amount of the carrier About 2 to 20 times is appropriate. The amount of the active metal salt aqueous solution used in the incipient wetness method is the amount of water that the porous inorganic oxide as a carrier can occlude in its pore structure, and is used as a carrier before the impregnation treatment. It is determined by measuring the water absorption of the inorganic oxide.

【0009】本発明においてPtの担持量は種々変化さ
せることができるが、担体に対して0.01〜5wt
%、好ましくは0.1〜1wt%が適当である。前記範
囲よりPt担持量が少ないと十分に触媒活性が発揮され
ず、また前記範囲より多くしても特に担持量の増加にと
もなう触媒活性の向上はないのでPtが高価であること
を考慮すると、前記範囲が適当である。本発明において
Snの担持量は種々変化させることができるが、担体に
対して0.01〜10wt%、好ましくは0.1〜5w
t%が適当である。後に比較例に示すように、Snは単
独では酸素過剰雰囲気でNOx 還元活性がきわめて小さ
く、おそらくSnはNOx 還元反応においてPtに対す
る助触媒の役割を担うものと推測される。したがってS
nの担持率は、Ptの担持率に応じて、また完成触媒の
活性温度領域をどの範囲におくかで決定されることにな
る。
In the present invention, the supported amount of Pt can be variously changed, but 0.01 to 5 wt% with respect to the carrier.
%, Preferably 0.1 to 1 wt% is suitable. Considering that Pt is expensive, the catalytic activity is not sufficiently exhibited when the amount of Pt supported is less than the above range, and there is no improvement in the catalytic activity particularly with an increase in the amount supported even when the amount is greater than the above range. The above range is suitable. In the present invention, the supported amount of Sn can be variously changed, but 0.01 to 10 wt%, preferably 0.1 to 5 w, relative to the carrier.
t% is suitable. As will be shown later in Comparative Examples, Sn alone has extremely small NO x reduction activity in an oxygen excess atmosphere, and it is presumed that Sn plays a role of a promoter for Pt in the NO x reduction reaction. Therefore S
The loading rate of n will be determined according to the loading rate of Pt and in which range the active temperature range of the finished catalyst is set.

【0010】SnとPtの原子比は0.1〜2の範囲
で、必要な完成触媒の活性温度領域に応じて決定され
る。図1に示すようにSnの担持率が低くSn/Pt<
0.1であるときは、完成触媒の活性温度領域はPt単
独の場合と殆ど差異が無くなる。Sn/Pt=0.1〜
2では、完成触媒の活性温度領域はPt単独の場合に比
べて100〜200℃高温側にシフトさせることができ
る。また、Snの担持率をさらに増加させて、Sn/P
t>2にすると完成触媒の活性温度領域は、Sn/Pt
<0.1であるときと同様にPt単独の場合と殆ど差異
が無くなる。したがってSnとPtの原子比により触媒
の活性温度領域を選定できる。上記の方法で所定量のP
tとSnを含有させた担体を、常法に従い乾燥し、焼成
して本発明で使用する触媒を完成する。焼成工程は空気
雰囲気で400〜600℃の温度で行なうことが経済的
にも、また触媒活性、触媒の耐久性などからみても好適
である。
The atomic ratio of Sn to Pt is in the range of 0.1 to 2 and is determined according to the required activation temperature range of the finished catalyst. As shown in FIG. 1, the Sn loading is low and Sn / Pt <
When it is 0.1, the active temperature range of the finished catalyst is almost the same as that of Pt alone. Sn / Pt = 0.1
In No. 2, the active temperature range of the finished catalyst can be shifted to the high temperature side of 100 to 200 ° C. as compared with the case of Pt alone. In addition, by further increasing the Sn loading rate, Sn / P
When t> 2, the active temperature range of the finished catalyst is Sn / Pt.
Similar to the case of <0.1, there is almost no difference from the case of Pt alone. Therefore, the active temperature range of the catalyst can be selected by the atomic ratio of Sn and Pt. Predetermined amount of P by the above method
The carrier containing t and Sn is dried and calcined by a conventional method to complete the catalyst used in the present invention. It is preferable to carry out the firing step in an air atmosphere at a temperature of 400 to 600 ° C. economically, from the viewpoint of catalytic activity and durability of the catalyst.

【0011】[0011]

【実施例】以下に実施例を参照しながら本発明をさらに
詳細に説明するが、本発明はこれら実施例にのみに限定
されるものでないことは言うまでもない。実施例1 日本ケッチェン(Nippon Ketjen)製造の
擬ベーマイト構造を有するアルミナ水和物(商品名Gベ
ース)200gを、500℃の温度で3時間焼成してガ
ンマアルミナを主成分とするアルミナ粉体170gを製
造した。窒素吸着法で決定されたこのアルミナ粉体の比
表面積は295m2 /g、水銀圧入法による細孔容積は
2.8ml/gであった。溶液100ml中にPt金属
として1gを含有する塩化白金酸水溶液100mlと、
溶液100ml中にSn金属として1gを含有する塩化
第一すず水溶液10mlとを混合し、さらにイオン交換
水で希釈して総量280mlの塩化白金酸−塩化すず混
合水溶液を調製する。この塩化白金酸−塩化すず混合水
溶液を上記アルミナ担体100gに徐々に加えながら機
械的な攪拌を続け、塩化白金酸−塩化すず混合水溶液を
アルミナに含浸する。これを空気中120℃で乾燥し、
さらに空気中500℃で3時間焼成して触媒1を得た。
ICP(InductiveCoupled Plas
ma)発光分析から得られた触媒1の白金担持率は0.
91wt%、すず担持率は0.11wt%であり、Sn
/Pt原子比は0.2であった。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to these examples. Example 1 200 g of alumina hydrate having a pseudo-boehmite structure (trade name G base) manufactured by Nippon Ketjen was calcined at a temperature of 500 ° C. for 3 hours, and 170 g of alumina powder containing gamma alumina as a main component. Was manufactured. The specific surface area of this alumina powder determined by the nitrogen adsorption method was 295 m 2 / g, and the pore volume by the mercury porosimetry was 2.8 ml / g. 100 ml of an aqueous solution of chloroplatinic acid containing 1 g of Pt metal in 100 ml of the solution,
100 ml of the solution is mixed with 10 ml of an aqueous solution of stannous chloride containing 1 g of Sn metal and further diluted with ion-exchanged water to prepare a total aqueous solution of chloroplatinic acid-tin chloride of 280 ml. Mechanical stirring is continued while gradually adding 100 g of the chloroplatinic acid-tin chloride mixed aqueous solution to the alumina carrier to impregnate alumina with the chloroplatinic acid-tin chloride mixed aqueous solution. Dry it in air at 120 ° C,
Further, it was calcined in air at 500 ° C. for 3 hours to obtain a catalyst 1.
ICP (Inductive Coupled Plas)
ma) The platinum loading rate of the catalyst 1 obtained from the emission analysis is 0.
91 wt%, tin loading rate is 0.11 wt%, Sn
The / Pt atomic ratio was 0.2.

【0012】上記触媒1gを内径10mmのステンレス
製反応管に充填し、これに反応ガス(ガス組成 NO:
1,000ppm,C3 5 :1,000ppm,
2 :5vol%,He:残量)を30ml/minの
流速(SV=1,000/h)で通過させた。反応管出
口ガス組成は、NOとNO2 の濃度については化学発光
式のNOx 分析計で測定し、N2 O濃度はシリカゲルカ
ラムを装着したガスクロマトグラフ−熱伝導度検出器を
用いて測定した。触媒層の温度は100〜400℃の範
囲の所定温度に設定されており、反応管出口ガス組成が
定常となった時点の値を測定値として採用した。結果を
表1に示す。
1 g of the above catalyst was filled in a stainless steel reaction tube having an inner diameter of 10 mm, and a reaction gas (gas composition NO:
1,000 ppm, C 3 H 5 : 1,000 ppm,
O 2 : 5 vol%, He: remaining amount) were passed at a flow rate (SV = 1,000 / h) of 30 ml / min. The reaction tube exit gas composition was measured in NO x analyzer chemiluminescence is the concentration of NO and NO 2, N 2 O concentration is a gas chromatograph equipped with a silica gel column - was measured using a thermal conductivity detector . The temperature of the catalyst layer was set to a predetermined temperature in the range of 100 to 400 ° C., and the value at the time when the reaction tube outlet gas composition became steady was adopted as the measured value. The results are shown in Table 1.

【0013】反応ガスが触媒を通過することにより、反
応ガス中のNOはNO2 とN2 O、N2 に転換せしめら
れるが、NO転化率、N2 O生成率、N2 生成率を以下
のように定義した。 2 生成率(%)=NO転化率−N2 O生成率 従来、NOの浄化率は本発明で言うところのNO転化率
でのみ評価される。化学発光式NOx 分析計は原理的に
2 Oを検出しないし、一つにはNO、NO2に比べて
2 Oの毒性が低く、現行の排出ガス規制ではNOx
して規定されていないこともあるが、最近の報告によれ
ばN2 Oはオゾン層破壊を引き起こす原因物質の一つで
あるとされている。
When the reaction gas passes through the catalyst, NO in the reaction gas is converted into NO 2 and N 2 O and N 2. The NO conversion rate, N 2 O production rate and N 2 production rate are as follows. Defined as N 2 production rate (%) = NO conversion rate−N 2 O production rate Conventionally, the NO conversion rate is evaluated only by the NO conversion rate referred to in the present invention. The chemiluminescence NO x analyzer does not detect N 2 O in principle, and one is that N 2 O is less toxic than NO and NO 2 and is specified as NO x in the current emission regulations. In some cases, N 2 O is one of the causative substances that cause ozone depletion, although it may not exist.

【0014】実施例2 溶液100ml中にPt金属として1gを含有する塩化
白金酸水溶液100mlと、溶液100ml中にSn金
属として1gを含有する塩化第一すず水溶液50mlと
を混合し、さらにイオン交換水で希釈して総量280m
lの塩化白金酸−塩化すず混合水溶液を調製して、実施
例1と同じ方法で調製したアルミナ担体100gに徐々
に加えながら機械的な攪拌を続け、塩化白金酸−塩化す
ず混合水溶液をアルミナに含浸した。これを空気中12
0℃で乾燥し、さらに空気中500℃で3時間焼成して
触媒2を調製した。実施例1と同様の方法で活性を評価
した結果を表1に示す。ICP発光分析から得られた触
媒2の白金担持率は0.85wt%、すず担持率は0.
48wt%であり、Sn/Pt原子比は1であった。
Example 2 100 ml of an aqueous solution of chloroplatinic acid containing 1 g of Pt metal in 100 ml of a solution and 50 ml of an aqueous solution of stannous chloride containing 1 g of Sn metal in 100 ml of the solution were mixed, and ion-exchanged water was further added. 280m diluted with
1 of chloroplatinic acid-tin chloride mixed aqueous solution was prepared, and mechanical stirring was continued while gradually adding to 100 g of an alumina carrier prepared by the same method as in Example 1 to prepare the chloroplatinic acid-tin chloride mixed aqueous solution as alumina. Impregnated. This in the air 12
Catalyst 2 was prepared by drying at 0 ° C. and further calcining in air at 500 ° C. for 3 hours. Table 1 shows the results of activity evaluation conducted in the same manner as in Example 1. The catalyst 2 obtained by ICP emission analysis had a platinum loading of 0.85 wt% and a tin loading of 0.
It was 48 wt% and the Sn / Pt atomic ratio was 1.

【0015】実施例3 溶液100ml中にPt金属として1gを含有する塩化
白金酸水溶液100mlと、溶液100ml中にSn金
属として1gを含有する塩化第一すず水溶液100ml
とを混合し、さらにイオン交換水で希釈して総量280
mlの塩化白金酸−塩化すず混合水溶液を調製して、実
施例1と同じ方法で調製したアルミナ担体100gに徐
々に加えながら機械的な攪拌を続け、塩化白金酸−塩化
すず混合水溶液をアルミナに含浸した。これを空気中1
20℃で乾燥し、さらに空気中500℃で3時間焼成し
て触媒3を調製した。実施例1と同様の方法で活性を評
価した結果を表1に示す。ICP発光分析から得られた
触媒3の白金担持率は0.88wt%、すず担持率は
0.88wt%であり、Sn/Pt原子比は1.7であ
った。
Example 3 100 ml of an aqueous solution of chloroplatinic acid containing 1 g of Pt metal in 100 ml of a solution, and 100 ml of an aqueous solution of stannous chloride containing 1 g of Sn metal in 100 ml of the solution.
, And then diluted with deionized water for a total of 280
ml of a chloroplatinic acid-tin chloride mixed aqueous solution was prepared, and mechanical stirring was continued while gradually adding it to 100 g of an alumina carrier prepared by the same method as in Example 1, and the chloroplatinic acid-tin chloride mixed aqueous solution was added to alumina. Impregnated. This in the air 1
A catalyst 3 was prepared by drying at 20 ° C. and further calcining in air at 500 ° C. for 3 hours. Table 1 shows the results of activity evaluation conducted in the same manner as in Example 1. The platinum loading rate of catalyst 3 obtained from the ICP emission analysis was 0.88 wt%, the tin loading rate was 0.88 wt%, and the Sn / Pt atomic ratio was 1.7.

【0016】比較例1 溶液100ml中にPt金属として1gを含有する塩化
白金酸水溶液100mlをイオン交換水で希釈して総量
280mlの塩化白金酸水溶液を調製して、実施例1と
同じ方法で調製したアルミナ担体100gに徐々に加え
ながら機械的な攪拌を続け、塩化白金酸水溶液をアルミ
ナに含浸した。これを空気中120℃で乾燥し、さらに
空気中500℃で3時間焼成して触媒Aを調製した。実
施例1と同様の方法で活性を評価した結果を表1に示
す。ICP発光分析から得られた触媒Aの白金担持率は
0.91wt%であった。
Comparative Example 1 100 ml of a chloroplatinic acid aqueous solution containing 1 g of Pt metal in 100 ml of a solution was diluted with ion-exchanged water to prepare a total amount of 280 ml of a chloroplatinic acid aqueous solution, which was prepared in the same manner as in Example 1. Mechanical stirring was continued while gradually adding to 100 g of the alumina carrier prepared above, and the aqueous solution of chloroplatinic acid was impregnated into the alumina. This was dried in air at 120 ° C. and further calcined in air at 500 ° C. for 3 hours to prepare a catalyst A. Table 1 shows the results of activity evaluation conducted in the same manner as in Example 1. The platinum loading rate of catalyst A obtained from ICP emission analysis was 0.91 wt%.

【0017】比較例2 溶液100ml中にSn金属として1gを含有する塩化
第一すず水溶液100mlをイオン交換水で希釈して総
量280mlの塩化すず水溶液を調製して、実施例1と
同じ方法で調製したアルミナ担体100gに徐々に加え
ながら機械的な攪拌を続け、塩化すず混合水溶液をアル
ミナに含浸した。これを空気中120℃で乾燥し、さら
に空気中500℃で3時間焼成して触媒Bを調製した。
実施例1と同様の方法で活性を評価した結果を表1に示
す。ICP発光分析から得られた触媒Bのすず担持率は
0.87wt%であった。
Comparative Example 2 100 ml of an aqueous solution of stannous chloride containing 1 g of Sn metal in 100 ml of the solution was diluted with ion-exchanged water to prepare an aqueous solution of tin chloride in a total amount of 280 ml, and prepared in the same manner as in Example 1. Mechanical stirring was continued while gradually adding to 100 g of the alumina carrier prepared above, and the tin chloride mixed aqueous solution was impregnated into the alumina. This was dried in air at 120 ° C. and further calcined in air at 500 ° C. for 3 hours to prepare a catalyst B.
Table 1 shows the results of activity evaluation conducted in the same manner as in Example 1. The tin support rate of the catalyst B obtained from ICP emission analysis was 0.87 wt%.

【0018】[0018]

【表1】 [Table 1]

【0019】表1よりSnとPtの原子比を変えること
により反応温度とNO転化率、N2O生成率、N2 生成
率との関係が変化することが判る。このうちSnとPt
の原子比を変えたときの反応温度とN2 生成率との関係
を図1に示す。図1よりSn/Pt原子比が1のとき反
応温度約250〜300℃でN2 生成率50%前後にな
り、またSn/Pt原子比が0.2あるいは1.7のと
き反応温度約200〜250℃でN2 生成率50%前後
になりさらに200℃以上の高温側ではPt単独の場合
に比べN2 生成率が高い値を示すことからSn/Pt原
子比を変更することにより触媒の活性温度領域を所望の
範囲の高温側にシフトできることが判る。
It can be seen from Table 1 that the relationship between the reaction temperature and the NO conversion rate, N 2 O production rate, N 2 production rate changes by changing the atomic ratio of Sn and Pt. Of these, Sn and Pt
FIG. 1 shows the relationship between the reaction temperature and the N 2 production rate when the atomic ratio of is changed. From FIG. 1, when the Sn / Pt atomic ratio is 1, the N 2 production rate is about 50% at the reaction temperature of about 250 to 300 ° C., and when the Sn / Pt atomic ratio is 0.2 or 1.7, the reaction temperature is about 200. to 250 DEG ° C. in N catalysts by changing the Sn / Pt atomic ratio because it shows the value N 2 production rate is higher than that of Pt alone at 2 generation rate of 50% becomes around further 200 ° C. or more high temperature side It can be seen that the active temperature region can be shifted to the high temperature side of the desired range.

【0020】[0020]

【発明の効果】以上説明してきたように、本発明によれ
ば、PtとSnとを高比表面積を有する担体に同時に担
持した触媒によって、酸素過剰雰囲気におけるNOx
炭化水素選択還元反応が促進され、特に担持するPtと
Snの原子比を変更すると、酸素過剰雰囲気におけるN
x の炭化水素選択還元反応においてPt−Sn触媒の
活性温度領域を所望の範囲に設定することができる。
As has been described in the foregoing, according to the present invention, the catalyst simultaneously carrying Pt and Sn on a carrier having a high specific surface area, the hydrocarbon selective reduction reaction of the NO x in an oxygen-rich atmosphere is promoted In particular, when the atomic ratio of Pt and Sn to be supported is changed, N in an oxygen excess atmosphere is changed.
In the hydrocarbon selective reduction reaction of O x active temperature region of the Pt-Sn catalyst can be set to a desired range.

【図面の簡単な説明】[Brief description of drawings]

【図1】SnとPtの原子比を変えたときの反応温度と
2 生成率との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the reaction temperature and the N 2 production rate when the atomic ratio of Sn and Pt is changed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 PtおよびSnを高比表面積担体に担持
した触媒であって、Ptの担持率が0.01〜5wt
%)、Snの担持率が0.01〜10wt%であり、S
n/Pt原子比が0.1〜2の範囲であることを特徴と
する窒素酸化物浄化用触媒。
1. A catalyst in which Pt and Sn are supported on a high specific surface area carrier, and the loading ratio of Pt is 0.01 to 5 wt.
%), The loading ratio of Sn is 0.01 to 10 wt%,
A nitrogen oxide purifying catalyst having an n / Pt atomic ratio in the range of 0.1 to 2.
JP4248905A 1992-08-26 1992-08-26 Catalyst for purifying nitrogen oxide Pending JPH0671176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248905A JPH0671176A (en) 1992-08-26 1992-08-26 Catalyst for purifying nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248905A JPH0671176A (en) 1992-08-26 1992-08-26 Catalyst for purifying nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0671176A true JPH0671176A (en) 1994-03-15

Family

ID=17185179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248905A Pending JPH0671176A (en) 1992-08-26 1992-08-26 Catalyst for purifying nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0671176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781592A1 (en) * 1995-12-26 1997-07-02 Cosmo Research Institute Exhaust gas purification method by reduction of nitrogen oxides
EP1310290A1 (en) * 2001-11-07 2003-05-14 Honda Giken Kogyo Kabushiki Kaisha Purification catalyst for exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781592A1 (en) * 1995-12-26 1997-07-02 Cosmo Research Institute Exhaust gas purification method by reduction of nitrogen oxides
EP1310290A1 (en) * 2001-11-07 2003-05-14 Honda Giken Kogyo Kabushiki Kaisha Purification catalyst for exhaust gas

Similar Documents

Publication Publication Date Title
JPH09271637A (en) Catalyst device for purifying ammonia
JPH10109032A (en) Exhaust gas purification catalyst for internal combustion engine
JPH0671176A (en) Catalyst for purifying nitrogen oxide
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JPH06126178A (en) Catalyst for removing nitrogen oxide
JPH06126172A (en) Catalyst for removing nitrogen oxide
JP3300027B2 (en) Exhaust gas purification catalyst
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JPH06210171A (en) Denitration catalyst
JP2006043637A (en) Catalyst for cleaning exhaust gas
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP3291316B2 (en) Exhaust gas purification catalyst
KR100442769B1 (en) Silver Catalyst having the high performance and Manufacturing of the same
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP4985499B2 (en) Sulfur oxide absorber and exhaust gas purification device
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH0824645A (en) Denitration catalyst and denitration method using the same
JPH06210137A (en) Denitration method
JP2005279372A (en) Denitrification catalyst and denitrification method using it
JP3358274B2 (en) Denitration catalyst and denitration method
JPH08131829A (en) Denitrification catalyst and denitrifying method using the same
JPH081014A (en) Denitration catalyst and denitrating method using that
JP2010017693A (en) NOx STORAGE CATALYST