JPH08131829A - Denitrification catalyst and denitrifying method using the same - Google Patents

Denitrification catalyst and denitrifying method using the same

Info

Publication number
JPH08131829A
JPH08131829A JP6290628A JP29062894A JPH08131829A JP H08131829 A JPH08131829 A JP H08131829A JP 6290628 A JP6290628 A JP 6290628A JP 29062894 A JP29062894 A JP 29062894A JP H08131829 A JPH08131829 A JP H08131829A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
alumina
denitration
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6290628A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Taiji Kanno
泰治 管野
Masao Wakabayashi
正男 若林
Hiroyuki Ikeda
浩幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6290628A priority Critical patent/JPH08131829A/en
Publication of JPH08131829A publication Critical patent/JPH08131829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To provide a denitrification catalyst with which NOx in the exhaust gas from an inner combustion engine with a lean air-fuel ratio can be efficiently removed at an enough high gas space velocity, and to provide a denitrifying method using this catalyst showing high efficiency and high reliability to remove NOx in the exhaust gas from an inner combustion engine. CONSTITUTION: This catalyst is used to remove nitrogen oxides in exhaust gas of hydrocarbons in an oxygen-rich atmosphere. The catalyst consists of an alumina-titania carrier with deposition of silver and/or silver oxide. This alumina-titania catalyst is obtd. by adding titania to active alumina having >=120m<2> /g specific surface area, >=0.60g/cc balk density and <=1.80g/cc intrinsic density measured by a mercury pressurizing method. The denitrifying method for the exhaust gas from an inner combustion engine driven at a lean air-fuel ratio is carried out by allowing the exhaust gas to pass and touch through a denitrification catalyst layer. In this method, the catalyst is used as the catalyst constituting the denitrification catalyst layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動発生源または定置発
生源からの排ガス、特に内燃機関の排気ガス中の窒素酸
化物の浄化に用いられる排気ガス浄化用の脱硝触媒に関
し、更に詳細には、希薄空燃比の内燃機関の排気ガス中
の窒素酸化物を高い空間速度で、且つ高い効率で浄化す
ることができるような脱硝触媒およびこれを用いた脱硝
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration catalyst for purifying exhaust gas from a mobile generation source or a stationary generation source, particularly nitrogen oxide in exhaust gas of an internal combustion engine, and more specifically to a denitration catalyst. The present invention relates to a denitration catalyst capable of purifying nitrogen oxides in exhaust gas of an internal combustion engine having a lean air-fuel ratio with high space velocity and high efficiency, and a denitration method using the same.

【0002】[0002]

【従来の技術】自動車用エンジンなどの内燃機関や工場
などの大型燃焼装置から排出される各種の燃焼排気ガス
中には、燃焼生成物である水や二酸化炭素(CO)と
共に一酸化窒素(NO)や、二酸化窒素(NO)など
の窒素酸化物(NOx)が相当量含まれている。NOx
やSOxは、人体に悪影響を与えるばかりでなく、地球
環境保全上から問題視される酸性雨の原因の一つにもな
っている。そのためこれら各種の排気ガスから効率よく
窒素酸化物を除去するための脱硝触媒の開発が望まれて
いる。
2. Description of the Related Art In various kinds of combustion exhaust gas discharged from an internal combustion engine such as an automobile engine or a large combustion apparatus such as a factory, nitric oxide (CO 2 ) and nitrogen monoxide (CO 2 ) are produced. NO) and nitrogen oxides (NOx) such as nitrogen dioxide (NO 2 ) are contained in a considerable amount. NOx
Not only does SO and SOx adversely affect the human body, but they are also one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, it is desired to develop a denitration catalyst for efficiently removing nitrogen oxides from these various exhaust gases.

【0003】NOx中のNOの理想的な除去方法は、下
記(1)式の反応式で示されるようなNOの直接分解を
行う方法である。該(1)式は、反応平衡論的には右辺
の生成系が圧倒的優位な反応である。
An ideal method of removing NO in NOx is a method of directly decomposing NO as shown by the following reaction formula (1). The equation (1) is a reaction in which the production system on the right side is overwhelmingly dominant in terms of reaction equilibrium.

【0004】 2NO=N+O (1) この反応に依存する脱硝技術として特開昭60−125
250号公報記載の方法が挙げられる。この脱硝技術
は、Cuをイオン交換法によりゼオライトに担持させた
触媒を用いるものであり、この触媒がNOの直接分解反
応を促進するとしている。しかしながら、この脱硝技術
では(1)式の反応によって生成した酸素が触媒活性点
に優先的に付着するために、脱硝効率が次第に低下して
しまうという問題があった。また、反応系内に過剰の酸
素が存在する条件(酸素過剰雰囲気) では、完全に
(1)式の反応が阻害されてしまうという欠点もあっ
た。
2NO = N 2 + O 2 (1) Japanese Patent Laid-Open No. 60-125 discloses a denitration technique that depends on this reaction.
The method described in Japanese Patent Publication No. 250 is cited. This denitration technique uses a catalyst in which Cu is supported on a zeolite by an ion exchange method, and this catalyst promotes the direct decomposition reaction of NO. However, this denitration technique has a problem that the denitration efficiency is gradually lowered because oxygen generated by the reaction of the formula (1) is preferentially attached to the catalyst active site. Further, there is a drawback that the reaction of the formula (1) is completely hindered under the condition that excess oxygen exists in the reaction system (oxygen excess atmosphere).

【0005】他方、地球温暖化防止の観点から近年希薄
燃焼方式の内燃機関が注目を集めている。従来の自動車
用ガソリンエンジンは、空燃比λ=1付近で制御された
化学量論的な燃焼を行うものであって、その排気ガス処
理に対しては排気ガス中の一酸化炭素(CO)、炭化水
素(HC)およびNOxを主として白金(Pt)、ロジ
ウム(Rh)、パラジウム(Pd)およびセリア(Ce
)を含むアルミナ触媒に接触させてこれらの有害成
分を同時に除去する三元触媒方式が採用されていた。し
かし、この三元触媒方式による方法では、希薄燃焼方式
のリーンバーンガソリンエンジンにおける排気ガスに対
する浄化には十分な効果が得られなかった。また、ディ
ーゼルエンジンは元来リーンバーンエンジンであるが、
最近その排気ガスについては、浮遊粒子状物質とNOx
の両者に対してかなり厳しい規制が行われるようになっ
てきた。
On the other hand, from the viewpoint of preventing global warming, an internal combustion engine of the lean burn type has recently been drawing attention. A conventional automobile gasoline engine performs controlled stoichiometric combustion in the vicinity of an air-fuel ratio λ = 1, and carbon monoxide (CO) in exhaust gas is used for exhaust gas treatment. Mainly hydrocarbons (HC) and NOx, platinum (Pt), rhodium (Rh), palladium (Pd) and ceria (Ce)
A three-way catalyst system has been adopted in which these harmful components are simultaneously removed by contacting with an alumina catalyst containing O 2 ). However, this three-way catalyst method has not been sufficiently effective in purifying exhaust gas in a lean burn gasoline engine of a lean burn method. Also, although the diesel engine is originally a lean burn engine,
Recently, regarding the exhaust gas, suspended particulate matter and NOx
Both of them have come under strict regulation.

【0006】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着されるNHを使用して行う方法が既に
確立されており、いわゆる固定発生源であるボイラーや
ディーゼルエンジンからの排気ガスの脱硝触媒として工
業化されている。しかしこの方法においては、未反応の
還元剤の回収処理のために特別な装置を必要とし、これ
に臭気の強いアンモニアを用いることもあって、自動車
などの移動発生源からの排気ガスの脱硝技術には適用す
ることができない。
Conventionally, as a method for reducing and removing NOx in an oxygen-excess atmosphere, a method has been already established in which NH 3 which is selectively adsorbed by a catalyst even in a small amount as a reducing gas is used. It is industrialized as a NOx removal catalyst for exhaust gas from boilers and diesel engines, which are fixed sources. However, this method requires a special device for the recovery treatment of unreacted reducing agent, and ammonia with a strong odor may be used for this purpose, which is a denitration technology for exhaust gas from mobile sources such as automobiles. Cannot be applied to.

【0007】近年、酸素過剰雰囲気の希薄燃焼ガス中に
残存する未燃炭化水素を還元剤としてNOxの還元反応
を進行させることができることが報告されて以来、該反
応を促進させるための触媒について種々の提案がなされ
ている。例えば、アルミナやアルミナに遷移金属を担持
させた触媒が、炭化水素を還元剤として用いたNOx還
元反応に有効であるとする数多くの報告がなされてい
る。また、特開平4−284848号公報には、0.1
〜4重量%のCu、Fe、Cr、Zn、Ni、V等を含
有するアルミナまたはシリカ−アルミナをNOx還元用
触媒として使用した例が記載されている。
[0007] In recent years, since it has been reported that unburned hydrocarbons remaining in a lean combustion gas in an oxygen excess atmosphere can be used as a reducing agent to promote the reduction reaction of NOx, various catalysts for promoting the reaction have been developed. Has been made. For example, many reports have been made that alumina or a catalyst in which a transition metal is supported on alumina is effective for NOx reduction reaction using hydrocarbon as a reducing agent. Further, in Japanese Patent Application Laid-Open No. 4-284848, 0.1
An example is described in which alumina or silica-alumina containing 4 wt% of Cu, Fe, Cr, Zn, Ni, V, etc. is used as a catalyst for NOx reduction.

【0008】またさらに、Ptをアルミナに担持させた
触媒を用いると、NOx還元反応を200〜300℃の
低温領域で進行させることができることが特開平4−2
67946号公報、特開平5−68855号公報および
特開平5−103949号公報に記載されている。しか
しながら、これらの貴金属担持触媒を用いた場合には還
元剤である炭化水素の燃焼反応が過度に促進されるため
にNOx還元反応の選択性が乏しくなるという欠点があ
った。
Furthermore, by using a catalyst in which Pt is supported on alumina, the NOx reduction reaction can proceed in a low temperature range of 200 to 300 ° C.
67946, JP-A-5-68855, and JP-A-5-103949. However, when these noble metal-supported catalysts are used, there is a drawback that the selectivity of the NOx reduction reaction becomes poor because the combustion reaction of hydrocarbon as a reducing agent is excessively promoted.

【0009】本発明者らは、先に酸素過剰雰囲気下で炭
化水素を還元剤として銀を含有する触媒を用いるとNO
x還元反応が選択的に優位に進行することを見出し、こ
れについて特許出願を行った(特開平4−281844
号)。その後においても、このように銀を用いた類似の
NOx還元触媒によるNOx除去技術について特開平4
−354536号公報や特開平5−92124号公報な
ど数多くの特許出願が見受けられ、またさらにアプライ
ド カタリシス B:Environmental,2
(1933)199−205頁には、銀を担持したアル
ミナ触媒が、Co、Cu、V、Crを担持したアルミナ
触媒よりも、水蒸気存在下でのNOx還元性能において
優れていることが報告されている。
The present inventors have previously found that when a catalyst containing silver as a reducing agent with hydrocarbon as a reducing agent is used under an oxygen-excessive atmosphere, NO.
It was found that the x reduction reaction selectively and preferentially proceeded, and a patent application was filed for this (Japanese Patent Laid-Open No. 4-281844).
issue). Even after that, the technique for removing NOx by using a similar NOx reduction catalyst using silver in this manner is disclosed in Japanese Patent Laid-Open No. HEI 4
There are many patent applications such as Japanese Patent Application Laid-Open No. 354536 and Japanese Patent Application Laid-Open No. 5-92124, and further, Applied Catalysis B: Environmental, 2
(1933) 199-205, it is reported that the alumina catalyst supporting silver is superior to the alumina catalyst supporting Co, Cu, V, and Cr in the NOx reduction performance in the presence of water vapor. There is.

【0010】しかしながら、これら従来のアルミナを担
体とした銀担持触媒の脱硝性能は、水蒸気存在下での炭
化水素によるNOx還元反応用触媒としては活性が未だ
不十分であった。
However, the denitration performance of these conventional silver-supported catalysts using alumina as a carrier has not been sufficiently active as a catalyst for NOx reduction reaction by hydrocarbons in the presence of water vapor.

【0011】一方、従来よりアルミナを担体として用い
た触媒は空間速度依存性が大きいことが知られており、
例えばSV:1000〜10000hr−1程度の空間
速度においては十分にNOx還元性能を発揮するが、S
V:10000hr−1以上の空間速度においては、N
Oxの浄化性能は大きく低下することが報告されている
(「触媒」:33、61(1991)参照)ことからも
判かるように、このような現象は当業界では周知の事実
であった。例えば、特開平5−92124号に開示され
ている排ガス処理方法において、排気ガスと触媒との接
触時間を0.03g.sec/cm以上、好ましくは
0.1g.sec/cm以上と限定しているのはこの
ためである。
On the other hand, it has been known that a catalyst using alumina as a carrier has a large space velocity dependency.
For example, at a space velocity of SV: 1000 to 10000 hr -1 , the NOx reduction performance is sufficiently exhibited, but S
V: N at a space velocity of 10000 hr −1 or more
Such a phenomenon was a well-known fact in the art, as can be seen from the fact that the purification performance of Ox was reported to be significantly reduced (see “Catalyst”: 33, 61 (1991)). For example, in the exhaust gas treatment method disclosed in JP-A-5-92124, the contact time between the exhaust gas and the catalyst is 0.03 g. sec / cm 3 or more, preferably 0.1 g. This is the reason why it is limited to sec / cm 3 or more.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、希薄空
燃比で運転される代表的な内燃機関である自動車等の車
両用リーンバーンエンジンの排ガス処理において、実用
上欠くことのできない他の重要な要素は、触媒層ないし
は触媒で被覆された支持基質からなる構造体(以下、こ
れらを本明細書においては触媒含有層と称する)の所要
スペースと重量の両者である。即ち、エンジンの排気量
と仕事量とを勘案するときにエンジン排気量の数倍以上
の容量の触媒含有層を搭載することは実用的でなく、触
媒含有層の容量をエンジンの排気量以下にすることが望
ましいからである。
However, in the exhaust gas treatment of a lean burn engine for vehicles such as automobiles, which is a typical internal combustion engine operated at a lean air-fuel ratio, other important factors which are indispensable for practical use are , Both the required space and the weight of the catalyst layer or the structure consisting of the supporting substrate coated with the catalyst (hereinafter, these are referred to as catalyst-containing layer in the present specification). That is, it is not practical to mount a catalyst-containing layer having a capacity of several times or more of the engine displacement when considering the engine displacement and work, and the capacity of the catalyst-containing layer is set to be equal to or less than the engine displacement. It is desirable to do so.

【0013】そしてこれは、実用性のある触媒含有層を
構成するには触媒含有層を通過する排気ガスの空間速度
を高くすること(これは接触時間が短かくなることを意
味する)、即ちガス空間速度を7000hr−1以上、
好ましくは10000hr−1以上とすること、つまり
接触時間では0.03g.sec/cm未満、好まし
くは0.02g.sec/cm未満であることが要求
されることを意味するものである。しかし、従来のアル
ミナを担体とする銀担持アルミナ触媒は、このような高
空間速度(短い接触時間)では、水蒸気共存排気ガスに
対する脱硝性能が今ひとつ不十分であった。
This means that in order to construct a practical catalyst-containing layer, the space velocity of the exhaust gas passing through the catalyst-containing layer is made high (which means that the contact time becomes short), that is, Gas space velocity of 7,000 hr −1 or more,
It is preferably 10,000 hr −1 or more, that is, the contact time is 0.03 g. sec / cm 3 or less, preferably 0.02 g. It means that it is required to be less than sec / cm 3 . However, the conventional silver-supported alumina catalyst using alumina as a carrier is still insufficient in denitrification performance for exhaust gas coexisting with steam at such a high space velocity (short contact time).

【0014】結局、銀担持アルミナ触媒に関するどの公
知文献にも、水蒸気が共存する酸素過剰雰囲気下で、且
つ高空間速度での炭化水素による排気ガス中の窒素酸化
物を高効率で除去することができるような触媒について
は全く例示されていないと言わざるを得ない。
After all, in any known literature concerning silver-supported alumina catalysts, nitrogen oxides in exhaust gas due to hydrocarbons can be removed with high efficiency in an oxygen-excess atmosphere in the presence of water vapor and at a high space velocity. It must be said that such a catalyst is not exemplified at all.

【0015】本発明は、上記した従来技術の問題点を解
決することを課題とするものであって、希薄空燃比の内
燃機関の排気ガス中のNOxを十分高いガス空間速度
(短い接触時間)で効率よく除去することができるよう
な脱酸触媒と、該触媒を使用しての希薄空燃比の内燃機
関の排気ガス中のNOxの高効率で高信頼性を持った脱
硝方法を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems of the prior art, in which NOx in exhaust gas of an internal combustion engine having a lean air-fuel ratio is sufficiently high gas space velocity (short contact time). To provide a deoxidizing catalyst that can be efficiently removed by means of a denitrification method, and a denitrification method using the catalyst with high efficiency and high reliability of NOx in exhaust gas of an internal combustion engine with a lean air-fuel ratio. The purpose is.

【0016】[0016]

【課題を解決するための手段】本発明者らは、酸素過剰
雰囲気下においても、炭化水素によるNOx還元反応を
高効率で進行させることのできるような脱硝触媒および
これを用いての脱硝方法について鋭意研究を重ねた結果
本発明を完成したものである。即ち、本発明は酸素過剰
雰囲気下において、炭化水素による排気ガス中の窒素酸
化物の除去を行う際に用いる触媒であって、比表面積が
120m/g以上で、水銀圧入法により測定された嵩
比重および真比重がそれぞれ0.60g/cc以上およ
び1.8g/cc以下であるような活性アルミナに金属
換算で0.1〜15重量%のチタニアを含有させたチタ
ニア含有アルミナ担体に銀および/または酸化銀を担持
させてなる脱硝触媒であり、また希薄空燃比で運転され
る内燃機関における排気ガスを脱硝触媒層を通過接触さ
せるようにした該排気ガスの脱硝方法において、該脱硝
触媒層を構成する触媒に上記本発明による脱硝触媒を使
用し、且つ脱硝触媒層を通過する排気ガスを該脱硝触媒
層入口において200〜600℃の温度範囲とした脱硝
方法である。
DISCLOSURE OF THE INVENTION The present inventors have proposed a denitrification catalyst and a denitrification method using the same, which are capable of advancing the NOx reduction reaction by a hydrocarbon with high efficiency even in an oxygen excess atmosphere. As a result of intensive studies, the present invention has been completed. That is, the present invention is a catalyst used when removing nitrogen oxides in exhaust gas with hydrocarbons in an oxygen excess atmosphere, having a specific surface area of 120 m 2 / g or more, and measured by mercury porosimetry. Silver is added to a titania-containing alumina carrier in which 0.1 to 15% by weight of metal is added to activated alumina having a bulk specific gravity and a true specific gravity of 0.60 g / cc or more and 1.8 g / cc or less, respectively. And / or a denitration catalyst supporting silver oxide, and in the denitration method of the exhaust gas, wherein the exhaust gas in an internal combustion engine operated at a lean air-fuel ratio is brought into contact with the denitration catalyst layer, The above-mentioned denitration catalyst according to the present invention is used as a catalyst constituting the catalyst, and the exhaust gas passing through the denitration catalyst layer is controlled at a temperature range of 200 to 600 ° C. at the denitration catalyst layer inlet. It was a denitration method.

【0017】そして、上記本発明の脱硝方法によるとき
は、脱硝触媒層を通過する排気ガスの空間速度(SV)
を10000hr−1以上にして脱硝反応を行わせても
排気ガスの脱硝浄化を十分に行うことが可能であるし、
水蒸気が共存する酸素過剰雰囲気の下においても効果的
に排気ガス中のNOxの還元除去を行うことが可能であ
る。
When the denitration method of the present invention is used, the space velocity (SV) of the exhaust gas passing through the denitration catalyst layer.
It is possible to sufficiently purify the exhaust gas by removing NOx even if the NOx removal reaction is carried out at 10000 hr -1 or more.
It is possible to effectively reduce and remove NOx in the exhaust gas even in an oxygen excess atmosphere in which water vapor coexists.

【0018】[0018]

【作用】以下に本発明の詳細およびその作用について説
明する。
The operation of the present invention will be described in detail below.

【0019】本発明の脱硝触媒は、比表面積が120m
/g以上で、水銀圧入法により測定された嵩密度およ
び真密度がそれぞれ0.60g/cc以上および1.8
0g/cc以下であるような活性アルミナを触媒担体の
主成分とするものである。
The denitration catalyst of the present invention has a specific surface area of 120 m.
2 / g or more, the bulk density and the true density measured by the mercury penetration method are 0.60 g / cc or more and 1.8, respectively.
The main component of the catalyst carrier is activated alumina having an amount of 0 g / cc or less.

【0020】本発明で用いられる活性アルミナは、結晶
学的にはγ−型、η−型あるいはその混合型に分類され
るものであり、これらの活性アルミナは、一般的には鉱
物学的にベーマイト、擬ベーマイト、バイアライトおよ
びノルストランダライトとして分類される水酸化アルミ
ニウムの粉末またはゲルを、空気中あるいは真空中で加
熱温度300〜800℃、好ましくは400〜600℃
で加熱脱水することによって得られるものである。
The activated alumina used in the present invention is classified crystallographically into γ-type, η-type or a mixed type thereof, and these activated aluminas are generally mineralogy. Aluminum hydroxide powder or gel classified as boehmite, pseudo-boehmite, vialite and norstrandalite is heated in air or in vacuum at a heating temperature of 300 to 800 ° C, preferably 400 to 600 ° C.
It is obtained by heating and dehydrating at.

【0021】この場合に、触媒担体としての活性アルミ
ナに他の結晶構造形態を採るもの、例えばα−アルミナ
を使用すると、このα−型のアルミナは極端に比表面積
が小さくまた固体酸性にも乏しいので本発明の指向する
脱硝触媒担体としては不適当であり、またδ−アルミナ
も比表面積が100m/gと比較的小さいので、これ
も脱硝触媒担体としては、γ−アルミナやη−アルミナ
に及ばない、また、β−アルミナやχ−アルミナもほぼ
同様の理由により、本発明の脱硝触媒担体として不適当
である。
In this case, when the activated alumina as the catalyst carrier has another crystal structure, for example, α-alumina, the α-type alumina has extremely small specific surface area and poor solid acidity. Therefore, δ-alumina is unsuitable as the denitration catalyst carrier of the present invention, and δ-alumina has a relatively small specific surface area of 100 m 2 / g. In addition, β-alumina and χ-alumina are not suitable as the denitration catalyst carrier of the present invention for almost the same reason.

【0022】また、比表面積が120m/g未満で、
また嵩密度が0.60g/cc未満であるような活性ア
ルミナにチタニアを含有させた担体を用い、これに銀を
担持させた触媒は、水蒸気の存在下での脱硝率が不十分
であった。またさらに比表面積が120m/g以上
で、嵩密度が0.60g/cc以上であっても、真密度
が1.80g/cc未満であるような活性アルミナを使
用した場合にも得られた触媒の水蒸気存在下での脱硝率
が不十分となる。
Further, when the specific surface area is less than 120 m 2 / g,
In addition, the catalyst in which titania is contained in activated alumina having a bulk density of less than 0.60 g / cc and silver is supported on this carrier has an insufficient denitration rate in the presence of water vapor. . Further, it was obtained when activated alumina having a specific surface area of 120 m 2 / g or more and a bulk density of 0.60 g / cc or more and a true density of less than 1.80 g / cc was used. The denitrification rate of the catalyst in the presence of water vapor becomes insufficient.

【0023】チタニア含有アルミナ担体を製造するに
は、活性アルミナ、好ましくは水酸化アルミニウムのよ
うな活性アルミナ前駆体の水溶液にチタン塩を含有させ
るか、アルミニウム塩とチタン塩の混合溶液にアルカリ
を添加して共沈させるか、またはアルミニウムアルコキ
シドにチタンアルコキシドまたはチタン塩を添加して加
水分解させるかのいずれかの方法により製造することが
好ましい。このようにして得られた担体中のチタニアの
含有率は、活性アルミナに対して金属チタン換算で0.
1〜15重量%であることが好ましい。
To prepare the titania-containing alumina carrier, titanium salt is added to an aqueous solution of activated alumina, preferably an activated alumina precursor such as aluminum hydroxide, or alkali is added to a mixed solution of aluminum salt and titanium salt. It is preferable to produce the aluminum alkoxide by hydrolyzing it by adding a titanium alkoxide or a titanium salt to the aluminum alkoxide. The content of titania in the carrier thus obtained was 0.
It is preferably from 1 to 15% by weight.

【0024】担体中にチタニアを含有させる効果として
は、銀とアルミナのSMSI、並びに酸性度を増加させ
ることによる相乗効果が脱硝率の向上に寄与するものと
考えられるが、0.1重量%未満の含有ではその効果が
十分に発揮されず、また15重量%を超えると、却って
その効果が低下する。
Regarding the effect of containing titania in the carrier, it is considered that the SMSI of silver and alumina and the synergistic effect of increasing the acidity contribute to the improvement of the denitration rate, but less than 0.1% by weight. The effect is not fully exhibited with the inclusion of, and if it exceeds 15% by weight, the effect is rather reduced.

【0025】このようにして製造されたチタニア含有ア
ルミナ担体に銀を担持させる方法には特に限定はなく、
一般的な担持法例えば吸着法、ポアフィリング法、イン
シピエントウエットネス法、蒸発乾固法、スプレー法な
どのような含浸法や混練法、またはこれらを組み合わせ
る方法などを適宜採用すればよい。
There is no particular limitation on the method of loading silver on the titania-containing alumina carrier thus produced,
A general supporting method, for example, an adsorption method, a pore filling method, an incipient wetness method, an evaporation dryness method, a spray method, an impregnation method, a kneading method, or a combination thereof may be appropriately adopted.

【0026】また銀および/または酸化銀の担持率は、
本発明の担体中に使用される活性アルミナに対し金属換
算値で1〜6重量%の範囲であることが好ましい。銀の
担持率が1重量%未満であるときは満足し得る脱硝活性
が得られず、6重量%を超えるときは還元剤としての炭
化水素の燃焼反応が過度に進行し、触媒活性および反応
選択性が却って低下してしまう。
The loading ratio of silver and / or silver oxide is
It is preferably in the range of 1 to 6% by weight in terms of metal, based on the activated alumina used in the carrier of the present invention. When the loading rate of silver is less than 1% by weight, satisfactory denitration activity cannot be obtained, and when it exceeds 6% by weight, the combustion reaction of hydrocarbon as a reducing agent proceeds excessively, resulting in catalytic activity and reaction selection. On the contrary, the sex declines.

【0027】乾燥温度については特に限定されず通常行
われる80〜120℃の温度範囲で乾燥を行い、しかる
後、300〜800℃、好ましくは400〜600℃で
焼成を行う。焼成温度が300℃未満では十分な焼成が
行われず、また800℃を超えるとアルミナの相変体が
起こるので好ましくない。
The drying temperature is not particularly limited, and the drying is carried out in a temperature range of 80 to 120 ° C. which is usually carried out, and thereafter, firing is carried out at 300 to 800 ° C., preferably 400 to 600 ° C. If the firing temperature is lower than 300 ° C, sufficient firing is not performed, and if it exceeds 800 ° C, a phase change of alumina occurs, which is not preferable.

【0028】また、触媒の形状は粉状、球状、円筒状、
ハニカム状、螺旋状など特に限定されることなく任意の
形状を採ることができ、大きさも使用条件に応じて適当
に定めればよい。特に、自動車用エンジン等の排気ガス
浄化を目的とする場合には、ガス空間速度が高いので圧
力損失を最小限に抑えるために排気ガスの流れ方向に対
して多数の貫通孔を有する耐火性一体構造の支持基体に
おけるチャンネル表面に被覆させたものが使用上好適で
ある。
The shape of the catalyst is powder, spherical, cylindrical,
Any shape such as a honeycomb shape and a spiral shape can be adopted without particular limitation, and the size may be appropriately determined according to the usage conditions. In particular, when purifying exhaust gas from an automobile engine, etc., since the gas space velocity is high, a fire-resistant integrated body having a large number of through holes in the exhaust gas flow direction in order to minimize pressure loss. A structure in which the channel surface of the supporting substrate is coated is suitable for use.

【0029】本発明の触媒は、排気ガス中のCO、HC
およびHといった還元性の成分をNOxおよびO
いった酸化性成分で完全に酸化するに要する化学量論よ
りも過剰の酸素を含有する排気ガス、より具体的には希
薄空燃比の内燃機関からの排気ガス中のNOxの浄化に
適用される。
The catalyst of the present invention is used for CO, HC in exhaust gas.
And exhaust gas containing oxygen in excess of the stoichiometry required to completely oxidize reducing components such as H 2 with oxidizing components such as NOx and O 2 , more specifically from an internal combustion engine with a lean air-fuel ratio. It is applied to the purification of NOx in the exhaust gas of.

【0030】このような排気ガスを本発明の脱硝触媒と
接触させることによって、NOxはHC等の排気ガス中
に微量に存在する還元剤成分によって、Nに、HCは
COおよびHOに還元されると同時にHC等の還元
剤もCOとHOに酸化される。ディーゼルエンジン
の排気ガスのように、排気ガスそのもののHC/NOx
比が低い場合には、排気ガス中に還元剤成分としてメタ
ン換算濃度で数百〜数千ppm程度の燃料HCを追加し
て添加した後、本発明の触媒を接触させる方式を採用す
ればさらに効果的にNOxの浄化を行うことができる。
By bringing such exhaust gas into contact with the denitration catalyst of the present invention, NOx is converted to N 2 and HC is CO 2 and H 2 O by a reducing agent component such as HC present in a trace amount in the exhaust gas. At the same time, the reducing agent such as HC is also oxidized to CO 2 and H 2 O. HC / NOx of exhaust gas itself like exhaust gas of diesel engine
When the ratio is low, it is more preferable to adopt a method in which the catalyst of the present invention is contacted after additionally adding several hundred to several thousand ppm of fuel HC as a reducing agent component in the exhaust gas at a methane conversion concentration. It is possible to effectively purify NOx.

【0031】還元剤の種類によって活性を示す温度域が
異なるが、本発明の触媒を用いて高い空間速度で酸素過
剰雰囲気下において、C以上のパラフィン、オレフィ
ンおよび芳香族HCによる排気ガス中のNOxの浄化を
効率的に行うためには、設置触媒層の入口温度を400
℃〜600℃に、またC10以上の場合には200℃〜
600℃にする必要がある。このように入口温度の調整
を行わねばならない理由は、本発明による銀および/ま
たは酸化銀担持チタニア含有アルミナ触媒が、脱硝性能
を発揮するためには上記した還元剤の種類によって異な
る最少の温度を必要とし、これよりも低温であるときは
HCが活性化されないためであり、また還元剤の種類に
よって若干異なるが、触媒層の入口温度が600℃以上
の高温になる場合には、副反応であるHCの燃焼が優勢
になるためにHCによるNOxの還元活性が低下するの
で浄化能力が劣化してしまう。
Although the temperature range in which the activity varies depends on the type of reducing agent, the catalyst of the present invention is used in an exhaust gas containing C 2 or more paraffins, olefins, and aromatic HC in an oxygen excess atmosphere at a high space velocity. In order to efficiently purify NOx, the inlet temperature of the installed catalyst layer should be 400
℃ ~ 600 ℃, in the case of C 10 or more 200 ℃ ~
It needs to be 600 ° C. The reason why the inlet temperature must be adjusted in this way is that the silver and / or silver oxide-supporting titania-containing alumina catalyst according to the present invention has a minimum temperature which varies depending on the type of the reducing agent in order to exert the denitration performance. This is because HC is not activated when the temperature is lower than this, and although it slightly differs depending on the type of reducing agent, when the inlet temperature of the catalyst layer becomes higher than 600 ° C., a side reaction occurs. Since the combustion of a certain HC becomes predominant, the reducing activity of NOx by the HC decreases, and the purification capacity deteriorates.

【0032】[0032]

【実施例】以下に実施例および比較例に基づいて本発明
を更に詳細に説明する。但し、本発明は、これらの実施
例に限定されるものでない。A.チタン含有アルミナ担体の調製 粒径分布の異なる8種類のγ−アルミナ前駆体としての
アルミナ水和物を用いて、これらのアルミナ水和物を6
00℃で3時間焼成して得られたγ−アルミナ(a〜
h)のそれぞれに対して窒素ガス吸着法による比表面積
および水銀圧入法による嵩密度および真密度を測定した
ところ、以下のような値が得られた。
The present invention will be described in more detail based on the following examples and comparative examples. However, the present invention is not limited to these examples. A. Preparation of Titanium-Containing Alumina Carrier Using 8 kinds of alumina hydrates as γ-alumina precursors having different particle size distributions, these alumina hydrates were
[Gamma] -alumina (a-
When the specific surface area by the nitrogen gas adsorption method and the bulk density and the true density by the mercury intrusion method were measured for each of h), the following values were obtained.

【0033】アルミナa:比表面積:241m/g、
嵩密度:0.67g/cc、真密度:1.56g/cc アルミナb:比表面積:219m/g、嵩密度:0.
65g/cc、真密度:1.49g/cc アルミナc:比表面積:193m/g、嵩密度:0.
69g/cc、真密度:1.37g/cc アルミナd:比表面積:174m/g、嵩密度:0.
76g/cc、真密度:1.62g/cc アルミナe:比表面積:281m/g、嵩密度:2.
70g/cc、真密度:0.58g/cc アルミナf:比表面積:166.7m/g、嵩密度:
1.00g/cc、真密度:2.61g/cc アルミナg:比表面積:106.5m/g、嵩密度:
0.71g/cc、真密度:1.59g/cc アルミナh:比表面積:191m/g、嵩密度:1.
06g/cc、真密度:3.16g/cc 上記8種類のアルミナ(a〜h)を得ることができるよ
うな8種類のアルミナ水和物の各117.6gを100
0mlの水に分散させた溶液のそれぞれに四塩化チタン
0.18gを添加し、撹拌しながら100〜110℃に
加熱して水分の蒸発を行い、さらに110℃で通風乾燥
を行った後、空気中において600℃で3時間焼成する
ことによって金属チタン換算でアルミナの0.1重量%
を含有するチタニア含有アルミナ担体(担体1〜担体
8)を調製した。また、アルミナaに対応するアルミナ
水和物に対してはさらに上記と同様の水溶液に四塩化チ
タン4.66g、21.2gおよび44.8gを添加
し、その後上記と同様の手順でそれぞれ金属チタン換算
でアルミナの2.5重量%、10重量%および20重量
%を含むチタニア含有アルミナ担体(担体9、担体10
および担体11)を調製した。さらにまた、従来の担体
例としてチタニアを含まないアルミナaのみを担体12
として準備した。B.触媒試料の調製 上記のチタニア含有アルミナ担体(担体1〜11)につ
いて、それぞれに銀を担持させて脱硝性能評価のための
触媒試料を調製した(実施例1〜7および比較例1〜
5)。また比較例6では、チタニアを含まない従来のア
ルミナ担体(担体12)に銀を担持させて触媒試料とし
た。以下にその詳細を示す。
Alumina a: Specific surface area: 241 m 2 / g,
Bulk density: 0.67 g / cc, true density: 1.56 g / cc Alumina b: Specific surface area: 219 m 2 / g, bulk density: 0.
65 g / cc, true density: 1.49 g / cc Alumina c: specific surface area: 193 m 2 / g, bulk density: 0.
69 g / cc, true density: 1.37 g / cc Alumina d: specific surface area: 174 m 2 / g, bulk density: 0.
76 g / cc, true density: 1.62 g / cc Alumina e: specific surface area: 281 m 2 / g, bulk density: 2.
70 g / cc, true density: 0.58 g / cc Alumina f: specific surface area: 166.7 m 2 / g, bulk density:
1.00 g / cc, true density: 2.61 g / cc Alumina g: Specific surface area: 106.5 m 2 / g, bulk density:
0.71 g / cc, true density: 1.59 g / cc Alumina h: specific surface area: 191 m 2 / g, bulk density: 1.
06 g / cc, true density: 3.16 g / cc 117.6 g of each of the eight types of alumina hydrate that can obtain the above eight types of alumina (a to h) is 100
0.18 g of titanium tetrachloride was added to each of the solutions dispersed in 0 ml of water, and the mixture was heated to 100 to 110 ° C. with stirring to evaporate water, and then air-dried at 110 ° C., and then air. 0.1% by weight of alumina in terms of metallic titanium by calcining at 600 ° C for 3 hours
A titania-containing alumina carrier (carrier 1 to carrier 8) containing was prepared. Further, for alumina hydrate corresponding to alumina a, 4.66 g, 21.2 g and 44.8 g of titanium tetrachloride were further added to the same aqueous solution as described above, and then metal titanium was added by the same procedure as described above. A titania-containing alumina carrier containing 2.5% by weight, 10% by weight and 20% by weight of alumina (carrier 9, carrier 10)
And carrier 11) was prepared. Furthermore, as an example of the conventional carrier, only alumina a containing no titania is used as the carrier 12.
Prepared as B. Preparation of Catalyst Samples About the above titania-containing alumina carriers (carriers 1 to 11), silver was loaded on each of them to prepare catalyst samples for denitration performance evaluation (Examples 1 to 7 and Comparative Examples 1 to 1).
5). In Comparative Example 6, a conventional alumina carrier (carrier 12) containing no titania was loaded with silver to prepare a catalyst sample. The details are shown below.

【0034】実施例1〜4、比較例1〜4 イ.3%Ag/Al−0.1%TiO触媒試料
の調製 実施例1、実施例2、実施例3、実施例4においては、
それぞれ担体1、2、3および4を、また比較例1、比
較例2、比較例3および比較例4においてはそれぞれ担
体5、6、7および8を用いて、各担体100gを6.
6gの硝酸銀(金属銀換算3.1g)を含む1000ミ
リリットル水溶液中に浸漬し、撹拌しながら100〜1
10℃に加熱して水分を蒸発させ、空気中で500℃で
3時間焼成することによりAg/Al−TiO
触媒試料を調製した。これらの触媒試料におけるAgの
担持率は、全て金属換算でアルミナに対してそれぞれ
3.0重量%である。
Examples 1 to 4 and Comparative Examples 1 to 4 a. Preparation of 3% Ag / Al 2 O 3 -0.1% TiO 2 Catalyst Samples In Example 1, Example 2, Example 3 and Example 4,
Carriers 1, 2, 3 and 4 were used, and in Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4, carriers 5, 6, 7 and 8 were used, and 100 g of each carrier was used.
Immerse in 1000 ml of an aqueous solution containing 6 g of silver nitrate (3.1 g in terms of metallic silver), and stir 100-1
By heating to 10 ° C. to evaporate water and baking in air at 500 ° C. for 3 hours, Ag / Al 2 O 3 —TiO 2 was used.
A catalyst sample was prepared. The loading ratios of Ag in these catalyst samples are all 3.0% by weight with respect to alumina in terms of metal.

【0035】実施例5 ロ.3%Ag/Al−2.5%TiO触媒試料
の調製 チタニア含有アルミナ担体として担体9を用いた以外は
実施例1と同様の手順でAg/Al−Tio
媒試料を調製した。この触媒試料のAg担持率も金属換
算でアルミナに対し3.0重量%である。
Example 5 b. Preparation of 3% Ag / Al 2 O 3 -2.5% TiO 2 catalyst sample Ag / Al 2 O 3 -TiO 2 catalyst sample was prepared in the same procedure as in Example 1 except that the carrier 9 was used as the titania-containing alumina carrier. Was prepared. The Ag loading rate of this catalyst sample was also 3.0% by weight based on the alumina, in terms of metal.

【0036】実施例6 ハ.3%Ag/Al−10%TiO触媒試料の
調製 チタニア含有アルミナ担体として担体10を用いた以外
は実施例1と同様の手順でAg/Al−Tio
触媒試料を調製した。この触媒試料のAg担持率も金属
換算でアルミナに対し3.0重量%である。
Example 6 c. Preparation of 3% Ag / Al 2 O 3 -10% TiO 2 catalyst sample Ag / Al 2 O 3 -TiO 2 was prepared in the same procedure as in Example 1 except that the carrier 10 was used as the titania-containing alumina carrier.
A catalyst sample was prepared. The Ag loading rate of this catalyst sample was also 3.0% by weight based on the alumina, in terms of metal.

【0037】比較例5 ニ.3%Ag/Al−20%TiO触媒試料の
調製 チタニア含有アルミナ担体として担体11を用いた以外
は実施例1と同様の手順でAg/Al−Tio
触媒試料を調製した。この触媒試料のAg担持率は金属
換算でアルミナに対し3.0重量%である。
Comparative Example 5 d. Preparation of 3% Ag / Al 2 O 3 -20% TiO 2 catalyst sample Ag / Al 2 O 3 -TiO 2 was prepared in the same procedure as in Example 1 except that the carrier 11 was used as the titania-containing alumina carrier.
A catalyst sample was prepared. The Ag loading rate of this catalyst sample was 3.0% by weight in terms of metal, based on alumina.

【0038】比較例6 ホ.3%Ag/Al触媒試料の調製 チタニアを含有しないアルミナ担体として担体12を使
用した以外は実施例1と同様の手順でAg/Al
触媒試料を調製した。この触媒試料のAg担持率は金属
換算でアルミナに対して3.0重量%である。 C.触媒性能の評価試験 a.評価試験1 実施例1〜7および比較例1〜6の各触媒試料を用い、
これらの触媒試料を所定の形状に加圧成型した後、粉砕
して粒度が250〜500μmになるように整粒し、次
にこれらの整粒物を内径21mmのステンレス製反応管
に充填して常圧固定床反応装置内に装着した。この触媒
層にモデル排気ガスとして、NOが1000ppm、C
が1300ppm、Oが5%、HOが10
%、残部Nからなる混合ガスを空間速度15000h
−1で通過させた。
Comparative Example 6 E. 3% Ag / Al 2 O 3 except for using the carrier 12 as an alumina carrier containing no preparation titania catalyst samples of Example 1 the same procedure as in Ag / Al 2 O 3
A catalyst sample was prepared. The Ag loading rate of this catalyst sample was 3.0% by weight in terms of metal, based on alumina. C. Evaluation test of catalyst performance a. Evaluation Test 1 Using the catalyst samples of Examples 1 to 7 and Comparative Examples 1 to 6,
These catalyst samples were pressure-molded into a predetermined shape, pulverized and sized to a particle size of 250 to 500 μm, and then these sized products were filled into a stainless steel reaction tube having an inner diameter of 21 mm. It was mounted in an atmospheric fixed bed reactor. NO is 1000 ppm and C is used as model exhaust gas in this catalyst layer.
3 H 6 is 1300 ppm, O 2 is 5%, H 2 O is 10
%, And the balance gas consisting of N 2 at a space velocity of 15000 h
Passed at r- 1 .

【0039】反応管出口ガス組成について、NOとNO
の濃度は化学発光式NOx計を用い、NOの濃度は
ポラパックQカラムを装着したガスクロマトグラフィ−
熱伝導度検出器を用いてそれぞれを測定した。触媒層入
口温度を300〜600℃の範囲の所定温度に設定し、
各所定温度毎に反応管出口ガス組成が安定した時点の値
を測定値とした。
Regarding the composition of the gas at the outlet of the reaction tube, NO and NO
The concentration of 2 was measured by a chemiluminescence type NOx meter, and the concentration of N 2 O was measured by a gas chromatography equipped with Porapack Q column.
Each was measured using a thermal conductivity detector. Set the catalyst layer inlet temperature to a predetermined temperature in the range of 300 to 600 ° C,
The value at the time when the gas composition at the outlet of the reaction tube became stable at each predetermined temperature was taken as the measured value.

【0040】モデル排気ガスが触媒層を通過することに
より、反応ガス中のNOはNO、NOおよび/また
はNに転化されるが、本発明の触媒層を通過した場合
に殆どNOは生成しないことが判明したので、本発明
では脱硝率(NO転化率)は以下の式で表わされる。
When the model exhaust gas passes through the catalyst layer, NO in the reaction gas is converted into NO 2 , N 2 O and / or N 2 , but when passing through the catalyst layer of the present invention, almost NO is converted. Since it was found that 2 O was not produced, the denitration rate (NO conversion rate) is represented by the following formula in the present invention.

【0041】 表1に上記性能評価試験1における触媒層入口温度45
0℃での脱硝率(%)を示す。
[0041] Table 1 shows the catalyst layer inlet temperature 45 in the above performance evaluation test 1.
The denitration rate (%) at 0 ° C is shown.

【0042】表1の結果から本発明の実施例1〜6の触
媒は、比較例1〜6の触媒に比べて高い空間速度でも著
しく高い脱硝性能を示すことが分かる。
From the results shown in Table 1, it can be seen that the catalysts of Examples 1 to 6 of the present invention show remarkably high denitration performance even at a high space velocity as compared with the catalysts of Comparative Examples 1 to 6.

【0043】[0043]

【表1】 ────────────────────────────────── 担体 評価結果 実施番号 触 媒 番号 脱硝率(%) ────────────────────────────────── 実施例1 3%Ag/Al−0.1%TiO 1 88.7 実施例2 〃 2 84.5 実施例3 〃 3 82.9 実施例4 〃 4 80.3 実施例5 3%Ag/Al−2.5%TiO 9 86.1 実施例6 3%Ag/Al−10%TiO 10 80.5 比較例1 3%Ag/Al−0.1%TiO 5 30.1 比較例2 〃 6 54.3 比較例3 〃 7 39.6 比較例4 〃 8 33.2 比較例5 3%Ag/Al−20%TiO 11 13.8 比較例6 3%Ag/Al 12 60.2 ──────────────────────────────────b.評価試験2 次に、評価試験1における空間速度のみを60000h
−1に変えた以外は評価試験1と同様の手順で実施例
1の触媒試料の性能評価を行った。
[Table 1] ────────────────────────────────── Carrier evaluation results Execution number Catalyst number Denitrification rate (% ) ────────────────────────────────── Example 1 3% Ag / Al2OThree-0.1% TiO2 1 88.7 Example 2 〃 2 84.5 Example 3 〃 3 82.9 Example 4 〃 4 80.3 Example 5 3% Ag / Al2OThree-2.5% TiO2 9 86.1 Example 6 3% Ag / Al2OThree-10% TiO2 10 80.5 Comparative Example 1 3% Ag / Al2OThree-0.1% TiO2 5 30.1 Comparative Example 2 〃 6 54.3 Comparative Example 3 〃 7 39.6 Comparative Example 4 〃 8 33.2 Comparative Example 5 3% Ag / Al2OThree-20% TiO2 11 13.8 Comparative Example 6 3% Ag / Al2OThree 12 60.2 ───────────────────────────────────b. Evaluation test 2  Next, only the space velocity in the evaluation test 1 is 60000h.
r-1Example in the same procedure as in Evaluation Test 1 except that
The performance of the catalyst sample No. 1 was evaluated.

【0044】表2に上記の空間速度における触媒層入口
温度450℃での脱硝率(%)を示す。表2の結果によ
り本発明の実施例1の触媒はより短い接触時間、即ちよ
り高い空間速度においても優れた脱硝率を示すことが分
かる。
Table 2 shows the denitration rate (%) at the catalyst bed inlet temperature of 450 ° C. at the above space velocity. The results in Table 2 show that the catalyst of Example 1 of the present invention exhibits an excellent denitration rate even at a shorter contact time, that is, at a higher space velocity.

【0045】[0045]

【表2】 ──────────────────── 評価結果 空間速度(h−1) 脱硝率(%) ──────────────────── 60,000 90.2 ────────────────────[Table 2] ──────────────────── Evaluation results Space velocity (h −1 ) Denitration rate (%) ───────────── ──────── 60,000 90.2 ────────────────────

【0046】[0046]

【発明の効果】以上述べたように本発明による触媒を用
い、本発明の脱硝方法により排気ガスの脱硝を行うとき
は、水蒸気の共存する酸素過剰雰囲気下で、且つ高空間
速度において高い転化率で排気ガス中の窒素化合物の還
元浄化を行うことができるので、優れた工業的発明であ
ると言える。
As described above, when the exhaust gas is denitrated by the denitration method of the present invention using the catalyst of the present invention, a high conversion rate is obtained in an oxygen excess atmosphere in which water vapor coexists and at a high space velocity. Since it can reduce and purify nitrogen compounds in exhaust gas, it can be said to be an excellent industrial invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/94 B01J 21/12 ZAB A B01D 53/36 102 B 102 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01D 53/94 B01J 21/12 ZAB A B01D 53/36 102 B 102 D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素過剰雰囲気下で、炭化水素による排
気ガス中の窒素酸化物の除去を行う際に用いられる触媒
であって、比表面積が120m/g以上で、水銀圧入
法により測定された嵩密度および真密度がそれぞれ0.
60g/cc以上および1.80g/cc以下であるよ
うな活性アルミナにチタニアを含有させたアルミナ−チ
タニア担体に、銀または酸化銀の少なくとも1種を担持
させてなる脱硝触媒。
1. A catalyst used when removing nitrogen oxides in exhaust gas with hydrocarbons in an oxygen-excess atmosphere, having a specific surface area of 120 m 2 / g or more and measured by a mercury injection method. The bulk density and the true density are 0.
A denitration catalyst obtained by supporting at least one of silver and silver oxide on an alumina-titania carrier in which titania is contained in activated alumina having an amount of 60 g / cc or more and 1.80 g / cc or less.
【請求項2】 チタニアの含有量は、活性フルミナに対
して金属換算で0.1〜15重量%である請求項1記載
の脱硝触媒。
2. The denitration catalyst according to claim 1, wherein the content of titania is 0.1 to 15% by weight in terms of metal based on the active flumina.
【請求項3】 希薄空燃比で運転される内燃機関におけ
る排気ガスを脱硝触媒層を通過接触させるようにした該
排気ガスの脱硝方法において、該脱硝触媒層を構成する
触媒を請求項1または請求項2記載の脱硝触媒としたこ
とを特徴とする脱硝方法。
3. The denitration method for exhaust gas, wherein exhaust gas in an internal combustion engine operated at a lean air-fuel ratio is brought into contact with the denitration catalyst layer through contact, and a catalyst constituting the denitration catalyst layer is defined by claim 1. Item 2. A denitration method using the denitration catalyst according to Item 2.
【請求項4】 脱硝触媒層を通過する排気ガスの空間速
度が10000hr−1以上であることを特徴とする請
求項3記載の脱硝方法。
4. The denitration method according to claim 3, wherein the space velocity of the exhaust gas passing through the denitration catalyst layer is 10,000 hr −1 or more.
JP6290628A 1994-10-31 1994-10-31 Denitrification catalyst and denitrifying method using the same Pending JPH08131829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6290628A JPH08131829A (en) 1994-10-31 1994-10-31 Denitrification catalyst and denitrifying method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290628A JPH08131829A (en) 1994-10-31 1994-10-31 Denitrification catalyst and denitrifying method using the same

Publications (1)

Publication Number Publication Date
JPH08131829A true JPH08131829A (en) 1996-05-28

Family

ID=17758449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290628A Pending JPH08131829A (en) 1994-10-31 1994-10-31 Denitrification catalyst and denitrifying method using the same

Country Status (1)

Country Link
JP (1) JPH08131829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075797A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Exhaust gas purification catalyst, and exhaust gas purification filter using the same
JP2021065809A (en) * 2019-10-18 2021-04-30 株式会社キャタラー Catalyst for purifying exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075797A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Exhaust gas purification catalyst, and exhaust gas purification filter using the same
JP2021065809A (en) * 2019-10-18 2021-04-30 株式会社キャタラー Catalyst for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JPH08131829A (en) Denitrification catalyst and denitrifying method using the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JPH09299763A (en) Denitration catalyst layer and denitrating method
JPH07289894A (en) Denitrification catalyst and denitrifying method using the same
JPH0824645A (en) Denitration catalyst and denitration method using the same
JPH081014A (en) Denitration catalyst and denitrating method using that
JPH07328444A (en) Denitration catalyst and denitrating method using the same
JP3433500B2 (en) Denitration catalyst and denitration method
JPH08131827A (en) Denitration catalyst and denitration method using the same
JPH0824642A (en) Production of denitration catalyst and denitration method using obtained catalyst
JPH07256101A (en) Denitration catalyst and denitrating method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH0871419A (en) Denitration catalyst and denitration method using same
JP3358274B2 (en) Denitration catalyst and denitration method
JPH07256103A (en) Production of denitration catalyst and denitrating method
JPH0810618A (en) Denitration catalyst and method
JPH07328443A (en) Denitration catalyst and denitrating method using that
JPH07275707A (en) Production of denox catalyst and denitrification method
JPH07275708A (en) Denox catalyst and its production, and denitrification method
JPH10235156A (en) Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH07275706A (en) Denox catalyst and denox method
JPH09253499A (en) Denitrification catalyst, denitrification catalyst-coated structure and method for denitrification by using it
JPH08309194A (en) Catalyst for exhaust gas purification and exhaust gas purification method