JPH10235156A - Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same - Google Patents

Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same

Info

Publication number
JPH10235156A
JPH10235156A JP9282695A JP28269597A JPH10235156A JP H10235156 A JPH10235156 A JP H10235156A JP 9282695 A JP9282695 A JP 9282695A JP 28269597 A JP28269597 A JP 28269597A JP H10235156 A JPH10235156 A JP H10235156A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
pore
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9282695A
Other languages
Japanese (ja)
Other versions
JP4058503B2 (en
Inventor
Taiji Sugano
泰治 菅野
Takeshi Naganami
武 長南
Atsushi Kagakui
敦 加岳井
Kunihide Kayano
邦秀 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP28269597A priority Critical patent/JP4058503B2/en
Publication of JPH10235156A publication Critical patent/JPH10235156A/en
Application granted granted Critical
Publication of JP4058503B2 publication Critical patent/JP4058503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst bed capable of efficiently removing NOx in dilute combustion exhaust gas, a catalyst coated structure purifying exhaust gas and a method for purifying NOx in dilute combustion exhaust gas using them. SOLUTION: This catalyst A is obtained by adding silica and calcium, and if necessary, adding alumina and/or zirionia. This exhaust purifying catalyst constituted of the catalyst A and a catalyst B composed by adding silver to an alumina carrier having a pore structure wherein Y is 70% or more of X and Z is 20% or less of X when the total value of pore vol. occupying pores with a pore radius is 300Å or less is X and the total value of pore vol. occupying process with a pore radius of 25-100Å is Y and the total value of pore vol. occupying pores with a core radius of 100-300Å is Z in the relation of a pore radius and pore vol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化用触媒層
および排ガス浄化用触媒被覆構造体に関し、さらに詳細
には希薄燃焼領域で運転される内燃機関から排出される
排ガス中の窒素酸化物を高い空間速度で、かつ高効率で
浄化可能な排ガス浄化用触媒層および排ガス浄化用触媒
被覆構造体と、これらを使用しての排ガス浄化方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. The present invention relates to a purification catalyst layer and an exhaust gas purification catalyst-coated structure, and more specifically, it can purify nitrogen oxides in exhaust gas discharged from an internal combustion engine operated in a lean burn region at a high space velocity and with high efficiency. The present invention relates to an exhaust gas purifying catalyst layer and an exhaust gas purifying catalyst coated structure, and an exhaust gas purifying method using the same.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素とともに、一酸化窒素や二酸化窒素などの窒
素酸化物(NOx)が含まれている。NOxは人体、特
に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保
全の上から問題視される酸性雨の原因の1つとなってい
る。そのため、これら各種の排ガスから効率よく窒素酸
化物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art In a variety of combustion exhaust gas discharged from an internal combustion engine such as an automobile, nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide are included together with water and carbon dioxide as combustion products. include. NOx not only has an adverse effect on the human body, especially on the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを、主として白金、ロジウム、パラジウム
およびセリアを含むアルミナ触媒に接触させて有害三成
分を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
Combustion at a controlled stoichiometric ratio near 4.7. For exhaust gas treatment, carbon monoxide, hydrocarbons and NOx in the exhaust gas are converted to alumina mainly containing platinum, rhodium, palladium and ceria. A three-way catalyst system has been employed in which three harmful components are simultaneously removed by contact with a catalyst.

【0004】しかしながら、この三元触媒方式は、エン
ジンが化学量論比で運転されることが絶対条件であるた
め、希薄空燃比で運転される希薄燃焼ガソリンエンジン
の排ガス浄化には適用することができない。また、ディ
ーゼルエンジンは本来希薄燃焼エンジンであるが、その
排ガスに対しては浮遊粒子状物質とNOxの両方に厳し
い規制がかけられようとしている。
[0004] However, since the absolute condition is that the engine is operated at a stoichiometric ratio, the three-way catalyst system can be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio. Can not. In addition, diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でΝOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。この技術は、いわゆる固定発生源であるボイ
ラーやディーゼルエンジンからの排ガス脱硝方法として
工業化されているが、この方法においては未反応の還元
剤の回収処理のための特別な装置を必要とし、また臭気
が強く有害なアンモニアを用いるので、特に自動車など
の移動発生源からの排ガス脱硝技術としては危険性があ
り適用できない。
Conventionally, as a method of reducing and removing the ΝOx in an oxygen-rich atmosphere, a technique of using NH 3 also adsorb selectively catalyst small amount as the reducing gas has already been established. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called fixed sources, but this method requires a special device for the recovery treatment of unreacted reducing agent, and also has an odor. Since it uses highly harmful ammonia, there is a danger that it cannot be applied particularly to a technique for denitration of exhaust gas from mobile sources such as automobiles.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され報告されている。例えば、アルミナやアル
ミナに遷移金属を担持した触媒が、炭化水素を還元剤と
して用いるNOx還元反応に有効であるとする数多くの
報告がある。また、特開平4−284848号公報には
0.1〜4重量%のCu、Fe、Cr、Zn、Ni、V
を含有するアルミナあるいはシリカ−アルミナをΝOx
還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Various catalysts have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. JP-A-4-284848 discloses that 0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V
Or silica-alumina containing ΝOx
An example of use as a reduction catalyst has been reported.

【0007】さらに、Ρtをアルミナに担持した触媒を
用いると、NOx還元反応が200〜300℃程度の低
温領域で進行することが特開平4−267946号公
報、特開平5−68855号公報や特開平5−1039
49号公報などに報告されている。しかしながら、これ
らの担持貴金属触媒を用いた場合、還元剤である炭化水
素の燃焼反応が過度に促進されたり、地球温暖化の原因
物質の1つといわれているNOが多量に副生し、無害
なΝへの還元反応を選択的に進行させることが困難で
あるといった欠点を有していた。
Further, when a catalyst in which Δt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C., as disclosed in JP-A-4-267946 and JP-A-5-68855. Kaihei 5-1039
No. 49, for example. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O which is one of the substances causing global warming is by-produced, be advanced reduction reaction to harmless New 2 selective had disadvantage is difficult.

【0008】本出願人の一方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。この
開示が行われた後においても、銀を含有する触媒を用い
る類似のΝOx還元除去技術が特開平4−354536
号公報、特開平5−92124号公報、特開平5−92
125号公報および特開平6−277454号公報など
に開示されている。
One of the present applicants has previously found that the use of a catalyst containing silver with a hydrocarbon as a reducing agent in an oxygen-excess atmosphere causes the NOx reduction reaction to proceed selectively. -281844. Even after this disclosure was made, a similar ΝOx reduction and removal technique using a catalyst containing silver was disclosed in Japanese Patent Application Laid-Open No. 4-354536.
JP-A-5-92124, JP-A-5-92124
No. 125 and JP-A-6-277454.

【0009】[0009]

【発明の解決しようとする課題】しかしながら、これら
従来の公報に記載されたアルミナ担持銀触媒は、SOx
および水蒸気共存下での脱硝性能が実用的に未だ不十分
であった。
However, the alumina-supported silver catalysts described in these conventional publications are not suitable for SOx.
And the denitration performance in the presence of steam was still insufficient for practical use.

【0010】本発明は上記従来技術の欠点を解決すべく
なされたものであり、その目的とするところは、希薄燃
焼排ガス中のNOxを効率よく除去することができる排
ガス浄化用触媒層および排ガス浄化用触媒被覆構造体
と、これらを使用しての希薄燃焼排ガス中のNOxの高
効率、高信頼性をもって浄化する排ガス浄化方法を提供
することにある。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an exhaust gas purifying catalyst layer and an exhaust gas purifying method capable of efficiently removing NOx in a lean combustion exhaust gas. It is an object of the present invention to provide a catalyst coating structure for use and an exhaust gas purification method for purifying NOx in lean combustion exhaust gas with high efficiency and high reliability using the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、SOxと
水蒸気が共存する希薄燃焼領域において高い脱硝性能を
有する排ガス浄化用触媒層および排ガス浄化用触媒被覆
構造体と、これらを使用しての排ガス浄化方法について
鋭意研究を重ねた結果、排ガスの流通方向に対してシリ
カとカルシウム、さらには必要に応じ硫酸根、アルミナ
およびジルコニアのうち少なくとも1種とを含有させて
なる触媒Aを前段に、特定の細孔構造を有するアルミナ
担体に銀を含有してなる触媒Bを後段になるように区分
して配置させることにより上記した問題点を解決できる
ことを見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors have developed an exhaust gas purifying catalyst layer and an exhaust gas purifying catalyst coating structure having high denitration performance in a lean burn region where SOx and steam coexist, and using these. As a result of intensive studies on the exhaust gas purification method, the catalyst A containing silica and calcium and, if necessary, at least one of sulfate, alumina and zirconia in the flow direction of the exhaust gas is provided at the front stage. The present inventors have found that the above-mentioned problems can be solved by arranging the catalyst B containing silver on an alumina carrier having a specific pore structure so as to be arranged at a later stage, thereby completing the present invention.

【0012】すなわち、上記課題を解決するため本発明
の第1の実施態様は、シリカとカルシウム、さらには必
要に応じ硫酸根、アルミナおよびジルコニアからなる群
から選択された少なくとも1種とを含有させてなる触媒
Aと、窒素ガス吸着法により測定された細孔半径と細孔
容積の関係が、細孔半径300オングストローム以下の
細孔の占める細孔容積の合計値をXとし、細孔半径25
オングストローム以上で100オングストローム未満の
細孔の占める細孔容積の合計値をYとし、細孔半径10
0オングストローム以上で300オングストローム以下
の細孔の占める細孔容積の合計値をZとしたとき、Yが
Xの70%以上であり、ZがXの20%以下であるよう
な細孔構造を有するアルミナ担体に銀を含有させてなる
触媒Bとから構成される排ガス浄化用触媒層を特徴とす
るものである。該触媒層は、粉体または成型した状態で
排ガスの流通空間に配置するのが好ましい。
That is, in order to solve the above-mentioned problems, a first embodiment of the present invention comprises silica and calcium, and if necessary, at least one selected from the group consisting of sulfate, alumina and zirconia. The relationship between the catalyst A and the pore radius and pore volume measured by the nitrogen gas adsorption method is as follows: X is the total pore volume occupied by pores having a pore radius of 300 Å or less, and the pore radius is 25
The total value of the pore volume occupied by pores of not less than 100 Å and not less than 100 Å is defined as Y, and the pore radius is 10
When the total value of the pore volume occupied by the pores of 0 Å to 300 Å is Z, Y has a pore structure in which 70% or more of X and Z is 20% or less of X. An exhaust gas purifying catalyst layer comprising an alumina carrier and a catalyst B containing silver. The catalyst layer is preferably disposed in a flow space of the exhaust gas in a powdered or molded state.

【0013】また、本発明の第2の実施態様は、多数の
貫通孔を有する耐火性材料からなる一体構造の支持基質
と、該支持基質における少なくとも該貫通孔の内表面に
上記の触媒を区分して被覆してなる排ガス浄化用触媒被
覆構造体を特徴とするものである。
In a second embodiment of the present invention, there is provided a support substrate having an integral structure made of a refractory material having a large number of through holes, and the above-mentioned catalyst is divided at least on the inner surface of the through hole in the support substrate. The present invention is characterized by an exhaust gas purifying catalyst coated structure formed by coating.

【0014】またさらに、本発明の第3の実施態様は希
薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有
層と接触させることからなる炭化水素を還元剤とする排
ガス中のNOxを除去する方法において、該触媒含有層
に含まれる触媒は前記第1の実施態様における排ガス浄
化用触媒層または前記第2の実施態様における排ガス浄
化用触媒被覆構造体であることを特徴とし、また排ガス
の流通方向に対して前記触媒Aが前段に、前記触媒Bが
後段に区分して配置されている排ガス浄化方法を特徴と
するものである。
Still further, a third embodiment of the present invention removes NOx in exhaust gas containing hydrocarbons as a reducing agent, which comprises contacting the exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer. Wherein the catalyst contained in the catalyst-containing layer is the exhaust gas-purifying catalyst layer in the first embodiment or the exhaust gas-purifying catalyst coating structure in the second embodiment. An exhaust gas purifying method is characterized in that the catalyst A is disposed at a front stage and the catalyst B is disposed at a rear stage in a flow direction.

【0015】[0015]

【発明の実施の形態】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。 (触媒の構造およびその製法)本発明の排ガス浄化用触
媒層における触媒Bの主成分の1つであり、かつ触媒A
の任意成分の1つであるアルミナは、例えば鉱物学上ベ
ーマイト、擬ベーマイト、バイアライト、あるいはノル
ストランダイトに分類される水酸化アルミニウムの粉体
やゲルを、空気中あるいは真空中300〜800℃、好
ましくは400〜900℃で加熱脱水することによっ
て、結晶学的にγ−型、η−型、δ−型、χ−型あるい
はその混合型に分類されるアルミナに相転移させたもの
が脱硝性能上好ましい。他の結晶構造をとるアルミナ、
例えばα−型のアルミナは極端に比表面積が小さく固体
酸性にも乏しいので本発明の触媒成分としては不適当で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be more specifically described below. (Structure of Catalyst and Production Method Thereof) The catalyst A, which is one of the main components of the catalyst B in the exhaust gas purifying catalyst layer of the present invention,
Alumina, which is one of the optional components, can be prepared, for example, by subjecting aluminum hydroxide powder or gel classified as boehmite, pseudoboehmite, vialite, or norstrandite in mineralogy to 300 to 800 ° C. in air or vacuum. Alumina which is phase-transformed into alumina which is crystallographically classified into γ-type, η-type, δ-type, χ-type or a mixed type thereof by heating and dehydration at preferably 400 to 900 ° C. is denitration. Preferred for performance. Alumina with another crystal structure,
For example, α-type alumina is unsuitable as the catalyst component of the present invention because it has an extremely small specific surface area and poor solid acidity.

【0016】また、触媒Bのアルミナは窒素ガス吸着法
により測定された細孔半径が300オングストローム以
下の細孔の占める細孔容積の合計値をXとし、細孔半径
が25オングストローム以上で100オングストローム
未満の細孔の占める細孔容積の合計値をYとし、細孔半
径が100オングストローム以上で300オングストロ
ーム以下の細孔の占める細孔容積の合計値をZとしたと
き、YがΧの70%以上であり、ZがXの20%以下で
あるような細孔構造を有するアルミナであることが必要
である。細孔構造が、上記した条件を満たさないアルミ
ナを本発明の触媒Bにおける担体として用いた場合に
は、これにより構成される排ガス浄化用触媒のSOxと
水蒸気共存下での排ガスの脱硝性能が不十分であった。
したがって、本発明の触媒Bの主成分として有効なアル
ミナは、上記した結晶構造および細孔特性を有するもの
が適切であるといえる。
The alumina of the catalyst B has a total pore volume X of pores having a pore radius of 300 angstroms or less measured by a nitrogen gas adsorption method as X, and 100 angstroms when the pore radius is 25 angstroms or more. When the total value of the pore volume occupied by pores smaller than less than Y is Y, and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is Z, Y is 70% of Χ. As described above, it is necessary to use alumina having a pore structure in which Z is 20% or less of X. When alumina having a pore structure not satisfying the above-mentioned conditions is used as a carrier in the catalyst B of the present invention, the exhaust gas purifying catalyst constituted thereby has poor denitration performance of exhaust gas in the presence of SOx and water vapor. Was enough.
Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is suitable as the alumina effective as a main component of the catalyst B of the present invention.

【0017】本発明の排ガス浄化用触媒層は、以下のよ
うな触媒である。本発明にかかる触媒層は、シリカとカ
ルシウムと、さらには必要に応じ硫酸根、アルミナ、ジ
ルコニアからなる群から選択された少なくとも1種を含
有してなる触媒Aと、上記した結晶構造および細孔特性
を有するアルミナに銀を含有してなる触媒Bとから構成
されるものである。触媒Aのシリカに含有されるカルシ
ウムの状態、さらに含有される硫酸根、アルミナ、ジル
コニアからなる群から選択された少なくとも1種の状態
も特に限定されない。一方、触媒Bにおけるアルミナに
含有される銀の状態も特に限定されず、金属状態、酸化
物状態およびこれらの混合状態などが挙げられる。特
に、希薄燃焼ガソリン自動車などの内燃機関の燃焼排ガ
ス組成は運転状態によってその都度変化するため、触媒
は還元雰囲気および酸化雰囲気に曝される。したがっ
て、触媒を構成する活性金属の状態は雰囲気により変化
することが想定される。なお、触媒Aにおけるカルシウ
ムの出発原料は特に限定されないが、耐久性能上水酸化
カルシウムが好ましい。また、触媒Aに硫酸根を含有さ
せる場合、硫酸根の出発原料としては、硫酸や硫酸カル
シウムなどを用いることが好ましい。触媒Bにおける銀
の出発原料は特に限定されない。
The exhaust gas purifying catalyst layer of the present invention is the following catalyst. The catalyst layer according to the present invention comprises: a catalyst A containing silica and calcium, and further, if necessary, at least one selected from the group consisting of sulfate, alumina, and zirconia; And a catalyst B containing silver in alumina having characteristics. The state of calcium contained in the silica of the catalyst A, and at least one state selected from the group consisting of sulfate groups, alumina, and zirconia further contained therein are not particularly limited. On the other hand, the state of silver contained in alumina in the catalyst B is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, since the composition of the combustion exhaust gas of an internal combustion engine such as a lean burn gasoline automobile changes depending on the operating conditions, the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes depending on the atmosphere. The starting material of calcium in the catalyst A is not particularly limited, but calcium hydroxide is preferable in terms of durability. When a sulfate group is contained in the catalyst A, it is preferable to use sulfuric acid, calcium sulfate, or the like as a starting material of the sulfate group. The starting material of silver in the catalyst B is not particularly limited.

【0018】本発明にかかる触媒Aにおけるシリカにカ
ルシウム、さらには硫酸根、アルミナ、ジルコニアから
なる群から選択された少なくとも1種を含有させる方法
と触媒Bにおけるアルミナに銀を含有させる方法は特に
限定されず従来から行われている手法、例えば吸着法、
ポアフィリング法、インシピエントウェットネス法、蒸
発乾固法、スプレー法などの含浸法、混練法、物理混合
法およびこれらの組み合わせ法など通常採用されている
公知の方法を任意に採用することができる。
In the catalyst A according to the present invention, the method of allowing the silica to contain calcium and further at least one selected from the group consisting of sulfate, alumina and zirconia, and the method of allowing the alumina to contain silver in the catalyst B are particularly limited. Instead, conventional methods, such as adsorption method,
A pore filling method, an incipient wetness method, an evaporation to dryness method, an impregnation method such as a spray method, a kneading method, a physical mixing method, and a commonly used known method such as a combination method thereof may be arbitrarily adopted. it can.

【0019】触媒Aに対するカルシウムの含有量は特に
限定されないが、CaO換算で10〜80重量%である
ことが望ましい。カルシウムの含有量がCaO換算で1
0重量%未満では、初期脱硝性能は優れるが、触媒Aの
SOx吸収性能が乏しいため早期に活性低下を起こす。
また80重量%を超えると、カルシウムの分散性が低下
するため、SOx吸収性能が減少し、脱硝活性の早期低
下につながるため好ましくない。つぎに触媒Aに含有さ
れる硫酸根、アルミナ、ジルコニアからなる群から選択
された少なくとも1種の重量は特に限定されないが、特
にアルミナ、ジルコニアはSOx吸収性能上30重量%
未満であることが好ましい。一方、触媒Bに対する金属
換算での銀の含有量は、特に限定されないが0.1〜1
0重量%であることが好ましい。銀の担持量が0.1重
量%未満ではその効果が発揮されず、また10重量%を
超えると還元剤である炭化水素の燃焼反応が優先的に進
行し、NOx除去特性が低下する。
The content of calcium in the catalyst A is not particularly limited, but is preferably 10 to 80% by weight in terms of CaO. The calcium content is 1 in terms of CaO
When the amount is less than 0% by weight, the initial denitration performance is excellent, but the activity is lowered at an early stage because the SOx absorption performance of the catalyst A is poor.
On the other hand, if the content exceeds 80% by weight, the dispersibility of calcium is reduced, so that the SOx absorption performance is reduced, leading to an early decrease in the denitration activity, which is not preferable. Next, the weight of at least one selected from the group consisting of sulfate, alumina, and zirconia contained in the catalyst A is not particularly limited, but in particular, alumina and zirconia are 30% by weight in terms of SOx absorption performance.
It is preferably less than. On the other hand, the silver content in terms of metal with respect to the catalyst B is not particularly limited, but is 0.1 to 1%.
It is preferably 0% by weight. If the amount of silver carried is less than 0.1% by weight, the effect is not exhibited, and if it exceeds 10% by weight, the combustion reaction of the hydrocarbon as a reducing agent proceeds preferentially, and the NOx removal characteristics deteriorate.

【0020】触媒Aの乾燥温度は、80〜120℃程度
で乾燥する。また、焼成温度は200〜800℃、好ま
しくは400〜600℃程度である。焼成温度が800
℃を超えると、シリカの比表面積の減少と共にカルシウ
ムの分散性も低下するため好ましくない。一方、触媒B
の乾燥温度は、特に限定されるものではなく通常80〜
120℃程度で乾燥する。また、焼成温度は300〜1
000℃、好ましくは400〜900℃程度である。焼
成温度が1000℃を超えると、α−型のアルミナへの
相変態が起こるので好ましくない。このときの雰囲気は
特に限定されないが、触媒組成に応じて空気中、不活性
ガス中、酸素中などの各雰囲気を適宜選択すればよい。
また、各雰囲気を一定時間毎に交互に代えてもよい。
The catalyst A is dried at a drying temperature of about 80 to 120 ° C. The firing temperature is 200 to 800 ° C, preferably about 400 to 600 ° C. Firing temperature 800
C. is not preferable because the specific surface area of silica decreases and the dispersibility of calcium also decreases. On the other hand, catalyst B
The drying temperature is not particularly limited and is usually 80 to
Dry at about 120 ° C. The firing temperature is 300 to 1
000 ° C, preferably about 400 to 900 ° C. If the firing temperature exceeds 1000 ° C., phase transformation to α-type alumina occurs, which is not preferable. The atmosphere at this time is not particularly limited, but each atmosphere such as in air, in an inert gas, or in oxygen may be appropriately selected according to the catalyst composition.
In addition, each atmosphere may be alternately changed at regular intervals.

【0021】本発明の第1の実施態様において、排ガス
浄化用の触媒層を形成するに際し、該触媒層は上記した
触媒を所定の形状に成型または粉末状態のまま目的とす
る排ガスが流通する一定の空間内に充填する。触媒層を
成型体とするに際して、その形状は特に制限されず、例
えば球状、円筒状、ハニカム状、螺旋状、粒状、ペレッ
ト状、リング状など種々の形状を採用することができ
る。これらの形状、大きさなどは使用条件に応じて任意
に選択すればよい。
In the first embodiment of the present invention, when a catalyst layer for purifying exhaust gas is formed, the catalyst layer is formed into a predetermined shape or a predetermined shape through which a target exhaust gas flows in a powder state. Fill in the space. When the catalyst layer is formed into a molded body, its shape is not particularly limited, and various shapes such as a spherical shape, a cylindrical shape, a honeycomb shape, a spiral shape, a granular shape, a pellet shape, and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0022】次に、本発明の第2の実施態様の排ガス浄
化用触媒被覆構造体について説明する。ここでいう触媒
被覆構造体とは、多数の貫通孔を有する耐火性材料で構
成された一体構造の支持基質の少なくとも該貫通孔の内
表面に上記した触媒を区分して被覆した構造を有するも
のである。
Next, an exhaust gas purifying catalyst-coated structure according to a second embodiment of the present invention will be described. Here, the catalyst-coated structure has a structure in which at least the inner surface of the through-hole is coated with the above-mentioned catalyst in a unitary support substrate made of a refractory material having a large number of through-holes. It is.

【0023】該支持基質には、多数の貫通孔が排ガスの
流通方向に沿って設けられるが、その流通方向に垂直な
断面において、通常、開孔率60〜90%、好ましくは
70〜90%であって、その数は1平方インチ(5.0
6cm)当り30〜700個、好ましくは200〜6
00個である。触媒は、少なくとも該貫通孔の内表面に
区分して被覆されるが、その支持基質の端面や側面に被
覆されていてもよい。
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In a section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. And the number is one square inch (5.0
30 to 700, preferably 200 to 6, 6 cm 2 )
00. The catalyst is coated separately on at least the inner surface of the through-hole, but may be coated on the end face or side face of the supporting substrate.

【0024】該耐火性支持基質の材質としては、α−型
のアルミナ、ムライト、コージェライト、シリコンカー
バイトなどのセラミックスやオーステナイト系、フェラ
イト系のステンレス鋼などの金属などが使用される。形
状もハニカムやフォームなどの慣用のものが使用できる
が、好ましいものはコージェライト製やステンレス鋼製
のハニカム状の支持基質である。
As the material of the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite, and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. The shape may be a conventional one such as a honeycomb or a foam, but a preferred one is a cordierite or stainless steel honeycomb supporting substrate.

【0025】該支持基質への触媒の被覆方法としては、
一定の粒度に整粒した本発明の触媒をバインダーと共
に、またはバインダーを用いないで前記支持基質の少な
くとも貫通孔の内表面に区分して被覆する、いわゆる通
常のウォッシュコート法やゾル−ゲル法が適用できる。
また上記の支持基質に予めアルミナを被覆しておいて、
これに本発明の触媒活性物質の担持処理を行って触媒被
覆層を形成してもよい。支持基質への触媒層の被覆量は
限定されないが、支持基質単位体積当り50〜250g
/リットル程度が好ましく、100〜200g/リット
ル程度とすることがより好ましい。
The method of coating the support substrate with a catalyst includes:
A so-called ordinary wash coat method or sol-gel method in which the catalyst of the present invention sized to a certain particle size is coated separately with or without a binder on at least the inner surface of the through-hole of the support substrate without using a binder. Applicable.
Also, the support substrate is coated with alumina in advance,
This may be subjected to a treatment for supporting the catalytically active substance of the present invention to form a catalyst coating layer. The coating amount of the catalyst layer on the supporting substrate is not limited, but is 50 to 250 g per unit volume of the supporting substrate.
/ L, preferably about 100 to 200 g / l.

【0026】つぎに、本発明の第3の実施態様の排ガス
浄化方法について説明する。本発明の第3の実施態様
は、前記した第1の実施態様の触媒層や第2の実施態様
の触媒被覆構造体を使用して、これと排ガス中のCO、
HCおよびHといった還元性成分をΝOxおよびO
といった酸化性成分で完全酸化するに要する化学量論量
近傍から過剰の酸素を含有する排ガスとを接触させるこ
とによって、ΝOxはNとΗOにまで還元分解され
ると同時に、HCなどの還元剤もCOとHOに酸化
させるものである。
Next, an exhaust gas purifying method according to a third embodiment of the present invention will be described. The third embodiment of the present invention uses the catalyst layer of the first embodiment and the catalyst-coated structure of the second embodiment described above, and the CO in the exhaust gas,
Reducing components such as HC and H 2 are converted to ΝOx and O 2
Such by contacting the exhaust gas containing excess oxygen from the stoichiometry near required to complete oxidation in an oxidizing component, at the same time ΝOx is reduced decomposed to the N 2 Η 2 O, such as HC The reducing agent also oxidizes CO 2 and H 2 O.

【0027】本発明において触媒Aを前段に、触媒Bを
後段に配置させる理由は、前段の触媒AでSOxを吸着
除去することにより、トータル触媒システムでのSOx
耐久性能を向上させるためである。触媒Aと触媒Bの割
合は、SOx耐久性能とNOx除去性能に応じて任意に
選択すればよい。
In the present invention, the catalyst A is disposed at the front stage and the catalyst B is disposed at the rear stage.
This is for improving the durability performance. The ratio between the catalyst A and the catalyst B may be arbitrarily selected according to the SOx durability performance and the NOx removal performance.

【0028】ディーゼルエンジンの排ガスのように、排
ガスそのもののHC/NOx比が低い場合には、排ガス
中にメタン換算濃度で数百〜数千ppm程度の燃料ΗC
を追加添加した後、本発明の触媒含有層と接触させるシ
ステムを採用すれば充分に高いNOx除去率を達成でき
る。なお、ここでいうHCとは、パラフィン系炭化水
素、オレフィン系炭化水素および芳香族系炭化水素、ア
ルコール、アルデヒド、ケトン、エーテルなどの含酸素
有機化合物、ガソリン、灯油、軽油、A重油などを含ん
だものを意味する。
When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, the fuel ΗC having a concentration of several hundreds to several thousands ppm in terms of methane concentration in the exhaust gas.
If the system for contacting with the catalyst-containing layer of the present invention is added after the addition of, a sufficiently high NOx removal rate can be achieved. Note that HC referred to here includes paraffinic hydrocarbons, olefinic hydrocarbons and aromatic hydrocarbons, oxygen-containing organic compounds such as alcohols, aldehydes, ketones, and ethers, gasoline, kerosene, light oil, heavy oil A, and the like. Means something.

【0029】本発明による触媒含有層を用いて、希薄空
燃比の領域で運転される内燃機関の燃焼排ガスを浄化す
る際のガス空間速度(SV)は、特に限定されるもので
はないが、SV5,000h−1以上で200,000
−1以下とすることが好ましい。
The gas space velocity (SV) at the time of purifying the combustion exhaust gas of the internal combustion engine operated in the lean air-fuel ratio region using the catalyst-containing layer according to the present invention is not particularly limited. 200,000 over 000h -1
h- 1 or less is preferable.

【0030】そして、ガス組成を一定とした場合の脱硝
率は触媒の種類とHCの種類に依存するが、本発明の触
媒層を用いた場合は、例えばC〜Cのパラフィン、
オレフィンおよびC〜Cの芳香族HCに対しては4
50〜600℃、C〜Cのパラフィンおよびオレフ
ィンに対しては350〜550℃、C10〜C25のパ
ラフィンおよびオレフィンに対しては250〜500℃
で高い脱硝率を示すため触媒層入口温度を100℃以上
で700℃以下、好ましくは200℃以上で600℃以
下にすることが必要である。
The denitration rate when the gas composition is constant depends on the type of catalyst and the type of HC. In the case of using the catalyst layer of the present invention, for example, C 2 -C 6 paraffin,
For aromatic HC olefins and C 6 -C 9 4
50-600 ° C., 350-550 ° C. for C 6 -C 9 paraffins and olefins, 250-500 ° C. for C 10 -C 25 paraffins and olefins.
In order to exhibit a high denitrification rate, it is necessary to set the catalyst layer inlet temperature at 100 ° C. or higher to 700 ° C. or lower, preferably at 200 ° C. or higher to 600 ° C. or lower.

【0031】[0031]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)アルミナの選定 触媒Bの使用アルミナ担体の選定のために、表1に示す
ような比表面積と細孔分布を有する種々のγ−型のアル
ミナにおいて、a〜cが本発明の範囲に入るアルミナで
あり、d〜gが本発明の範囲外のアルミナである。な
お、a〜gのアルミナの細孔分布は、カルロエルバ社製
のソープトマチックにより測定した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of Alumina In order to select an alumina carrier to be used for the catalyst B, a to c fall within the scope of the present invention in various γ-type aluminas having specific surface areas and pore distributions as shown in Table 1. Alumina that enters, and d to g are aluminas outside the scope of the present invention. In addition, the pore distribution of alumina of a to g was measured by a soapmatic manufactured by Carlo Elba.

【0032】[0032]

【表1】 ───────────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/Χ(%) Z/Χ(%) ───────────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ─────────────────────────────────[Table 1] ア ル ミ ナ Alumina specific surface area pore distribution (m 2 / g) Y / Χ (%) Z / Χ (%) ─────────────────────────────────a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22. 7 ─────────────────────────────────

【0033】(2)触媒層の調製 以下に、本発明の触媒層を構成するための各触媒の調製
についての調製例を参考例として示す。 (イ)触媒Bの製造: [参考例1]表1のγ−型のアルミナaの前駆体物質で
あるアルミナ水和物100gを硝酸銀5.36gを含む
300ミリリットルの水溶液に10時間浸漬した後、8
0℃で蒸発乾固した。これを110℃で通風乾燥後、空
気中550℃で3時間焼成して触媒1を得た。なお、触
媒1における金属換算でのAgの含有量は、触媒全体に
対して4.5重量%であった。
(2) Preparation of Catalyst Layer Hereinafter, preparation examples of preparation of each catalyst for constituting the catalyst layer of the present invention are shown as reference examples. (A) Production of Catalyst B: [Reference Example 1] 100 g of alumina hydrate, which is a precursor of γ-type alumina a in Table 1, was immersed in a 300 ml aqueous solution containing 5.36 g of silver nitrate for 10 hours. , 8
Evaporated to dryness at 0 ° C. This was air-dried at 110 ° C., and then calcined in air at 550 ° C. for 3 hours to obtain Catalyst 1. The content of Ag in the catalyst 1 in terms of metal was 4.5% by weight based on the entire catalyst.

【0034】[参考例2〜参考例12]同様に、表1に
示すγ−型のアルミナb〜gが得られる前駆体物質であ
るアルミナ水和物を用いた以外は、参考例1と同様にし
てそれぞれ触媒2(参考例2)、触媒3(参考例3)、
触媒4(参考例4)、触媒5(参考例5)、触媒6(参
考例6)、触媒7(参考例7)を得た。また、参考例1
の触媒1の調製に際し、銀の含有量を0重量%、2重量
%、3重量%、8重量%および12重量%とした以外は
参考例1と同様にして、それぞれ触媒8(参考例8)、
触媒9(参考例9)、触媒10(参考例10)、触媒1
1(参考例11)および触媒12(参考例12)を得
た。
Reference Example 2 to Reference Example 12 Similarly to Reference Example 1, except that alumina hydrate which is a precursor substance from which γ-type aluminas b to g shown in Table 1 were obtained was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3),
Catalyst 4 (Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), and Catalyst 7 (Reference Example 7) were obtained. Reference Example 1
Catalyst 8 (Reference Example 8) was prepared in the same manner as in Reference Example 1 except that the silver content was 0% by weight, 2% by weight, 3% by weight, 8% by weight, and 12% by weight. ),
Catalyst 9 (Reference Example 9), Catalyst 10 (Reference Example 10), Catalyst 1
1 (Reference Example 11) and Catalyst 12 (Reference Example 12) were obtained.

【0035】(ロ)触媒Aの製造: [参考例13〜参考例19]市販のシリカ20gと水酸
化カルシウム40gを200ミリリットルの純水中で攪
拌混合し、80℃で蒸発乾固し、さらに110℃で乾
燥、550℃で焼成して触媒13(参考例13)を調製
した。この時のSiOとCa(OH)の重量比は
1:2であった。また、SiOとCa(OH)の混
合比が15:1、3:1、1:5および1:10のもの
も同様にして調製し、それぞれ触媒14〜17(参考例
14〜17)とした。また、市販の酸化カルシウムのみ
で構成する触媒を触媒18(参考例18)、市販のシリ
カのみで構成する触媒を触媒19(参考例19)とし
た。
(B) Production of catalyst A: [Reference Examples 13 to 19] 20 g of commercially available silica and 40 g of calcium hydroxide were stirred and mixed in 200 ml of pure water, evaporated to dryness at 80 ° C., and further dried. It was dried at 110 ° C. and calcined at 550 ° C. to prepare Catalyst 13 (Reference Example 13). At this time, the weight ratio of SiO 2 to Ca (OH) 2 was 1: 2. In addition, catalysts having a mixing ratio of SiO 2 and Ca (OH) 2 of 15: 1, 3: 1, 1: 5 and 1:10 were prepared in the same manner, and catalysts 14 to 17 (Reference Examples 14 to 17), respectively. And Further, a catalyst composed of only commercially available calcium oxide was designated as catalyst 18 (Reference Example 18), and a catalyst composed of only commercially available silica was designated as Catalyst 19 (Reference Example 19).

【0036】[参考例20および参考例36]上記参考
例13において、さらに硫酸カルシウム(半水石膏)を
添加してシリカと水酸化カルシウムと硫酸カルシウムの
重量比が2:4:3、8:1:1、4:1:1、1:
4:3および1:8:5となるように調製した以外は、
参考例13と同様にしてそれぞれ触媒20〜24(参考
例20〜24)とし、市販のアルミナを添加してシリカ
と水酸化カルシウムとアルミナの重量比が2:4:1、
8:16:1、4:8:1および1:2:1となるよう
に調製した以外は、参考例13と同様にしてそれぞれ触
媒25〜28(参考例25〜28)とし、市販のアルミ
ナのみからなる触媒を触媒29(参考例29)とし、ジ
ルコニアを添加してシリカと水酸化カルシウムとジルコ
ニアの重量比が2:4:3、8:16:1、4:8:1
および1:2:1となるように調製した以外は、参考例
13と同様にしてそれぞれ触媒30〜33(参考例30
〜33)とし、市販のジルコニアのみからなる触媒を触
媒34(参考例34)とした。また上記参考例13にお
いて、さらに市販のアルミナとジルコニアとを添加して
シリカと水酸化カルシウムとアルミナとジルコニアの重
量比が8:16:3:1、8:16:1:3となるよう
調製した以外は参考例13と同様にしてそれぞれ触媒3
5、36(参考例35、36)とした。
Reference Example 20 and Reference Example 36 In Reference Example 13, calcium sulfate (hemihydrate gypsum) was further added to make the weight ratio of silica, calcium hydroxide and calcium sulfate 2: 4: 3 and 8: 1: 1, 4: 1, 1: 1,
Except that they were prepared to be 4: 3 and 1: 8: 5.
Catalysts 20 to 24 (Reference Examples 20 to 24) were prepared in the same manner as in Reference Example 13, and commercially available alumina was added to the mixture so that the weight ratio of silica, calcium hydroxide, and alumina was 2: 4: 1,
Catalysts 25 to 28 (Reference Examples 25 to 28) were prepared in the same manner as in Reference Example 13 except that the catalysts were prepared so as to be 8: 16: 1, 4: 8: 1 and 1: 2: 1. The catalyst consisting only of the catalyst is referred to as a catalyst 29 (Reference Example 29), and zirconia is added thereto so that the weight ratio of silica, calcium hydroxide, and zirconia is 2: 4: 3, 8: 16: 1, 4: 8: 1.
And catalysts 30 to 33 (see Reference Example 30) in the same manner as in Reference Example 13 except that the catalysts were prepared so as to be 1: 2: 1.
To 33), and a commercially available catalyst consisting of zirconia alone was designated as catalyst 34 (Reference Example 34). In Reference Example 13, commercially available alumina and zirconia were further added to adjust the weight ratio of silica, calcium hydroxide, alumina, and zirconia to 8: 16: 3: 1, 8: 16: 1: 3. Catalyst 3 was prepared in the same manner as in Reference Example 13 except that
5, 36 (Reference Examples 35, 36).

【0037】(ハ)ハニカム触媒の製造: [参考例37および38]上記の触媒13の60gを、
アルミナゾル(Αl固形分20重量%)5gおよ
び水120mlと共にボールミルポットに仕込み、湿式
粉砕してスラリーを得た。このスラリーの中に、市販の
400cpsi(セル/inch)コージェライトハ
ニカム基質からくり貫かれた直径1インチ、長さ2.5
インチの円筒状コアを浸漬し、引き上げた後余分のスラ
リーをエアーブローで除去し乾燥した。その後、500
℃で30分焼成し、ハニカム1リットル当たりドライ換
算で150gの固形分を被覆してCa(OH)−Si
組成のハニカム触媒37(参考例37)を得た。
(C) Production of honeycomb catalyst: [Reference Examples 37 and 38] 60 g of the above catalyst 13 was
5 g of alumina sol (Αl 2 O 3 solid content 20% by weight) and 120 ml of water were charged into a ball mill pot and wet-pulverized to obtain a slurry. Into this slurry, a 1 inch diameter, 2.5 inch length bored from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate
After immersing the inch-shaped cylindrical core and pulling it up, excess slurry was removed by air blow and dried. Then 500
Baked at 30 ° C. for 30 minutes, and coated with 150 g of solid content in terms of dry weight per liter of honeycomb to obtain Ca (OH) 2 —Si
A honeycomb catalyst 37 having an O 2 composition (Reference Example 37) was obtained.

【0038】また、上記の粉末触媒1の60gを、それ
ぞれアルミナゾル(Αl固形分10重量%)8g
および水120ミリリットルと共にボールミルポットに
仕込み、湿式粉砕してスラリーを得た。このスラリーの
中に、市販の400cpsi(セル/inch)コー
ジェライトハニカム基質からくり貫かれた直径1イン
チ、長さ2.5インチの円筒状コアを浸漬し、引き上げ
た後余分のスラリーをエアーブローで除去し乾燥した。
その後、500℃で30分焼成し、ハニカム1リットル
当たりドライ換算で150gの固形分を被覆して4.4
%Αg/Αl組成のハニカム触媒38(参考例3
8)を得た。
In addition, 60 g of the above-mentioned powder catalyst 1 was mixed with 8 g of alumina sol (Αl 2 O 3 solid content 10% by weight).
And 120 ml of water were charged into a ball mill pot and wet-pulverized to obtain a slurry. A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate is immersed in the slurry, and the excess slurry is air blown. And dried.
Then, it is baked at 500 ° C. for 30 minutes, and coated with 150 g of solid content in terms of dry weight per liter of honeycomb, 4.4.
% Αg / Αl 2 O 3 composition honeycomb catalyst 38 (Reference Example 3)
8) was obtained.

【0039】以下に上記した参考例1〜38の触媒1〜
38を用いて形成した排ガス浄化用触媒層について、種
々の条件下において脱硝性能を評価した結果について述
べる。 [実施例1]参考例13の触媒13と参考例1の触媒1
をそれぞれ加圧成型した後、粉砕して粒度を350〜5
00μmに整粒し、排ガスの流通方向に対して触媒13
が前段に、触媒1が後段になるように内径15mmのス
テンレス製反応管に充填して触媒層を形成し、これを常
圧固定床流通反応装置に装着した。触媒13と触媒1の
重量比は1:1であった。
The catalysts 1 to 3 of the above-mentioned Reference Examples 1 to 38
The results of evaluating the denitration performance of the exhaust gas purifying catalyst layer formed using No. 38 under various conditions will be described. Example 1 Catalyst 13 of Reference Example 13 and Catalyst 1 of Reference Example 1
Is press-molded, and then pulverized to a particle size of 350 to 5
The particle size is adjusted to 00 μm, and the catalyst 13
Was filled in a stainless steel reaction tube having an inner diameter of 15 mm so that the catalyst 1 was placed in the former stage to form a catalyst layer, and this was attached to a normal pressure fixed bed flow reactor. The weight ratio of catalyst 13 to catalyst 1 was 1: 1.

【0040】[性能評価例1]この触媒層に、反応管内
の排ガス温度を425℃に保ち、モデル排ガスとしてN
O:750ppm、灯油(C):4500ppm、O
:10%、HO:10%、SO:50ppm、残
部:Nからなる混合ガスを空間速度40,000h
−1で通過させた。反応管出口ガス組成の分析におい
て、NOとNOの濃度については化学発光式NOx計
で測定し、NO濃度はΡorapack Qカラムを
装着したガスクロマトグラフ・熱伝導度検出器を用いて
測定した。脱硝率は以下の式で定義した。また、本発明
のいずれの触媒層でもNOおよびNOは殆ど生成し
なかった。
[Performance Evaluation Example 1] The temperature of the exhaust gas in the reaction tube was maintained at 425 ° C.
O: 750 ppm, kerosene (C 1 ): 4500 ppm, O
2: 10%, H 2 O : 10%, SO 2: 50ppm, the balance space, a mixed gas consisting of N 2 velocity 40,000h
-1 . In the analysis of the gas composition at the outlet of the reaction tube, the concentrations of NO and NO 2 were measured with a chemiluminescent NOx meter, and the N 2 O concentration was measured with a gas chromatograph / thermal conductivity detector equipped with a Ρorapack Q column. . The denitration rate was defined by the following equation. Further, N 2 O and NO 2 were hardly generated in any of the catalyst layers of the present invention.

【0041】[0041]

【式1】 (Equation 1)

【0042】[実施例2〜21および比較例1〜14]
参考例2、3、9〜11の触媒2、3、9〜11および
参考例4〜8、12の触媒4〜8、12をそれぞれ実施
例1の触媒1の代わりに用いて、上記と同様の触媒層を
形成し、同様にしてモデルガスによる評価試験を行っ
た。触媒2、3、9〜11を用いた触媒層を、それぞれ
実施例2〜6とし、触媒4〜8、12を用いた触媒層
を、それぞれ比較例1〜6とした。また、参考例15、
16、20、22、23、25〜28、30〜33、3
5、36の触媒15、16、20、22、23、25〜
28、30〜33、35、36および参考例14、17
〜19、21、24、29、34の触媒14、17〜1
9、21、24、29、34を実施例1の触媒13の代
わりに用いて上記と同様の触媒層を形成し、同様にして
モデルガスによる評価試験を行った。触媒15、16、
20、22、23、25〜28、30〜33、35、3
6を用いた触媒層をそれぞれ実施例7〜21とし、触媒
14、17〜19、21、24、29、34を用いた触
媒層をそれぞれ比較例7〜14とした。表2に、上記実
施例1〜21および比較例1〜14の触媒層について初
期脱硝性能および反応開始8時間後の脱硝性能を示す。
Examples 2 to 21 and Comparative Examples 1 to 14
The same as the above, except that the catalysts 2, 3, 9 to 11 of Reference Examples 2, 3, and 9 to 11 and the catalysts 4 to 8 and 12 of Reference Examples 4 to 8 and 12 were used instead of the catalyst 1 of Example 1, respectively. Was formed, and an evaluation test using a model gas was performed in the same manner. The catalyst layers using the catalysts 2, 3, and 9 to 11 were Examples 2 to 6, respectively, and the catalyst layers using the catalysts 4 to 8, 12 were Comparative Examples 1 to 6, respectively. Reference Example 15,
16, 20, 22, 23, 25 to 28, 30 to 33, 3,
5, 36 catalysts 15, 16, 20, 22, 23, 25 to 25
28, 30 to 33, 35, 36 and Reference Examples 14, 17
-19, 21, 24, 29, 34 catalysts 14, 17-1
9, 21, 24, 29, and 34 were used in place of the catalyst 13 of Example 1 to form a catalyst layer similar to the above, and an evaluation test was performed using a model gas in the same manner. Catalysts 15, 16,
20, 22, 23, 25 to 28, 30 to 33, 35, 3
The catalyst layers using catalyst No. 6 were used as Examples 7 to 21, and the catalyst layers using catalysts 14, 17 to 19, 21, 24, 29, and 34 were used as Comparative Examples 7 to 14, respectively. Table 2 shows the initial denitration performance and the denitration performance 8 hours after the start of the reaction for the catalyst layers of Examples 1 to 21 and Comparative Examples 1 to 14 described above.

【0043】[性能評価例2(実施例22)]性能評価
例1において、参考例37のハニカム触媒37と参考例
38のハニカム触媒38を、それぞれ直径15mm、長
さ32mmの円筒状に加工し、排ガスの流通方向に対し
てハニカム触媒37が前段に、ハニカム触媒38が後段
になるように内径15mmのステンレス製反応管に充填
した(実施例22)。ハニカム触媒38の触媒層に対し
て、フィードするガスの空間速度を13,000h−1
とした以外は性能評価例1と同様のモデルガスによる評
価試験を行い、初期脱硝性能および反応開始8時間後の
脱硝性能を性能評価例1の結果とともに表2に示す。
[Performance Evaluation Example 2 (Example 22)] In Performance Evaluation Example 1, the honeycomb catalyst 37 of Reference Example 37 and the honeycomb catalyst 38 of Reference Example 38 were each processed into a cylindrical shape having a diameter of 15 mm and a length of 32 mm. Then, a stainless steel reaction tube having an inner diameter of 15 mm was filled so that the honeycomb catalyst 37 was at the front stage and the honeycomb catalyst 38 was at the rear stage with respect to the flow direction of the exhaust gas (Example 22). The space velocity of the gas to be fed to the catalyst layer of the honeycomb catalyst 38 is 13,000 h -1.
An evaluation test was performed using the same model gas as in Performance Evaluation Example 1 except that the evaluation was made. Table 2 shows the initial denitration performance and the denitration performance 8 hours after the start of the reaction together with the results of Performance Evaluation Example 1.

【0044】[0044]

【表2】 [Table 2]

【0045】表2より実施例1〜22および比較例7〜
14は、初期脱硝性能が75%以上であり、比較例1〜
6に比べて優れた性能を示した。また実施例1〜22
は、比較例7〜14に比べて50ppmのSOx共存条
件で8時間反応させた後も、55%以上の高い脱硝性能
を維持した。
From Table 2, Examples 1 to 22 and Comparative Examples 7 to
No. 14 has an initial denitration performance of 75% or more, and Comparative Examples 1 to
6 showed superior performance. Examples 1 to 22
Maintained a high denitration performance of 55% or more even after reacting for 8 hours under the condition of 50 ppm SOx in comparison with Comparative Examples 7-14.

【0046】[0046]

【発明の効果】以上述べた通り本発明による排ガス浄化
用触媒層および排ガス浄化用触媒被覆構造体と、これら
を使用した排ガス浄化方法によれば、SOxと水蒸気が
共存する希薄燃焼排ガス中に含まれる窒素酸化物を高い
脱硝率で還元浄化できることから内燃機関の燃焼排ガス
中の窒素酸化物の浄化に有用である。
As described above, according to the exhaust gas purifying catalyst layer and the exhaust gas purifying catalyst coating structure of the present invention and the exhaust gas purifying method using the same, SOx and water vapor are contained in the lean combustion exhaust gas. It is useful for purifying nitrogen oxides in combustion exhaust gas of an internal combustion engine because it can reduce and purify nitrogen oxides with a high denitration rate.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/10 301 B01J 35/10 301F // B01J 21/04 ZAB 21/04 ZABA 32/00 32/00 B01D 53/36 102H 102A (31)優先権主張番号 特願平8−355574 (32)優先日 平8(1996)12月24日 (33)優先権主張国 日本(JP) (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 茅野 邦秀 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社沼津工場内Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/10 301 B01J 35/10 301F // B01J 21/04 ZAB 21/04 ZABA 32/00 32/00 B01D 53/36 102H 102A (31 ) Priority claim number Japanese Patent Application No. 8-355574 (32) Priority date Hei 8 (1996) December 24 (33) Priority claim country Japan (JP) (72) Inventor Atsushi Katakei Atsushi Ichikawa, Chiba Minutes 3-18-5 Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Kunihide Chino 678 Ichihonmatsu, Numazu City, Shizuoka Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリカとカルシウムとを含有させてなる
触媒Aと、窒素ガス吸着法により測定された細孔半径と
細孔容積の関係が、細孔半径300オングストローム以
下の細孔の占める細孔容積の合計値をXとし、細孔半径
25オングストローム以上で100オングストローム未
満の細孔の占める細孔容積の合計値をYとし、細孔半径
100オングストローム以上で300オングストローム
以下の細孔の占める細孔容積の合計値をZとしたとき、
YがXの70%以上であり、ZがXの20%以下である
ような細孔構造を有するアルミナ担体に銀を含有してな
る触媒Bとから構成されることを特徴とする排ガス浄化
用触媒層。
Claims 1. A catalyst A containing silica and calcium, and the relationship between a pore radius and a pore volume measured by a nitrogen gas adsorption method is such that pores occupied by pores having a pore radius of 300 angstroms or less. The total value of the volume is defined as X, the total value of the pore volume occupied by pores having a pore radius of 25 Å or more and less than 100 Å is defined as Y, and the pores occupied by pores having a pore radius of 100 Å or more and 300 Å or less When the total value of the volume is Z,
A catalyst B comprising silver in an alumina carrier having a pore structure in which Y is 70% or more of X and Z is 20% or less of X, for exhaust gas purification. Catalyst layer.
【請求項2】 前記触媒Aに、さらに硫酸根、アルミナ
およびジルコニアからなる群から選択された少なくとも
1種を含有させてなることを特徴とする請求項1記載の
排ガス浄化用触媒層。
2. The exhaust gas purifying catalyst layer according to claim 1, wherein said catalyst A further contains at least one selected from the group consisting of sulfate groups, alumina and zirconia.
【請求項3】 多数の貫通孔を有する耐火性材料からな
る一体構造の支持基質における少なくとも貫通孔の内表
面に請求項1または2記載の触媒を区分して被覆してな
ることを特徴とする排ガス浄化用触媒被覆構造体。
3. The catalyst according to claim 1 or 2, wherein at least the inner surface of the through-hole in a support substrate having an integral structure made of a refractory material having a large number of through-holes is coated in a divided manner. Exhaust gas purification catalyst coated structure.
【請求項4】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記触媒含有
層に含まれる触媒は請求項1または2記載の排ガス浄化
用触媒層であることを特徴とする排ガス浄化方法。
4. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is 3. An exhaust gas purifying method comprising the exhaust gas purifying catalyst layer according to 1 or 2.
【請求項5】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記触媒含有
層に含まれる触媒は請求項3記載の排ガス浄化用触媒被
覆構造体で構成されることを特徴とする排ガス浄化方
法。
5. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is An exhaust gas purifying method comprising the exhaust gas purifying catalyst-coated structure according to claim 3.
【請求項6】 排ガス流通方向に対して前記排ガス浄化
用触媒層に含まれる触媒Aが前段に、触媒Bが後段に区
分して配置されていることを特徴とする請求項4または
5記載の排ガス浄化方法。
6. The exhaust gas purifying catalyst layer according to claim 4, wherein the catalyst A contained in the exhaust gas purifying catalyst layer is disposed in a front stage and the catalyst B is disposed in a rear stage in the exhaust gas flow direction. Exhaust gas purification method.
JP28269597A 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same Expired - Fee Related JP4058503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28269597A JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP29821196 1996-10-22
JP32084596 1996-11-15
JP35197196 1996-12-11
JP8-298211 1996-12-24
JP35557496 1996-12-24
JP8-351971 1996-12-24
JP8-320845 1996-12-24
JP8-355574 1996-12-24
JP28269597A JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Publications (2)

Publication Number Publication Date
JPH10235156A true JPH10235156A (en) 1998-09-08
JP4058503B2 JP4058503B2 (en) 2008-03-12

Family

ID=27530714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28269597A Expired - Fee Related JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Country Status (1)

Country Link
JP (1) JP4058503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504206A (en) * 2006-09-20 2010-02-12 ビーエーエスエフ、カタリスツ、エルエルシー Catalyst and production method for reducing NOx in exhaust gas stream
JP2011235264A (en) * 2010-05-13 2011-11-24 Ict:Kk Catalyst for purifying exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504206A (en) * 2006-09-20 2010-02-12 ビーエーエスエフ、カタリスツ、エルエルシー Catalyst and production method for reducing NOx in exhaust gas stream
JP2011235264A (en) * 2010-05-13 2011-11-24 Ict:Kk Catalyst for purifying exhaust gas

Also Published As

Publication number Publication date
JP4058503B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP5526410B2 (en) Method for removing nitrogen oxides in exhaust gas
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH11128688A (en) Purification of waste gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11128689A (en) Purification of waste gas
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10235157A (en) Purification of nox in exhaust gas
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JPH10128070A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalyst coated structure and exhaust gas purifying method thereby
JPH10137584A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalytic coated structure and exhaust gas purifying method by the same
JPH10165822A (en) Catalyst layer for cleaning of exhaust gas, catalyst coated structure for purification of exhaust gas and purifying method of exhaust gas using them
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH10118502A (en) Catalyst for purification of exhaust gas, structural body coated with the catalyst and method for purifying exhaust gas
JP3358274B2 (en) Denitration catalyst and denitration method
JP2000070675A (en) Exhaust gas cleaning method
JPH1170338A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure and exhaust purifying process using structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees