JPH07275708A - Denox catalyst and its production, and denitrification method - Google Patents

Denox catalyst and its production, and denitrification method

Info

Publication number
JPH07275708A
JPH07275708A JP6092908A JP9290894A JPH07275708A JP H07275708 A JPH07275708 A JP H07275708A JP 6092908 A JP6092908 A JP 6092908A JP 9290894 A JP9290894 A JP 9290894A JP H07275708 A JPH07275708 A JP H07275708A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
alumina
less
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6092908A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Takashi Matsuda
高志 松田
Taiji Sugano
泰治 菅野
Masao Wakabayashi
正男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6092908A priority Critical patent/JPH07275708A/en
Publication of JPH07275708A publication Critical patent/JPH07275708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove, at a sufficiently high space velocity (sufficiently short contact time), NOx in a exhaust gas from an internal combustion engine operated at a dilute air-fuel ratio. CONSTITUTION:Copper or cesium and silver are deposited on an activated alumina in which a volume of fine pores having <=50Angstrom fine pore radius measured by a gaseous nitrogen adsorption method and the volume of fine pores having 100-300Angstrom fine pore radius are >=30% and <=15% respectively per volume of fine pores having <=300Angstrom fine pore radius.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガス、特に自動車
などの内燃機関の排気ガス中の窒素酸化物の浄化に用い
られる排気ガス浄化用触媒に関し、さらに詳細には、希
薄空燃比の内燃機関における排気ガス中の窒素酸化物を
高い空間速度で、且つ高い効率で浄化可能な脱硝触媒及
びその製造方法、並びにその触媒を用いる脱硝方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst used for purifying exhaust gas, particularly nitrogen oxides in the exhaust gas of internal combustion engines such as automobiles, and more particularly, to a lean air-fuel ratio internal combustion engine. The present invention relates to a denitration catalyst capable of purifying nitrogen oxides in exhaust gas in an engine with high space velocity and high efficiency, a method for producing the same, and a denitration method using the catalyst.

【0002】[0002]

【従来の技術】自動車エンジンなどの内燃機関から排出
される各種の燃焼排気ガス中には、燃焼生成物である水
や二酸化炭素(CO2 )と共に、一酸化窒素(NO)や
二酸化窒素(NO2 )などの窒素酸化物(NOX )が含
まれている。NOX は人体に影響し、呼吸器疾患罹患率
を増加させるばかりでなく、地球環境保全の上から問題
視される酸性雨の原因の一つとなっている。そのため、
これら各種の排気ガスから効率よく窒素酸化物を除去す
る脱硝技術の開発が望まれている。
2. Description of the Related Art In various combustion exhaust gases discharged from internal combustion engines such as automobile engines, nitric oxide (NO) and nitrogen dioxide (NO) along with water and carbon dioxide (CO 2 ) which are combustion products. 2 ) Nitrogen oxides (NO x ) are included. NO X affects the human body, not only increases the respiratory disease morbidity, has become one of the causes of acid rain, which is problematic from the top of the global environment. for that reason,
Development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】NOX 中のNOの理想的な除去方法は、式
1で示すNOの直接分解反応を利用するものである。式
1は平衡論的には右辺生成系に圧倒的に有利となってい
る。
An ideal method for removing NO in NO X is to utilize the direct decomposition reaction of NO shown in Formula 1. Equation 1 is overwhelmingly advantageous to the right-hand side generator in terms of equilibrium.

【0004】[0004]

【式1】2NO ――→ N2+O2 [Formula 1] 2NO ---> N 2 + O 2

【0005】この反応に依拠するものとして特開昭60
−125250号公報記載の脱硝技術がある。この脱硝
技術は、イオン交換法によりCuをゼオライトに担持さ
せた触媒を用いるものであり、この触媒がNOの直接分
解反応を促進させるとしている。
Japanese Patent Application Laid-Open No. Sho 60 (1994) discloses that it is based on this reaction.
There is a denitration technology described in Japanese Patent No. 125250. This denitration technique uses a catalyst in which Cu is supported on zeolite by an ion exchange method, and this catalyst promotes a direct decomposition reaction of NO.

【0006】しかしながら、この脱硝技術では式1の反
応によって生成した酸素が触媒活性点に優先的に吸着す
る。その結果、脱硝効率が除々に低下するといった問題
が生じる。また、反応系内に過剰の酸素が存在する条件
(酸素過剰雰囲気)では、完全に式1の反応が阻害され
てしまうという欠点がある。
However, in this denitration technique, oxygen generated by the reaction of the formula 1 is preferentially adsorbed on the catalytic active site. As a result, there arises a problem that the denitration efficiency gradually decreases. Further, there is a drawback that the reaction of the formula 1 is completely inhibited under the condition that excess oxygen exists in the reaction system (oxygen excess atmosphere).

【0007】他方、従来の自動車用ガソリンエンジンは
空燃比λ=1付近で制御された化学量論比での燃焼であ
り、その排気ガス処理に対しては、排気ガス中の一酸化
炭素(CO)と炭化水素(HC)とNOX とを、主とし
て白金(pt)、ロジウム(Rh)、パラジウム(P
d)及びセリア(CeO2 )を含むアルミナ触媒に接触
させ、前記有害三成分を同時に除去する三元触媒方式が
採用されてきた。
On the other hand, the conventional gasoline engine for automobiles burns with a controlled stoichiometric ratio in the vicinity of the air-fuel ratio λ = 1, and the carbon monoxide (CO ), Hydrocarbons (HC) and NO x , mainly platinum (pt), rhodium (Rh), palladium (P
A three-way catalyst system has been adopted in which the harmful three components are simultaneously removed by contacting with an alumina catalyst containing d) and ceria (CeO 2 ).

【0008】しかし、この三元触媒方式は、化学量論比
で運転されることが絶対条件であるため、地球温暖化防
止の観点から、近年注目されている希薄燃焼方式の内燃
機関、例えば、希薄空燃比で運転されるリーンバーンガ
ソリンエンジンの排気ガス浄化には適用できない。ま
た、ディーゼルエンジンは本来リーンバーンエンジンで
あるが、その排気ガスに対しては浮遊粒子状物質とNO
X の両方に厳しい規制がかけられようとしている。
However, this three-way catalyst system is operated under a stoichiometric ratio as an absolute condition. Therefore, from the viewpoint of preventing global warming, a lean-burn internal combustion engine, such as, for example, It cannot be applied to the exhaust gas purification of lean-burn gasoline engine operated with lean air-fuel ratio. Moreover, although the diesel engine is a lean burn engine by nature, the exhaust gas emits suspended particulate matter and NO.
Strict regulations are about to be applied to both X.

【0009】従来、酸素過剰雰囲気下でNOX を還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNH3 を使用する技術が既に確立さ
れていて、いわゆる固定発生源であるボイラーやディー
ゼルエンジンからの排ガス脱硝方法として工業化されて
いる。しかし、この方法は、未反応の還元剤(NH3
の回収処理のための特別な装置が必要であり、臭気が強
く有害なアンモニアを用いるので、自動車などの移動発
生源からの排ガス脱硝技術には危険で、適用できない。
Conventionally, as a method of reducing and removing NO x in an oxygen-rich atmosphere, a technique of using NH 3 which selectively adsorbs a small amount of a reducing gas on a catalyst has already been established, and so-called fixed generation is performed. It has been industrialized as a method for denitration of exhaust gas from a boiler or diesel engine, which is the source. However, this method is not suitable for reducing the unreacted reducing agent (NH 3 ).
Since special equipment is required for the recovery treatment of the above, and ammonia, which has a strong odor and is harmful, is used, it is dangerous and cannot be applied to the technology for denitration of exhaust gas from mobile sources such as automobiles.

【0010】近年、酸素過剰雰囲気の希薄燃焼からの排
気ガス中に残存する未燃の炭化水素(HC)を還元剤と
してNOX 還元反応が進行することが報告されて以来、
NOX 還元反応を促進する触媒が種々提案されている。
例えば、アルミナやアルミナに遷移金属を担持した触媒
が、炭化水素を還元剤として用いるNOX 還元反応に有
効であるとする数多くの報告がある。特開平4−908
26号公報の実施例には、FCC用粉状アルミナをNO
X 還元触媒として使用した例が報告されている。また、
特開平4−284848号公報には0.1〜4重量%の
Cu,Fe,Cr,Zn,Ni,Vを含有するアルミナ
あるいはシリカ−アルミナをNOX 還元触媒として使用
した例が報告されている。
In recent years, since it was reported that the NO x reduction reaction proceeds using unburned hydrocarbons (HC) remaining in the exhaust gas from lean combustion in an oxygen excess atmosphere as a reducing agent,
Various catalysts that accelerate the NO x reduction reaction have been proposed.
For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for the NO x reduction reaction using hydrocarbon as a reducing agent. JP-A-4-908
In the example of Japanese Patent No. 26, the powdered alumina for FCC is NO.
An example of use as an X reduction catalyst has been reported. Also,
JP The 4-284848 discloses 0.1-4 wt% of Cu, Fe, Cr, Zn, Ni, alumina or silica-containing V - example alumina was used as the NO X reduction catalysts have been reported .

【0011】さらに、アルミナにPtを担持した触媒を
用いると、NOX 還元反応が200〜300℃程度の低
温領域で進行することが特開平4−267946号公
報、特開平5−68855号公報や特開平5−1039
49号公報等に報告されている。しかしながら、これら
のPt担持アルミナ触媒を用いた場合、還元剤として残
るべき炭化水素の燃焼反応が促進されて触媒機能が乏し
かったり、多量のN2 Oが生成してNOX還元反応の選
択性が乏しいといった欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NO x reduction reaction proceeds in a low temperature range of about 200 to 300 ° C. in JP-A-4-267946 and JP-A-5-68855. JP-A-5-1039
It is reported in Japanese Patent Publication No. 49 and the like. However, when these Pt-supported alumina catalysts are used, the combustion reaction of hydrocarbons that should remain as a reducing agent is promoted and the catalytic function is poor, or a large amount of N 2 O is generated, and the selectivity of the NO X reduction reaction is increased. It had the drawback of being scarce.

【0012】本出願人らは先に、酸素過剰雰囲気下で炭
化水素を還元剤とするNOX 還元反応で銀を含有する触
媒を用いると、N2 Oの生成が抑えられて、NOX 還元
反応が選択的に進行することを見い出し、本技術を特開
平4−281844号公報に開示した。この開示の後、
銀を含有する触媒を用いる類似のNOX 還元除去技術が
特開平4−354536号公報や特開平5−92124
号公報あるいは特開平5−92125号公報に開示され
るに至った。また、「Applied Catalysis B: Environme
ntal」(1993年、2巻199〜205頁)には、通
常の含浸法にてγ−アルミナに銀を担持した触媒がC
o、Cu、V、Crを担持したアルミナ触媒よりも、水
蒸気共存下でのNOX 還元性能において優れていること
が報告されている。
The present applicants previously noted that when a catalyst containing silver was used in a NO x reduction reaction using a hydrocarbon as a reducing agent in an oxygen excess atmosphere, the production of N 2 O was suppressed and the NO x reduction was performed. It was found that the reaction selectively proceeded, and the present technique was disclosed in Japanese Patent Application Laid-Open No. 4-281844. After this disclosure
A similar NO x reduction and removal technique using a catalyst containing silver is disclosed in JP-A-4-354536 and JP-A-5-92124.
It has been disclosed in Japanese Laid-Open Patent Publication No. 5-92125. Also, `` Applied Catalysis B: Environme
ntal ”(1993, Vol. 2, pp. 199-205) describes a catalyst in which silver is supported on γ-alumina by a usual impregnation method.
It has been reported that it is superior to the alumina catalyst supporting o, Cu, V, and Cr in the NO x reduction performance in the presence of water vapor.

【0013】しかしながら、従来のアルミナを担体に用
いた銀担持アルミナ触媒は水蒸気共存下での、炭化水素
によるNOX 還元反応触媒としては活性がまだ不十分で
あった。
[0013] However, silver-supported alumina catalyst using conventional alumina carrier under steam coexistence, as the NO X reduction catalyst by hydrocarbon activity was still insufficient.

【0014】さらに、従来よりアルミナを担体として用
いる触媒は空間速度依存性が大きいことが知られてい
る。すなわちSV:1000〜10000h-1程度の低
空間速度では十分なNOX 還元性能を発揮するが、例え
ば「触媒」(1991年、33巻61頁)に報告されて
いるようにSV:10000h-1以上の高空間速度では
NOX 還元除去性能が大きく低下するとの報告があり、
このような現象は斯界の常識でもあった。例えば、特開
平5−92124に開示されている排気ガス処理方法に
おいて、排気ガスと触媒との接触時間を0.03g.s
ec/cm3 以上、さらに好ましくは0.1g.sec
/cm3 以上と限定しているのはこのためである。
Further, it has been conventionally known that a catalyst using alumina as a carrier has a large space velocity dependency. That is, SV: 1000 to 10000 h -1 shows a sufficient NO x reduction performance at a low space velocity, but SV: 10000 h -1 as reported in "Catalyst" (Vol. 33, p. 61, 1991). It has been reported that the NO x reduction and removal performance is significantly reduced at the above high space velocities.
Such a phenomenon was also common sense in the field. For example, in the exhaust gas treatment method disclosed in JP-A-5-92124, the contact time between the exhaust gas and the catalyst is 0.03 g. s
ec / cm 3 or more, more preferably 0.1 g. sec
This is the reason why it is limited to / cm 3 or more.

【0015】しかしながら、希薄空燃比で運転される内
燃機関の代表的なものである自動車等車両用リーンバー
ンエンジンの排気ガス処理においては、実用上欠くこと
のできない今一つの性能は、触媒層ないしは触媒で被覆
した支持基質からなる構造体(以下、これらを本明細書
では触媒含有層と言う)の所要スペース及び重量であ
る。エンジンの排気量と仕事量とを勘案するとエンジン
排気量の数倍以上の容量の触媒含有層を積載することは
実用的でないからである。
However, in the exhaust gas treatment of a lean burn engine for vehicles such as automobiles, which is a typical internal combustion engine operated at a lean air-fuel ratio, another performance which is practically indispensable is a catalyst layer or a catalyst. The required space and weight of a structure (hereinafter, referred to as a catalyst-containing layer in the present specification) composed of a supporting substrate coated with. This is because it is not practical to load the catalyst-containing layer with a capacity of several times or more the engine displacement in consideration of the engine displacement and work.

【0016】従って、通常、触媒含有層の容量はエンジ
ン排気量以下であることが好ましい。このことは、実用
性のある触媒含有層を構成するには、触媒含有層を通過
する排気ガスの空間速度が高いこと(接触時間が非常に
短いことに相当)、すなわち7000h-1以上、好まし
くは10000h-1以上であることが求められているこ
とを意味する。なお、接触時間では0.03g.sec
/cm3 未満、好ましくは0.02g.sec/cm3
以下に大体相当する。
Therefore, it is usually preferable that the capacity of the catalyst-containing layer is equal to or less than the engine displacement. This means that in order to construct a practical catalyst-containing layer, the space velocity of the exhaust gas passing through the catalyst-containing layer is high (corresponding to a very short contact time), that is, 7,000 h −1 or more, preferably Means that it is required to be 10,000 h −1 or more. The contact time was 0.03 g. sec
/ Cm 3, less than 0.02 g. sec / cm 3
It roughly corresponds to the following.

【0017】しかしながら、従来のアルミナを用いて製
造した銀担持アルミナ触媒は、水蒸気が共存するこのよ
うな高い空間速度(短い接触時間)での排気ガスに対す
る脱硝性能が不十分であった。
However, the conventional silver-supported alumina catalyst produced by using alumina has an insufficient denitration performance for exhaust gas at such a high space velocity (short contact time) in which water vapor coexists.

【0018】[0018]

【発明の解決しようとする課題】そこで、本発明は上記
従来技術の課題を解決すべくなされたものであり、その
目的とするところは、希薄空燃比の内燃機関における排
気ガス中のNOX を十分高いガス空間速度(十分短い接
触時間)で効率よく除去できる脱硝触媒を提供するこ
と、併せてそのような触媒の製造方法、並びにそのよう
な脱硝触媒を使用して希薄空燃比の内燃機関排気ガス中
のNOX を高効率、高信頼性で脱硝する方法を提供する
ことにある。
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to reduce NO X in exhaust gas in an internal combustion engine of a lean air-fuel ratio. Provided is a denitration catalyst which can be efficiently removed at a sufficiently high gas space velocity (sufficiently short contact time), a method for producing such a catalyst, and an exhaust gas of an internal combustion engine having a lean air-fuel ratio using such a denitration catalyst. An object of the present invention is to provide a method for denitrifying NO x in gas with high efficiency and high reliability.

【0019】[0019]

【問題を解決するための手段】本発明者等は、水蒸気が
共存する酸素過剰雰囲気下でも炭化水素(CH)による
NOX 還元反応が高効率的に進行する脱硝触媒及びその
製造方法、並びに脱硝方法について鋭意研究を重ねた結
果、特定の細孔を有する活性アルミナに銅、あるいはセ
シウムと銀及び/又は酸化銀とを担持させた脱硝触媒を
用いることにより上記の課題を解決することができるこ
とを見出だし本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made a denitration catalyst, a method for producing the same, and a denitration method in which a NO x reduction reaction by hydrocarbon (CH) progresses with high efficiency even in an oxygen excess atmosphere in which water vapor coexists. As a result of earnest research on the method, it is possible to solve the above problems by using a denitration catalyst in which copper or cesium and silver and / or silver oxide are supported on activated alumina having specific pores. The present invention has been completed and the present invention has been completed.

【0020】すなわち、希薄空燃比で運転される内燃機
関における排気ガス中の窒素酸化物を除去する本発明の
第1の脱硝触媒は、窒素ガス吸着法により測定された細
孔半径50A(オングストローム)以下の細孔容積及び
細孔半径100〜300Aの細孔容積が、それぞれ細孔
半径300A以下の細孔容積の30%以上、15%以下
の活性アルミナに銅を担持させた脱硝触媒である。
That is, the first NOx removal catalyst of the present invention for removing nitrogen oxides in exhaust gas in an internal combustion engine operated at a lean air-fuel ratio has a pore radius of 50 A (angstrom) measured by a nitrogen gas adsorption method. The pore volume and the pore volume with a pore radius of 100 to 300 A below are 30% or more and 15% or less of the pore volume of the pore radius of 300 A or less, respectively, and the denitration catalyst is copper supported on activated alumina.

【0021】また、その脱硝触媒の製造方法について、
前記のような特定の細孔を有する活性アルミナ前駆体と
して、300〜800℃における焼成により、窒素吸着
法により測定された細孔半径50A以下及び細孔半径1
00〜300Aの細孔容積が、それぞれ300A以下の
細孔容積の50%以上、10%以下である活性アルミナ
となるアルミナ水和物を用い、該アルミナ水和物に銅塩
を担持せしめた後に乾燥、焼成することを特徴とする脱
硝触媒の製造方法である。
The method for producing the denitration catalyst is as follows.
As the activated alumina precursor having the specific pores as described above, a pore radius of 50 A or less and a pore radius of 1 or less measured by a nitrogen adsorption method by firing at 300 to 800 ° C.
After using an alumina hydrate having a pore volume of 00 to 300 A of 50% or more and 10% or less of the pore volume of 300 A or less, respectively, after supporting a copper salt on the alumina hydrate, A method for producing a denitration catalyst is characterized by drying and firing.

【0022】さらに、希薄空燃比で運転される内燃機関
の排気ガスを触媒含有層と接触させることからなる排気
ガスの脱硝方法において、該触媒含有層に含まれる脱硝
触媒が上記第1の脱硝触媒であり、且つ排気ガスの温度
が触媒含有層の入口において350〜450℃であるこ
とを特徴とする脱硝方法を提供する。
Further, in the exhaust gas denitration method comprising contacting exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst containing layer, the denitration catalyst contained in the catalyst containing layer is the first denitration catalyst. And a temperature of exhaust gas is 350 to 450 ° C. at the inlet of the catalyst-containing layer.

【0023】一方、希薄空燃比で運転される内燃機関に
おける排気ガス中の窒素酸化物を除去する本発明の第2
の脱硝触媒は、窒素ガス吸着法により測定された細孔半
径50A以下の細孔容積及び細孔半径100〜300A
の細孔容積が、それぞれ細孔半径300A以下の細孔容
積の30%以上、15%以下の活性アルミナと、該活性
アルミナに担持されたセシウムと銀及び/又は酸化銀と
からなる脱硝触媒である。
On the other hand, the second aspect of the present invention for removing nitrogen oxides in exhaust gas in an internal combustion engine operated at a lean air-fuel ratio
The denitration catalyst of No. 1 has a pore volume of 50 A or less and a pore radius of 100 to 300 A measured by a nitrogen gas adsorption method.
With a denitration catalyst comprising activated alumina having a pore volume of 30% or more and 15% or less of a pore volume of 300 A or less, and cesium and silver and / or silver oxide supported on the activated alumina. is there.

【0024】また、その脱硝触媒の製造方法について、
前記のような特定の細孔を有する活性アルミナに、銀及
び/又は酸化銀を担持せしめた後にセシウムを逐次担持
せしめることを特徴とする脱硝触媒の製造方法である。
Further, regarding the method for producing the denitration catalyst,
A method for producing a denitration catalyst is characterized in that activated carbon having specific pores as described above is loaded with silver and / or silver oxide and then cesium is sequentially loaded.

【0025】さらに、希薄空燃比で運転される内燃機関
の排気ガスを触媒含有層と接触させることからなる排気
ガスの脱硝方法において、該触媒含有層に含まれる脱硝
触媒が上記第2の脱硝触媒であり、且つ排気ガスの温度
が触媒含有層の入口において400〜550℃であるこ
とを特徴とする脱硝方法を提供する。
Further, in the exhaust gas denitration method comprising contacting the exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst containing layer, the denitration catalyst contained in the catalyst containing layer is the second denitration catalyst. And the temperature of the exhaust gas is 400 to 550 ° C. at the inlet of the catalyst-containing layer.

【0026】本発明の上記方法によれば、脱硝含有層を
通過する排気ガスの空間速度が10000h-1以上であ
っても十分に排気ガスのNOX 還元除去が可能である。
According to the above method of the present invention, even if the space velocity of the exhaust gas passing through the denitration-containing layer is 10,000 h -1 or more, the NO x reduction removal of the exhaust gas can be sufficiently performed.

【0027】本発明の脱硝触媒及びその製造方法、並び
に脱硝方法によれば、水蒸気が共存する酸素過剰雰囲気
下でも、低温域で効果的に排気ガス中のNOX を除去す
ることができる。
According to the denitration catalyst, the method for producing the same, and the denitration method of the present invention, NO X in exhaust gas can be effectively removed in a low temperature region even in an oxygen excess atmosphere in which water vapor coexists.

【0028】以下、本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0029】[0029]

【作用】本発明の脱硝触媒の担体である活性アルミナ
は、窒素ガス吸着法により測定された細孔半径50A
(オングストローム)以下の細孔容積及び細孔半径10
0〜300Aの細孔容積が、それぞれ細孔半径300A
以下の細孔容積の30%以上、15%以下であり、アル
ミナ水和物を空気中あるいは真空中において300〜8
00℃、好ましくは300〜700℃の温度で加熱して
脱水することによって、結晶学的にはγ−型、η−型あ
るいはその混合型に分類される活性アルミナに相転移し
たものである。例えば、鉱物学上ベーマイト、擬ベーマ
イト、バイアライト、あるいはノルストランダライトに
分類される水酸化アルミニウムの粉体やゲルであるが、
好ましくはベーマイトや擬ベーマイトである。
The activated alumina, which is the carrier of the denitration catalyst of the present invention, has a pore radius of 50 A measured by the nitrogen gas adsorption method.
Pore volume and pore radius of less than (angstrom) 10
The pore volume of 0 to 300 A has a pore radius of 300 A, respectively.
It is 30% or more and 15% or less of the following pore volume, and the alumina hydrate is 300 to 8 in air or vacuum.
By dehydration by heating at a temperature of 00 ° C., preferably 300 to 700 ° C., it undergoes a phase transition to activated alumina which is crystallographically classified as γ-type, η-type or a mixed type thereof. For example, it is a powder or gel of aluminum hydroxide that is classified into boehmite, pseudo-boehmite, vialite, or norstrandalite in mineralogy,
Preferred are boehmite and pseudo-boehmite.

【0030】他の結晶構造をとるアルミナ、例えばα−
アルミナは極端に比表面積が小さく固体酸性にも乏しい
ので、本発明の触媒担体としては不適当である。また、
δ−アルミナも比表面積100m2 /gと小さく、脱硝
触媒の担体としてはγ−アルミナやη−アルミナに及ば
ない。その他β−アルミナやχ−アルミナも本発明の脱
硝触媒担体としては不適当である。
Alumina having another crystal structure, for example, α-
Alumina is extremely unsuitable as the catalyst carrier of the present invention because it has an extremely small specific surface area and poor solid acidity. Also,
δ-alumina also has a small specific surface area of 100 m 2 / g and does not reach γ-alumina or η-alumina as a carrier for the denitration catalyst. In addition, β-alumina and χ-alumina are also unsuitable as the denitration catalyst carrier of the present invention.

【0031】活性アルミナとして、細孔半径50A以下
の細孔容積が細孔半径300A以下の細孔容積の30%
以下のアルミナや、細孔半径100〜300Aの細孔容
積が細孔半径300A以下の細孔容積の15%以上のア
ルミナでは、水蒸気共存下での脱硝活性が不十分であっ
た。 すなわち、本発明の銅担持アルミナ触媒、及びセ
シウム/銀担持アルミナ触媒の担体として有効な活性ア
ルミナは、細孔半径50A以下の細孔容積及び細孔半径
100〜300Aの細孔容積が、それぞれ細孔半径30
0A以下の細孔容積の30%以上、15%以下の物性を
もつアルミナに限定された。
As activated alumina, the pore volume with a pore radius of 50 A or less is 30% of the pore volume with a pore radius of 300 A or less.
The following alumina and alumina having a pore volume of 100 to 300 A in pore diameter of 15% or more of the pore volume of 300 A or less in pore radius had insufficient denitration activity in the presence of water vapor. That is, activated alumina that is effective as a carrier for the copper-supported alumina catalyst and the cesium / silver-supported alumina catalyst of the present invention has a pore volume of 50 A or less and a pore volume of 100 to 300 A, respectively. Hole radius 30
It was limited to alumina having physical properties of 30% or more and 15% or less of the pore volume of 0 A or less.

【0032】本発明の銅担持アルミナ触媒の製造方法
は、活性アルミナ前駆体物質として、300〜800℃
における焼成により、窒素ガス吸着法により測定された
細孔半径50A以下の細孔容積及び細孔半径100〜3
00Aの細孔容積が、それぞれ細孔半径300A以下の
細孔容積の50%以上、10%以下である活性アルミナ
となるアルミナ水和物を用い、該アルミナ水和物に、水
溶性の銅塩を担持せしめた後に乾燥、焼成したものであ
る。上記のような特定の細孔を有する活性アルミナに銅
塩を担持して調製してもよいが、脱硝性能の点で前記ア
ルミナ水和物を活性アルミナ前駆体物質として用いた方
が好ましい。セシウム/銀担持アルミナ触媒の製造方法
は、上記のような特定の細孔を有する活性アルミナにあ
らかじめ銀及び/又は酸化銀を担持させた後、セシウム
を担持させるのが好ましい。
The method for producing a copper-supported alumina catalyst of the present invention uses an activated alumina precursor substance at 300 to 800 ° C.
The pore volume and the pore radius of 100 to 3 having a pore radius of 50 A or less measured by the nitrogen gas adsorption method by firing in
Alumina hydrate to be activated alumina having a pore volume of 00A of 50% or more and 10% or less of the pore volume of a pore radius of 300 A or less is used, and a water-soluble copper salt is added to the alumina hydrate. Is carried and dried and fired. The activated alumina having specific pores as described above may be prepared by supporting a copper salt, but it is preferable to use the alumina hydrate as an activated alumina precursor substance from the viewpoint of denitration performance. In the method for producing a cesium / silver-supported alumina catalyst, it is preferable to support silver and / or silver oxide in advance on activated alumina having the above-described specific pores and then support cesium.

【0033】銅、セシウム及び銀の担持方法は、特に限
定されないが、例えば吸着法、ポアフィリング法、イン
シピエントウェットネス法、蒸発乾固法、スプレー法な
どの含浸法や混練り法、またはこれらの組み合わせが適
用できる。なお、セシウム及び銀の担持は、活性アルミ
ナにあらかじめ銀を担持した後、セシウムを逐次担持さ
せればよい。
The method of supporting copper, cesium and silver is not particularly limited, but for example, an impregnation method or a kneading method such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation dryness method, a spray method, or the like, or Combinations of these are applicable. The cesium and silver may be loaded by loading silver on activated alumina in advance and then sequentially loading cesium.

【0034】金属換算での銅の担持率は、本発明の活性
アルミナに対して1以上6重量%未満の範囲が好まし
い。1重量%未満では、満足する脱硝活性が得られず、
6重量%以上では還元剤(炭化水素)の燃焼反応が過度
に促進され、脱硝反応の活性及び選択性が低下する。
The copper loading in terms of metal is preferably in the range of 1 to less than 6% by weight with respect to the activated alumina of the present invention. If it is less than 1% by weight, satisfactory denitration activity cannot be obtained,
If it is 6% by weight or more, the combustion reaction of the reducing agent (hydrocarbon) is excessively promoted, and the activity and selectivity of the denitration reaction decrease.

【0035】金属換算でのセシウム及び銀の担持率は、
本発明の活性アルミナに対してそれぞれ0.01重量%
以上2重量%未満、1重量%以上6重量%未満の範囲が
好ましい。セシウムの担持率が0.01重量%未満では
セシウムの添加効果が発揮されず、2重量%以上では過
度の酸点の被毒により脱硝性能が低下する。一方、銀の
担持率が1重量%未満では、満足する脱硝活性が得られ
ず、6重量%以上では還元剤炭化水素の燃焼反応が過度
に促進され、脱硝反応の活性及び選択性が低下する。
The loading rate of cesium and silver in terms of metal is
0.01% by weight to the activated alumina of the present invention
It is preferably in the range of not less than 2% by weight and not less than 1% by weight and less than 6% by weight. If the loading rate of cesium is less than 0.01% by weight, the effect of adding cesium is not exhibited, and if it is 2% by weight or more, the denitration performance is deteriorated due to excessive poisoning of acid sites. On the other hand, when the loading ratio of silver is less than 1% by weight, a satisfactory denitration activity cannot be obtained, and when it is 6% by weight or more, the combustion reaction of the reducing agent hydrocarbon is excessively promoted and the activity and selectivity of the denitration reaction decrease. .

【0036】乾燥温度は特に限定されるものではなく、
通常80〜120℃程度で乾燥した後、300〜800
℃、好ましくは400〜600℃程度で焼成する方法が
行われる。焼成温度が800℃を越えると、アルミナの
相変態が起こるので好ましくない。
The drying temperature is not particularly limited,
Usually dried at about 80-120 ℃, then 300-800
A method of firing at a temperature of about 400 ° C., preferably about 400 to 600 ° C. is used. If the firing temperature exceeds 800 ° C., phase transformation of alumina occurs, which is not preferable.

【0037】本発明の脱硝触媒の形状は、球状、円筒
状、ハニカム状、ラセン状、粒状など特に制限されるこ
とはなく、形状、大きさなどは使用条件に応じて任意に
選択することができる。特に、自動車のエンジンの排気
ガス浄化の場合には、ガス空間速度が高いので、圧力損
失を最小限に抑えるために、排気ガスの流れ方向に対し
て多数の貫通孔を有する耐火性一体構造の支持基体にお
けるチャンネル表面に当該脱硝触媒を被覆したものが好
適に使用される。
The shape of the denitration catalyst of the present invention is not particularly limited, such as spherical shape, cylindrical shape, honeycomb shape, spiral shape, and granular shape, and the shape, size and the like can be arbitrarily selected according to the use conditions. it can. In particular, in the case of purifying exhaust gas of an automobile engine, since the gas space velocity is high, in order to minimize pressure loss, a fireproof integral structure having a large number of through holes in the exhaust gas flow direction is used. A support substrate having a channel surface coated with the denitration catalyst is preferably used.

【0038】本発明の脱硝触媒は、排気ガス中のCO、
HC及びH2 といった還元性成分をNOX 及びO2 とい
った酸化性成分で完全酸化するに要する化学量論量より
過剰の酸素を含有する排気ガス、具体的には希薄空燃比
の内燃機関排気ガス中のNOX の浄化に適用される。
The denitration catalyst of the present invention is used for CO in exhaust gas,
Exhaust gas containing oxygen in excess of the stoichiometric amount required to completely oxidize reducing components such as HC and H 2 with oxidizing components such as NO x and O 2 , specifically, exhaust gas of an internal combustion engine with a lean air-fuel ratio It is applied to the purification of NO x inside.

【0039】このような排気ガスを本発明の脱硝触媒と
接触させることによって、NOX はHC等の微量存在す
る還元剤に依ってN2 にまで還元分解されると同時にH
C等の還元剤もCO2とH2Oに酸化される。ディーゼル
エンジンの排気ガスのように、排気ガスそのもののHC
/NOX 比が低い場合には、排気ガス中にメタン換算濃
度で数百〜数千ppm程度の燃料(HC)を追加添加し
た後、本発明の脱硝触媒と接触させるシステムを採用す
れば十分なNOX 除去率を達成できる。
By bringing such exhaust gas into contact with the denitration catalyst of the present invention, NO x is reduced and decomposed to N 2 by a reducing agent such as HC existing in a trace amount, and at the same time H
The reducing agent such as C is also oxidized to CO 2 and H 2 O. HC of exhaust gas itself like exhaust gas of diesel engine
/ If NO X ratio is low, after adding addition of several hundreds to several thousands ppm of about fuel methane concentration in terms (HC) in the exhaust gas, sufficient to employ a system of contacting with denitration catalyst of the present invention A high NO x removal rate can be achieved.

【0040】本発明の製造方法による脱硝触媒を用い
て、このような高い空間速度(短い接触時間)で酸素過
剰雰囲気下の炭化水素によるNOX 浄化を効率良く進め
るためには、銅担持アルミナ触媒では、触媒含有層入口
温度を350℃以上に、セシウム及び銀担持アルミナ触
媒では400℃以上にする必要がある。これは、本発明
によって得られた銅担持アルミナ触媒、セシウム及び銀
担持アルミナ触媒が脱硝性能を発揮するには、各々35
0℃以上、400℃以上必要であり、銅担持アルミナ触
媒の場合に350℃より低い温度、またセシウム及び銀
担持アルミナ触媒の場合に400℃より低い温度では炭
化水素が十分に活性化されないからである。また、触媒
層入口温度が銅担持アルミナ触媒では450℃より高い
温度、セシウム及び銀担持アルミナ触媒では550℃以
上の高温になると副反応である炭化水素の燃焼が優勢に
なりNOX 還元活性が低下する。
In order to efficiently proceed with NO x purification by hydrocarbons in an oxygen excess atmosphere at such a high space velocity (short contact time) using the denitration catalyst produced by the production method of the present invention, a copper-supported alumina catalyst is used. Then, the inlet temperature of the catalyst-containing layer must be 350 ° C. or higher, and that of the cesium- and silver-supported alumina catalyst must be 400 ° C. or higher. In order for the copper-supported alumina catalyst, cesium- and silver-supported alumina catalyst obtained by the present invention to exhibit the denitration performance, the amount of each is 35
It is necessary to have a temperature of 0 ° C or higher and 400 ° C or higher, since hydrocarbons are not sufficiently activated at a temperature lower than 350 ° C in the case of a copper-supported alumina catalyst and at a temperature lower than 400 ° C in the case of a cesium- and silver-supported alumina catalyst. is there. Further, when the catalyst layer inlet temperature is higher than 450 ° C for the copper-supported alumina catalyst and higher than 550 ° C for the cesium- and silver-supported alumina catalyst, the combustion of hydrocarbons, which is a side reaction, becomes predominant and the NO x reduction activity decreases. To do.

【0041】[0041]

【実施例】以下に参考例、実施例及び比較例により、本
発明をさらに詳細に説明する。但し、本発明は下記実施
例に限定されるものでない。
The present invention will be described in more detail with reference to Reference Examples, Examples and Comparative Examples below. However, the present invention is not limited to the following examples.

【0042】[実施例1]焼成後の細孔構造において細
孔半径50A(オングストローム)以下の細孔容積及び
細孔半径100〜300Aの細孔容積がそれぞれ細孔半
径300A以下の細孔容積の86.1%、5.5%とな
るアルミナ水和物(アルミナ前駆体Aとする)を、硝酸
銅水溶液に浸漬し攪拌しながら100〜110℃で加熱
し水分を蒸発させた。さらに、空気中500℃で3時間
焼成し、Cu/Al23触媒(1)を得た。アルミナは
γ−アルミナであった。なお、Cuの金属換算での担持
率は、アルミナに対して3%である。
[Example 1] In the pore structure after firing, the volume of pores having a radius of 50 A (angstrom) or less and the volume of pores having a radius of 100 to 300 A were 300 A or less, respectively. Alumina hydrate of 86.1% and 5.5% (referred to as alumina precursor A) was immersed in an aqueous solution of copper nitrate and heated at 100 to 110 ° C with stirring to evaporate water. Further, it was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (1). The alumina was γ-alumina. Note that the metal-supported rate of Cu was 3% with respect to alumina.

【0043】[実施例2]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の7
9.5%、5.1%となるアルミナ水和物(アルミナ前
駆体Bとする)を、硝酸銅水溶液に浸漬し攪拌しながら
100〜110℃で加熱し水分を蒸発させた。さらに、
空気中500℃で3時間焼成し、Cu/Al23触媒
(2)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Example 2] In the pore structure after firing, the pore volume having a pore radius of 50 A or less and the pore radius of 100 to 30
The pore volume of 0A is 300A or less
Alumina hydrate of 9.5% and 5.1% (referred to as alumina precursor B) was immersed in an aqueous solution of copper nitrate and heated at 100 to 110 ° C with stirring to evaporate water. further,
It was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (2). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0044】[実施例3]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の5
4.2%、8.2%となるアルミナ水和物(アルミナ前
駆体Cとする)を、硝酸銅水溶液に浸漬し攪拌しながら
100〜110℃で加熱し水分を蒸発させた。さらに、
空気中500℃で3時間焼成し、Cu/Al23触媒
(3)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Example 3] In the pore structure after firing, the pore volume of 50 A or less and the pore radius of 100 to 30
The pore volume of 0A is 5 of the pore volume of 300A or less.
Alumina hydrate of 4.2% and 8.2% (referred to as alumina precursor C) was immersed in a copper nitrate aqueous solution and heated at 100 to 110 ° C. with stirring to evaporate water. further,
It was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (3). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0045】[実施例4]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の7
8.1%、2.5%となるアルミナ水和物(アルミナ前
駆体Dとする)を、硝酸銅水溶液に浸漬し攪拌しながら
100〜110℃で加熱し水分を蒸発させた。さらに、
空気中500℃で3時間焼成し、Cu/Al23触媒
(4)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Example 4] In the pore structure after firing, the pore volume is 50 A or less and the pore radius is 100 to 30.
The pore volume of 0A is 300A or less
Alumina hydrate of 8.1% and 2.5% (referred to as alumina precursor D) was immersed in an aqueous solution of copper nitrate and heated at 100 to 110 ° C. with stirring to evaporate water. further,
It was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (4). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0046】[比較例1]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の3
5.5%、32.5%となるアルミナ水和物(アルミナ
前駆体Eとする)を、硝酸銅水溶液に浸漬し攪拌しなが
ら100〜110℃で加熱し水分を蒸発させた。さら
に、空気中500℃で3時間焼成し、Cu/Al23
媒(5)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Comparative Example 1] In the pore structure after firing, the pore volume of 50 A or less and the pore radius of 100 to 30.
The pore volume of 0 A is 3 A of the pore volume of 300 A or less, respectively.
Alumina hydrate of 5.5% and 32.5% (referred to as alumina precursor E) was immersed in a copper nitrate aqueous solution and heated at 100 to 110 ° C. with stirring to evaporate water. Further, it was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (5). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0047】[比較例2]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の3
1.0%、22.7%となるアルミナ水和物(アルミナ
前駆体Fとする)を、硝酸銅水溶液に浸漬し攪拌しなが
ら100〜110℃で加熱し水分を蒸発させた。さら
に、空気中500℃で3時間焼成し、Cu/Al23
媒(6)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Comparative Example 2] In the pore structure after firing, the pore volume of 50 A or less and the pore radius of 100 to 30.
The pore volume of 0 A is 3 A of the pore volume of 300 A or less, respectively.
Alumina hydrate of 1.0% and 22.7% (referred to as alumina precursor F) was immersed in an aqueous solution of copper nitrate and heated at 100 to 110 ° C. with stirring to evaporate water. Further, it was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (6). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0048】[比較例3]焼成後の細孔構造において細
孔半径50A以下の細孔容積及び細孔半径100〜30
0Aの細孔容積がそれぞれ300A以下の細孔容積の3
9.7%、39.8%となるアルミナ水和物(アルミナ
前駆体Gとする)を、硝酸銅水溶液に浸漬し攪拌しなが
ら100〜110℃で加熱し水分を蒸発させた。さら
に、空気中500℃で3時間焼成し、Cu/Al23
媒(7)を得た。アルミナはγ−アルミナであった。な
お、Cuの金属換算での担持率は、アルミナに対して3
%である。
[Comparative Example 3] In the pore structure after firing, the pore volume is 50 A or less and the pore radius is 100 to 30.
The pore volume of 0 A is 3 A of the pore volume of 300 A or less, respectively.
Alumina hydrate of 9.7% and 39.8% (referred to as alumina precursor G) was immersed in an aqueous solution of copper nitrate and heated at 100 to 110 ° C. with stirring to evaporate water. Further, it was calcined in air at 500 ° C. for 3 hours to obtain a Cu / Al 2 O 3 catalyst (7). The alumina was γ-alumina. The loading rate of Cu in terms of metal is 3 with respect to alumina.
%.

【0049】[比較例4]硝酸銅水溶液に浸漬しない以
外は、実施例4と同様にしてγ−Al23触媒(8)を
得た。
[Comparative Example 4] A γ-Al 2 O 3 catalyst (8) was obtained in the same manner as in Example 4 except that it was not immersed in an aqueous solution of copper nitrate.

【0050】[性能評価例1]実施例1の触媒を加圧成
型した後、粉砕して粉度を250〜500μに整粒した
触媒を内径12mmのステンレス製反応管に充填し、常
圧固定床反応装置に装着した。この触媒層にモデル排気
ガスとして、NO1000ppm、プロピレン1000
ppm、O25%、H2O8%、残部N2 からなる混合ガ
スを空間速度15000h-1で通過させた。
[Performance Evaluation Example 1] After the catalyst of Example 1 was pressure-molded, it was crushed and sized to a particle size of 250 to 500 μm, and the catalyst was filled in a stainless steel reaction tube having an inner diameter of 12 mm and fixed at atmospheric pressure. Attached to the floor reactor. NO 1000 ppm, propylene 1000 as model exhaust gas in this catalyst layer
A mixed gas consisting of ppm, O 2 5%, H 2 O 8% and the balance N 2 was passed at a space velocity of 15,000 h −1 .

【0051】反応管出口ガス組成についてNOとNO2
濃度については化学発光式NOX計で測定し、N2O濃度
はPorapack Qカラムを装着したガスクロマトグラフ−
熱伝導度検出器を用いて測定した。触媒層入口温度を2
00〜600℃の範囲の所定温度に設定し、各所定温度
毎に反応管出口ガス組成が安定した時点の値を用いた。
モデル排気ガスが触媒を通過することにより反応ガス中
のNOはNO2 、N2 O及び/またはN2 に転化される
が、本発明の触媒を通過した場合N2 Oは殆ど生成しな
いことが判明したので、本発明の明細書では脱硝率を以
下の式2で定義した。ただし、式中、xは1を含む。
Regarding the composition of the gas at the outlet of the reaction tube, NO and NO 2
Measured by chemiluminescent NO X meter for the concentration, N 2 O concentration is a gas chromatograph equipped with a Porapack Q column -
It measured using the thermal conductivity detector. The catalyst layer inlet temperature is 2
The temperature was set to a predetermined temperature in the range of 00 to 600 ° C., and the value at the time when the reaction tube outlet gas composition became stable at each predetermined temperature was used.
Although NO in the reaction gas is converted into NO 2 , N 2 O and / or N 2 by passing the model exhaust gas through the catalyst, N 2 O is hardly produced when passing through the catalyst of the present invention. Since it has been clarified, the denitration rate is defined by the following equation 2 in the specification of the present invention. However, in the formula, x includes 1.

【0052】[0052]

【式2】NO転化率=(反応管入口NOX濃度−反応管
出口NOX濃度)/(反応管入口NO濃度)×100
[Formula 2] NO conversion rate = (reaction tube inlet NO X concentration−reaction tube outlet NO X concentration) / (reaction tube inlet NO concentration) × 100

【0053】実施例2〜4及び比較例1〜4の触媒につ
いても同様にモデルガス評価を行った。
Model gas evaluations were also conducted on the catalysts of Examples 2-4 and Comparative Examples 1-4.

【0054】表1に、触媒(1)〜(8)の各々につい
て触媒層入口温度350℃〜450℃の間での脱硝率す
なわちNO転化率(%)を示す。本発明の実施例1〜4
の触媒(1)〜(4)は、比較例1〜4の触媒(5)〜
(8)に比べて、より低い温度域で優れた脱硝性能を示
した。
Table 1 shows the denitration rate, that is, the NO conversion rate (%), at each of the catalyst layer inlet temperatures of 350 ° C. to 450 ° C. for each of the catalysts (1) to (8). Examples 1 to 4 of the present invention
Catalysts (1) to (4) of Comparative Examples 1 to 4 are catalysts (5) to
Compared to (8), it showed excellent denitration performance in a lower temperature range.

【0055】[性能評価例2]空間速度50000h-1
及び70000h-1とした以外は、性能評価例1と同様
にして実施例1の触媒(1)の性能を評価した。
[Performance Evaluation Example 2] Space velocity 50000h -1
The performance of the catalyst (1) of Example 1 was evaluated in the same manner as in Performance Evaluation Example 1 except that the catalyst (1) and 70,000 h -1 were used.

【0056】表2に触媒(1)の上記空間速度における
触媒入口温度200〜600℃の間での最大脱硝率Cm
ax(%)とその時の温度Tmax(℃)を示す。本発
明の実施例の触媒(1)は、より高い空間速度(より短
い接触時間)でも優れた脱硝性能を示した。
Table 2 shows the maximum denitration rate Cm of the catalyst (1) at the above space velocity at the catalyst inlet temperature of 200 to 600 ° C.
The ax (%) and the temperature Tmax (° C.) at that time are shown. The catalyst (1) of the example of the present invention showed excellent denitration performance even at a higher space velocity (shorter contact time).

【0057】[0057]

【表1】 触 媒 活性ア 触 媒 性 能 ルミナ 性能評価例1の脱硝率(%) 前駆体 350℃ 400℃ 450℃ 実施例1 3%Cu/Al2O3(1) A 18.8 31.2 26 実施例2 3%Cu/Al2O3(2) B 17 28.2 23.5 実施例3 3%Cu/Al2O3(3) C 15.5 27.9 22 実施例4 3%Cu/Al2O3(4) D 16.7 28 23.6 比較例1 3%Cu/Al2O3(5) E 4.2 10.3 15.8 比較例2 3%Cu/Al2O3(6) F 5.8 9.7 15.3 比較例3 3%Cu/Al2O3(7) G 9.9 15.5 12.5 比較例4 3%Cu/Al2O3(8) D 2.1 3 4.3[Table 1] Catalytic activity Active catalytic activity Lumina Denitration rate (%) of Performance Evaluation Example 1 Precursor 350 ° C 400 ° C 450 ° C Example 1 3% Cu / Al 2 O 3 (1) A 18.8 31 .2 26 Example 2 3% Cu / Al 2 O 3 (2) B 17 28.2 23.5 Example 3 3% Cu / Al 2 O 3 (3) C 15.5 27.9 22 Example 4 3% Cu / Al 2 O 3 (4) D 16.7 28 23.6 Comparative Example 1 3% Cu / Al 2 O 3 (5) E 4.2 10.3 15.8 Comparative Example 2 3% Cu / Al 2 O 3 (6) F 5.8 9.7 15.3 Comparative Example 3 3% Cu / Al 2 O 3 (7) G 9.9 15.5 12.5 Comparative Example 4 3% Cu / Al 2 O 3 (8) D 2.1 3 4.3

【0058】[0058]

【表2】 性能評価例2の脱硝活性 空間速度(h-1) Cmax(%) Tmax(℃) 50000 32.2 350 70000 33.1 350[Table 2] Denitration activity of performance evaluation example 2 Space velocity (h -1 ) Cmax (%) Tmax (° C) 50,000 32.2 350 7,000 33.1 350

【0059】[実施例5]細孔半径50A(オングスト
ローム)以下の細孔容積及び細孔半径100〜300A
の細孔容積が、それぞれ細孔半径300A以下の細孔容
積の40.4%、4.4%のγ−アルミナ(アルミナH
とする)を、硝酸銀水溶液に浸漬し攪拌しながら100
〜110℃で加熱し水分を蒸発させた。さらに、空気中
500℃で3時間焼成し、Ag/Al23触媒を得た。
次に、この触媒を酢酸セシウム水溶液に浸漬し、同様の
方法にてCs/Ag/Al23触媒(9)を得た。な
お、CsとAgの金属換算での担持率は、アルミナに対
してそれぞれ0.1%、3%である。
[Embodiment 5] Pore radius of 50 A (angstrom) or less and pore radius of 100 to 300 A.
Has a pore volume of 40.4% and 4.4% of the pore volume of 300 A or less, respectively.
100) while being immersed in an aqueous solution of silver nitrate and stirred.
Heated at ˜110 ° C. to evaporate water. Further, it was calcined in air at 500 ° C. for 3 hours to obtain an Ag / Al 2 O 3 catalyst.
Next, this catalyst was immersed in a cesium acetate aqueous solution, and a Cs / Ag / Al 2 O 3 catalyst (9) was obtained by the same method. The loadings of Cs and Ag in terms of metal are 0.1% and 3%, respectively, with respect to alumina.

【0060】[実施例6]細孔半径50A以下の細孔容
積及び細孔半径100〜300Aの細孔容積が、それぞ
れ300A以下の細孔容積の74.7%、2.4%のγ
−アルミナ(アルミナIとする)を、硝酸銀水溶液に浸
漬し攪拌しながら100〜110℃で加熱し水分を蒸発
させた。さらに、空気中500℃で3時間焼成し、Ag
/Al23触媒を得た。次に、この触媒を酢酸セシウム
水溶液に浸漬し、同様の方法にてCs/Ag/Al23
触媒(10)を得た。なお、CsとAgの金属換算での担
持率は、アルミナに対してそれぞれ0.1%、3%であ
る。
[Example 6] The volume of pores having a radius of 50 A or less and the volume of pores having a radius of 100 to 300 A are 74.7% and 2.4% of the volume of pores of 300 A or less, respectively.
-Alumina (referred to as Alumina I) was immersed in a silver nitrate aqueous solution and heated at 100 to 110 ° C with stirring to evaporate water. Furthermore, it was calcined in air at 500 ° C. for 3 hours to obtain Ag.
A / Al 2 O 3 catalyst was obtained. Next, this catalyst was immersed in an aqueous solution of cesium acetate, and Cs / Ag / Al 2 O 3 was added by the same method.
A catalyst (10) was obtained. The loadings of Cs and Ag in terms of metal are 0.1% and 3%, respectively, with respect to alumina.

【0061】[実施例7]細孔半径50A以下の細孔容
積及び細孔半径100〜300Aの細孔容積が、それぞ
れ300A以下の細孔容積の57.8%、3.9%のγ
−アルミナ(アルミナJとする)を、硝酸銀水溶液に浸
漬し攪拌しながら100〜110℃で加熱し水分を蒸発
させた。さらに、空気中500℃で3時間焼成し、Ag
/Al23触媒を得た。次に、この触媒を酢酸セシウム
水溶液に浸漬し、同様の方法にてCs/Ag/Al23
触媒(11)を得た。なお、CsとAgの金属換算での担
持率は、アルミナに対してそれぞれ0.1%、3%であ
る。
[Embodiment 7] The pore volume of 50 A or less and the pore volume of 100 to 300 A are 57.8% and 3.9%, respectively, of the pore volume of 300 A or less.
-Alumina (referred to as Alumina J) was immersed in an aqueous silver nitrate solution and heated at 100 to 110 ° C with stirring to evaporate water. Furthermore, it was calcined in air at 500 ° C. for 3 hours to obtain Ag.
A / Al 2 O 3 catalyst was obtained. Next, this catalyst was immersed in an aqueous solution of cesium acetate, and Cs / Ag / Al 2 O 3 was added by the same method.
A catalyst (11) was obtained. The loadings of Cs and Ag in terms of metal are 0.1% and 3%, respectively, with respect to alumina.

【0062】[実施例8]細孔半径50A以下の細孔容
積及び細孔半径100〜300Aの細孔容積が、それぞ
れ300A以下の細孔容積の32.1%、10.8%の
γ−アルミナ(アルミナKとする)を、硝酸銀水溶液に
浸漬し攪拌しながら100〜110℃で加熱し水分を蒸
発させた。さらに、空気中500℃で3時間焼成し、A
g/Al23触媒を得た。次に、この触媒を酢酸セシウ
ム水溶液に浸漬し、同様の方法にてCs/Ag/Al2
3触媒(12)を得た。なお、CsとAgの金属換算で
の担持率は、アルミナに対してそれぞれ0.1%、3%
である。
[Embodiment 8] The volume of pores having a radius of 50 A or less and the volume of pores having a radius of 100 to 300 A are 32.1% and 10.8% of the pore volume of 300 A or less, respectively. Alumina (referred to as alumina K) was immersed in an aqueous silver nitrate solution and heated at 100 to 110 ° C. with stirring to evaporate water. Furthermore, it is fired in air at 500 ° C. for 3 hours to give A
A g / Al 2 O 3 catalyst was obtained. Next, this catalyst was immersed in an aqueous cesium acetate solution, and Cs / Ag / Al 2 was added by the same method.
O 3 catalyst (12) was obtained. The loadings of Cs and Ag in terms of metal are 0.1% and 3%, respectively, with respect to alumina.
Is.

【0063】[実施例9]セシウムの担持率を0.05
%とした以外は実施例5と同様の方法にてCs/Ag/
Al23触媒(13)を得た。
[Example 9] The loading rate of cesium was set to 0.05.
% Cs / Ag /
An Al 2 O 3 catalyst (13) was obtained.

【0064】[実施例10]セシウムの担持率を1.0
%とした以外は実施例5と同様の方法にてCs/Ag/
Al23触媒(14)を得た。
[Example 10] The supporting rate of cesium was set to 1.0.
% Cs / Ag /
An Al 2 O 3 catalyst (14) was obtained.

【0065】[比較例5]細孔半径50A以下の細孔容
積及び細孔半径100〜300Aの細孔容積が、それぞ
れ300A以下の細孔容積の14.0%、45.9%の
γ−アルミナ(アルミナLとする)を、硝酸銀水溶液に
浸漬し攪拌しながら100〜110℃で加熱し水分を蒸
発させた。さらに、空気中500℃で3時間焼成し、A
g/Al23 触媒を得た。次に、この触媒を酢酸セシ
ウム水溶液に浸漬し、同様の方法にてCs/Ag/Al
23触媒(15)を得た。なお、CsとAgの金属換算で
の担持率は、アルミナに対してそれぞれ0.1%、3%
である。
[Comparative Example 5] The volume of pores having a radius of 50 A or less and the volume of pores having a radius of 100 to 300 A are 14.0% and 45.9% of the volume of 300 A or less, respectively. Alumina (referred to as alumina L) was immersed in a silver nitrate aqueous solution and heated at 100 to 110 ° C. with stirring to evaporate water. Furthermore, it is fired in air at 500 ° C. for 3 hours to give A
A g / Al 2 O 3 catalyst was obtained. Next, this catalyst was immersed in an aqueous solution of cesium acetate, and Cs / Ag / Al was processed by the same method.
A 2 O 3 catalyst (15) was obtained. The loadings of Cs and Ag in terms of metal are 0.1% and 3%, respectively, with respect to alumina.
Is.

【0066】[比較例6]実施例5で用いたアルミナH
を、酢酸セシウム及び硝酸銀の混合水溶液に浸漬し攪拌
しながら100〜110℃で加熱し水分を蒸発させた。
さらに、空気中500℃で3時間焼成し、Cs/Ag/
Al23触媒(16)を得た。なお、CsとAgの金属換
算での担持率は、アルミナに対してそれぞれ0.1%、
3%である。
[Comparative Example 6] Alumina H used in Example 5
Was immersed in a mixed aqueous solution of cesium acetate and silver nitrate and heated at 100 to 110 ° C. with stirring to evaporate water.
Furthermore, it is fired in air at 500 ° C. for 3 hours to obtain Cs / Ag /
An Al 2 O 3 catalyst (16) was obtained. The loadings of Cs and Ag in terms of metal are 0.1% for alumina,
3%.

【0067】[比較例7]硝酸銀を用いない以外は実施
例5と同様の方法にてCs/Al23触媒(17)を得
た。
[Comparative Example 7] A Cs / Al 2 O 3 catalyst (17) was obtained in the same manner as in Example 5 except that silver nitrate was not used.

【0068】[比較例8]酢酸セシウムを用いない以外
は実施例5と同様の方法にてAg/Al23触媒(18)
を得た。
[Comparative Example 8] An Ag / Al 2 O 3 catalyst (18) was prepared in the same manner as in Example 5 except that cesium acetate was not used.
Got

【0069】[性能評価例3]実施例5〜10及び比較
例5〜8についても、性能評価例1と同様にモデルガス
評価を行った。
[Performance Evaluation Example 3] With respect to Examples 5 to 10 and Comparative Examples 5 to 8, model gas evaluation was performed in the same manner as in Performance Evaluation Example 1.

【0070】表3に、触媒(9)〜(18)の各々につい
て触媒層入口温度400〜550℃の間での脱硝率すな
わちNO転化率(%)を示す。本発明の実施例の触媒
(9)〜(14)は、比較例5〜8の触媒(15)〜(18)
に比べ非常に高い脱硝性能を示した。
Table 3 shows the denitration rate, that is, the NO conversion rate (%), for each of the catalysts (9) to (18) at a catalyst layer inlet temperature of 400 to 550 ° C. The catalysts (9) to (14) of the examples of the present invention are the catalysts (15) to (18) of Comparative Examples 5 to 8.
It showed a very high denitration performance compared to

【0071】[性能評価例4]空間速度50000h-1
及び70000h-1とした以外は、性能評価例1と同様
にして実施例5の触媒(9)の性能を評価した。
[Performance Evaluation Example 4] Space velocity 50000h -1
And except that the 70000H -1 evaluated the performance of the catalyst (9) in Example 5 in the same manner as in Performance Evaluation Example 1.

【0072】表4に触媒(9)の上記空間速度における
触媒入口温度300〜600℃の間での最大脱硝率Cm
ax(%)とその時の温度Tmax(℃)を示す。本発
明の実施例の触媒(9)は、より高い空間速度(より短
い接触時間)でも優れた脱硝性能を示した。
Table 4 shows the maximum denitration rate Cm of the catalyst (9) at the above space velocity at the catalyst inlet temperature of 300 to 600 ° C.
The ax (%) and the temperature Tmax (° C.) at that time are shown. The catalyst (9) of the example of the present invention showed excellent denitration performance even at higher space velocity (shorter contact time).

【0073】[0073]

【表3】 触 媒 活性ア 触 媒 性 能 ルミナ 性能評価例1の脱硝率(%) 前駆体 400℃ 450℃ 500℃ 550℃ 5 0.1%Cs/3%Ag/Al2O3(9) H 33 55.3 79.5 41.7 実 6 0.1%Cs/3%Ag/Al2O3(10) I 40 62 86.2 46 施 7 0.1%Cs/3%Ag/Al2O3(11) J 38 60 83.1 43.9 例 8 0.1%Cs/3%Ag/Al2O3(12) K 33.5 56.2 79 42.3 9 0.05%Cs/3%Ag/Al2O3(13) H 25 59 83.1 43.5 10 1%Cs/3%Ag/Al2O3(14) H 29 55.7 73 40.7 比 5 0.1%Cs/3%Ag/Al2O3(15) L 7 29 61 67.5 較 6 0.1%Cs/3%Ag/Al2O3(16) H 10 26.1 62.5 44 例 7 0.1%Cs/Al2O3(17) H 3 4 10 7 8 3%Ag/Al2O3(18) H 8 58.3 80.3 42.1[Table 3] Catalytic activity Active catalytic activity Lumina Denitration rate of performance evaluation example 1 (%) Precursor 400 ℃ 450 ℃ 500 ℃ 550 ℃ 5 0.1% Cs / 3% Ag / Al 2 O 3 (9) H 33 55.3 79.5 41.7 Actual 6 0.1% Cs / 3% Ag / Al 2 O 3 (10) I 40 62 86.2 46 Application 7 0.1% Cs / 3% Ag / Al 2 O 3 (11) J 38 60 83.1 43.9 Example 8 0.1% Cs / 3% Ag / Al 2 O 3 (12) K 33.5 56.2 79 42.3 9 0.05% Cs / 3% Ag / Al 2 O 3 (13) H 25 59 83.1 43.5 10 1% Cs / 3% Ag / Al 2 O 3 (14) H 29 55.7 73 40.7 Ratio 5 0.1% Cs / 3% Ag / Al 2 O 3 (15) L 7 29 61 67.5 Comparison 6 0.1% Cs / 3% Ag / Al 2 O 3 (16 ) H 10 26.1 62.5 44 Example 7 0.1% Cs / Al 2 O 3 (17) H 3 4 10 7 8 3% Ag / Al 2 O 3 (18) H 8 58.3 80.3 42.1

【0074】[0074]

【表4】 性能評価例3の脱硝活性 空間速度(h-1) Cmax(%) Tmax(℃) 50000 89 450 70000 86 450[Table 4] Denitration activity of Performance Evaluation Example 3 Space velocity (h -1 ) Cmax (%) Tmax (° C) 50000 89 450 70000 86 86 450

【0075】なお、表5〜6に、前記実施例及び比較例
における細胞容積の割合をまとめる。
Tables 5 to 6 summarize the cell volume ratios in the above Examples and Comparative Examples.

【0076】[0076]

【表5】 [Table 5]

【0077】[0077]

【表6】 [Table 6]

【0078】[0078]

【発明の効果】以上のように、本発明による脱硝触媒及
びその製造方法、脱硝方法によれば、水蒸気が共存する
酸化過剰雰囲気下で、且つ高空間速度(短い接触時間)
でもより低い温度域で高い転化率で窒素ガスに還元する
ことができる。
INDUSTRIAL APPLICABILITY As described above, according to the denitration catalyst, the method for producing the same, and the denitration method according to the present invention, a high space velocity (short contact time) is achieved in an oxidizing excess atmosphere in which water vapor coexists.
However, it can be reduced to nitrogen gas with a high conversion rate in a lower temperature range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/50 ZAB A B01D 53/36 102 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/50 ZAB A B01D 53/36 102 H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 窒素ガス吸着法により測定された細孔半
径50A以下の細孔容積及び細孔半径100〜300A
の細孔容積が、それぞれ細孔半径300A以下の細孔容
積の30%以上、15%以下である活性アルミナ及び該
活性アルミナに担持された銅とから成る脱硝触媒。
1. A pore volume of 50 A or less and a pore radius of 100 to 300 A measured by a nitrogen gas adsorption method.
The denitration catalyst comprises activated alumina having a pore volume of 30% or more and 15% or less of the pore volume having a pore radius of 300 A or less, and copper supported on the activated alumina.
【請求項2】 請求項1に記載の脱硝触媒の製造方法に
おいて、300〜800℃における焼成により、窒素ガ
ス吸着法により測定された細孔半径50A以下の細孔容
積及び細孔半径100〜300Aの細孔容積が、それぞ
れ細孔半径300A以下の細孔容積の50%以上、10
%以下である活性アルミナとなるアルミナ水和物に、銅
塩を担持せしめた後に乾燥、焼成することを特徴とする
脱硝触媒の製造方法。
2. The method for producing a denitration catalyst according to claim 1, wherein calcination at 300 to 800 ° C. is performed, and a pore volume and a pore radius of 100 A to 300 A each having a pore radius of 50 A or less measured by a nitrogen gas adsorption method. Of 50% or more and 10% or more of the pore volume of the pore radius of 300 A or less, respectively.
%, A method for producing a denitration catalyst, comprising supporting a copper salt on an alumina hydrate to be activated alumina having a content of not more than%, followed by drying and firing.
【請求項3】 希薄空燃比で運転される内燃機関の排気
ガスを脱硝触媒層と接触させることからなる排気ガスの
脱硝方法において、該脱硝触媒層が請求項1に記載の脱
硝触媒からなり、且つ排気ガスが前記脱硝触媒層の入口
において350〜450℃であることを特徴とする脱硝
方法。
3. A denitration method for exhaust gas, which comprises contacting exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a denitration catalyst layer, wherein the denitration catalyst layer comprises the denitration catalyst according to claim 1. Moreover, the exhaust gas has a temperature of 350 to 450 ° C. at the inlet of the denitration catalyst layer, which is a denitration method.
【請求項4】 請求項3の脱硝方法であって、脱硝触媒
層を通過する排気ガスの空間速度が10000h-1以上
であることを特徴とする脱硝方法。
4. The denitration method according to claim 3, wherein the space velocity of the exhaust gas passing through the denitration catalyst layer is 10,000 h −1 or more.
【請求項5】 窒素ガス吸着法により測定された細孔半
径50A以下の細孔容積及び細孔半径100〜300A
の細孔容積が、それぞれ細孔半径300A以下の細孔容
積の30%以上、15%以下である活性アルミナと、該
活性アルミナに担持されたセシウムと銀及び/又は酸化
銀とから成る脱硝触媒。
5. A pore volume of 50 A or less and a pore radius of 100 to 300 A measured by a nitrogen gas adsorption method.
Denitration catalyst comprising activated alumina having a pore volume of 30% or more and 15% or less of a pore volume of 300A or less, and cesium and silver and / or silver oxide supported on the activated alumina. .
【請求項6】 請求項5に記載の脱硝触媒の製造方法に
おいて、窒素ガス吸着法により測定された細孔半径50
A以下の細孔容積及び細孔半径100〜300Aの細孔
容積が、それぞれ細孔半径300A以下の細孔容積の3
0%以上、15%以下である活性アルミナに、銀及び/
又は酸化銀を担持せしめた後にセシウムを担持せしめる
ことを特徴とする脱硝触媒の製造方法。
6. The method for producing a NOx removal catalyst according to claim 5, wherein the pore radius is 50 as measured by a nitrogen gas adsorption method.
The pore volume of A or less and the pore volume of 100 to 300 A are 3 times the volume of pores of 300 A or less, respectively.
0% or more and 15% or less of activated alumina, silver and /
Alternatively, a method for producing a denitration catalyst, which comprises supporting silver oxide and then supporting cesium.
【請求項7】 希薄空燃比で運転される内燃機関の排気
ガスを脱硝触媒層と接触させることからなる排気ガスの
脱硝方法において、該脱硝触媒層が請求項5に記載の脱
硝触媒からなり、且つ排気ガスが前記脱硝触媒層の入口
において400〜550℃であることを特徴とする脱硝
方法。
7. A denitration method for exhaust gas, which comprises contacting exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a denitration catalyst layer, wherein the denitration catalyst layer comprises the denitration catalyst according to claim 5. Further, the denitration method is characterized in that the exhaust gas has a temperature of 400 to 550 ° C. at the inlet of the denitration catalyst layer.
【請求項8】 請求項7の脱硝方法であって、脱硝触媒
層を通過する排気ガスの空間速度が10000h-1以上
であることを特徴とする脱硝方法。
8. The denitration method according to claim 7, wherein the space velocity of the exhaust gas passing through the denitration catalyst layer is 10,000 h −1 or more.
JP6092908A 1994-04-07 1994-04-07 Denox catalyst and its production, and denitrification method Pending JPH07275708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092908A JPH07275708A (en) 1994-04-07 1994-04-07 Denox catalyst and its production, and denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092908A JPH07275708A (en) 1994-04-07 1994-04-07 Denox catalyst and its production, and denitrification method

Publications (1)

Publication Number Publication Date
JPH07275708A true JPH07275708A (en) 1995-10-24

Family

ID=14067591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092908A Pending JPH07275708A (en) 1994-04-07 1994-04-07 Denox catalyst and its production, and denitrification method

Country Status (1)

Country Link
JP (1) JPH07275708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175649A (en) * 2005-12-28 2007-07-12 Japan Energy Corp Solid acid, its manufacturing method, and solid acid catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175649A (en) * 2005-12-28 2007-07-12 Japan Energy Corp Solid acid, its manufacturing method, and solid acid catalyst

Similar Documents

Publication Publication Date Title
JPH09299763A (en) Denitration catalyst layer and denitrating method
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH07275708A (en) Denox catalyst and its production, and denitrification method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JP3433500B2 (en) Denitration catalyst and denitration method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH11128688A (en) Purification of waste gas
JP3358274B2 (en) Denitration catalyst and denitration method
JPH0824645A (en) Denitration catalyst and denitration method using the same
JPH0824642A (en) Production of denitration catalyst and denitration method using obtained catalyst
JPH07328444A (en) Denitration catalyst and denitrating method using the same
JPH07289894A (en) Denitrification catalyst and denitrifying method using the same
JPH08131829A (en) Denitrification catalyst and denitrifying method using the same
JPH07256103A (en) Production of denitration catalyst and denitrating method
JPH07256101A (en) Denitration catalyst and denitrating method
JPH081014A (en) Denitration catalyst and denitrating method using that
JPH11128689A (en) Purification of waste gas
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH0871419A (en) Denitration catalyst and denitration method using same
JPH07275707A (en) Production of denox catalyst and denitrification method
JPH0810618A (en) Denitration catalyst and method
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH08309194A (en) Catalyst for exhaust gas purification and exhaust gas purification method
JPH07275706A (en) Denox catalyst and denox method