JP2007175649A - Solid acid, its manufacturing method, and solid acid catalyst - Google Patents

Solid acid, its manufacturing method, and solid acid catalyst Download PDF

Info

Publication number
JP2007175649A
JP2007175649A JP2005378982A JP2005378982A JP2007175649A JP 2007175649 A JP2007175649 A JP 2007175649A JP 2005378982 A JP2005378982 A JP 2005378982A JP 2005378982 A JP2005378982 A JP 2005378982A JP 2007175649 A JP2007175649 A JP 2007175649A
Authority
JP
Japan
Prior art keywords
solid acid
catalyst
alumina
acid
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005378982A
Other languages
Japanese (ja)
Inventor
Makoto Hino
誠 日野
Hiromi Matsuhashi
博美 松橋
Kazushi Arata
一志 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2005378982A priority Critical patent/JP2007175649A/en
Publication of JP2007175649A publication Critical patent/JP2007175649A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new solid acid which is suitably used as a solid acid catalyst, excellent in stability as material and has a high surface acidity, and also provide a manufacturing method thereof. <P>SOLUTION: The new solid acid contains α-alumina and tungstic acid and has a specific surface area of 3-50 m<SP>2</SP>/g and argon-absorption heat of at most -14.5 kJ/mol. After aluminum hydroxide is impregnated with a tungstic acid compound, the aluminum hydroxide is burned at a burning temperate of at least 1,000°C to give the solid acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な固体酸及びその製造方法、並びに該固体酸からなる固体酸触媒に関し、特に材料としての安定性に優れ、かつ高い表面酸性度を有する新規固体酸に関するものである。   The present invention relates to a novel solid acid and a method for producing the same, and a solid acid catalyst comprising the solid acid, and particularly relates to a novel solid acid having excellent stability as a material and high surface acidity.

従来、アルミナ、シリカ−アルミナ、シリカ−マグネシア等の物質が、固体酸として機能することがよく知られている。これらの物質は、固体酸としての性質を利用して、各種反応の触媒や吸着剤などとして広く利用されている。   Conventionally, it is well known that substances such as alumina, silica-alumina, and silica-magnesia function as solid acids. These substances are widely used as catalysts and adsorbents for various reactions by utilizing the properties as solid acids.

ところで、上記固体酸からなる固体酸触媒は、固体であるため回収が容易で、また、反応装置を腐食することがなく、環境に優しい触媒であるため、いわゆるグリーンケミストリーの観点からも着目されている。   By the way, the solid acid catalyst composed of the above-mentioned solid acid is easy to recover because it is a solid, and does not corrode the reaction apparatus and is an environment-friendly catalyst. Therefore, it is also attracting attention from the viewpoint of so-called green chemistry. Yes.

上記固体酸は、通常500〜600℃前後の温度で原料を焼成することにより製造される。例えば、特開平7−194976号公報(特許文献1)には、アルミナ水和物の表面にシリカ水和物を沈着させた後、酸素の存在下、550〜650℃の温度で焼成することにより、シリカ−アルミナを製造できることが開示されている。   The solid acid is usually produced by firing the raw material at a temperature of about 500 to 600 ° C. For example, in JP-A-7-194976 (Patent Document 1), silica hydrate is deposited on the surface of alumina hydrate and then fired at a temperature of 550 to 650 ° C. in the presence of oxygen. It is disclosed that silica-alumina can be produced.

特開平7−194976号公報Japanese Patent Laid-Open No. 7-194976

しかしながら、従来の固体酸は、より高温で焼成すると表面の酸性度が低下し、その結果、該固体酸を触媒として使用した場合に活性が低下してしまう問題があった。また、500〜600℃で焼成して得られる通常のアルミナは、γ−アルミナなどの中間的な結晶状態にあるため、使用中に高温に曝されたり、或いは熱履歴を受けることにより、結晶状態が変化してしまうという問題があった。更に、上記固体酸は、触媒として使用した場合に、反応系中の水分によって酸強度が低下してしまうという問題もあった。   However, when the conventional solid acid is baked at a higher temperature, the acidity of the surface is lowered. As a result, there is a problem that the activity is lowered when the solid acid is used as a catalyst. Moreover, since the normal alumina obtained by baking at 500-600 degreeC exists in intermediate | middle crystalline states, such as (gamma) -alumina, it is exposed to high temperature during use, or receives a thermal history, and a crystalline state There was a problem that changed. Furthermore, when the solid acid is used as a catalyst, there is also a problem that the acid strength is lowered by moisture in the reaction system.

そこで、本発明の目的は、上記従来技術の問題を解決し、固体酸触媒として好適に使用するこができ、材料としての安定性に優れ、かつ高い表面酸性度を有する新規な固体酸を提供することにある。また、本発明の他の目的は、かかる固体酸の製造方法を提供することにある。   Accordingly, the object of the present invention is to provide a novel solid acid that solves the above-mentioned problems of the prior art, can be suitably used as a solid acid catalyst, has excellent stability as a material, and has high surface acidity. There is to do. Another object of the present invention is to provide a method for producing such a solid acid.

本発明者らは、上記目的を達成するために鋭意検討した結果、水酸化アルミニウムにタングステン酸化合物を含浸させて、1000℃以上の高温で焼成することにより、アルミナがα−アルミナとして含有されるため材料として安定である一方、表面の酸性度が高い固体酸が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have impregnated aluminum hydroxide with a tungstic acid compound and calcined it at a high temperature of 1000 ° C. or higher, whereby alumina is contained as α-alumina. Therefore, it was found that a solid acid having a high surface acidity can be obtained while being stable as a material, and the present invention has been completed.

即ち、本発明は、
[1]α−アルミナ及びタングステン酸を含有し、比表面積が3〜50m2/gであり、かつアルゴン吸着熱が−14.5kJ/mol以下である固体酸、
[2]上記タングステン酸の含有量が、酸化物として0.1〜10質量%である上記[1]の固体酸、
[3]上記[1]又は[2]の固体酸からなる固体酸触媒、
[4]水酸化アルミニウムにタングステン酸化合物を含浸させた後、1000℃以上の焼成温度で焼成する上記[1]又は[2]の固体酸の製造方法、及び
[5]上記焼成温度が1000〜1200℃である上記[4]の固体酸の製造方法に関するものである。
That is, the present invention
[1] A solid acid containing α-alumina and tungstic acid, having a specific surface area of 3 to 50 m 2 / g and an argon adsorption heat of −14.5 kJ / mol or less,
[2] The solid acid according to the above [1], wherein the content of the tungstic acid is 0.1 to 10% by mass as an oxide,
[3] A solid acid catalyst comprising the solid acid of [1] or [2] above,
[4] A method for producing a solid acid according to [1] or [2] above, wherein aluminum hydroxide is impregnated with a tungstic acid compound and then calcined at a calcining temperature of 1000 ° C. or higher, and [5] the calcining temperature is 1000 to 1000. The present invention relates to the method for producing a solid acid according to the above [4], which is 1200 ° C.

本発明によれば、原料を高温で焼成して固体酸を調製するため、材料としての安定性、特に熱安定性が高く、加えて表面の酸性度が高い固体酸を提供することができる。また、本発明の固体酸は、表面の酸性度が高いので、異性化反応、クラッキング、不均化反応、エステル化反応、エステル交換反応などの反応の触媒として優れた触媒作用を発揮する。   According to the present invention, the solid acid is prepared by baking the raw material at a high temperature, so that it is possible to provide a solid acid having high stability as a material, in particular, high thermal stability and high surface acidity. Further, since the solid acid of the present invention has high surface acidity, it exhibits excellent catalytic action as a catalyst for reactions such as isomerization reaction, cracking, disproportionation reaction, esterification reaction and transesterification reaction.

<固体酸>
以下に、本発明の固体酸を詳細に説明する。本発明の固体酸は、α−アルミナ及びタングステン酸を含有し、比表面積が3〜50m2/gであり、かつアルゴン吸着熱が−14.5kJ/mol以下であることを特徴とする。ここで、本発明の固体酸においては、アルミナと酸化タングステンとの複合酸化物であるタングステン酸塩(又はタングステン酸化合物)が活性種として作用するものと考えられる。なお、固体酸中のアルミナがα−アルミナの形態で存在することは、XRDによって確認することができる。また、固体酸の比表面積は、N2吸着によるBET法で測定することができる。更に、固体酸のアルゴン吸着熱は、J. Phys. Chem., B, vol.105, p9669 (2001) に記載の方法に従って測定することができる。
<Solid acid>
Below, the solid acid of this invention is demonstrated in detail. The solid acid of the present invention contains α-alumina and tungstic acid, has a specific surface area of 3 to 50 m 2 / g, and an argon adsorption heat of −14.5 kJ / mol or less. Here, in the solid acid of the present invention, it is considered that tungstate (or tungstic acid compound) which is a composite oxide of alumina and tungsten oxide acts as an active species. In addition, it can confirm by XRD that the alumina in a solid acid exists with the form of alpha alumina. The specific surface area of the solid acid can be measured by the BET method using N 2 adsorption. Furthermore, the heat of argon adsorption of the solid acid can be measured according to the method described in J. Phys. Chem., B, vol. 105, p9669 (2001).

本発明の固体酸は、アルミナとして熱的安定性の高いα−アルミナを含むため、材料としての安定性(特に熱的安定性)が非常に高い。なお、固体酸中のアルミナがγ−アルミナやδ−アルミナの形態で存在する場合、固体酸の表面の酸性度が不十分で、触媒としての活性が低くなる。また、本発明の固体酸は、アルゴン吸着熱が−14.5kJ/mol以下であるため、表面の酸性度が非常に高い。   Since the solid acid of the present invention contains α-alumina having high thermal stability as alumina, the material stability (particularly thermal stability) is very high. In addition, when the alumina in a solid acid exists with the form of (gamma) -alumina or (delta) -alumina, the acidity of the surface of a solid acid is inadequate, and the activity as a catalyst becomes low. Moreover, since the solid acid of the present invention has an argon adsorption heat of -14.5 kJ / mol or less, the acidity of the surface is very high.

上記固体酸の比表面積が3m2/g未満では、触媒として使用した場合の活性点が少ないため触媒活性が低くなり、一方、比表面積が50m2/gを超える固体酸を調製することは、高温で焼成するため、実際上困難である。また、アルゴン吸着熱が−14.5kJ/molより大きい固体酸は、表面の酸性度が低いため、各種酸触媒反応における触媒活性が低くなる。 If the specific surface area of the solid acid is less than 3 m 2 / g, the catalytic activity is low because there are few active sites when used as a catalyst, while preparing a solid acid with a specific surface area of more than 50 m 2 / g, Since it is fired at a high temperature, it is practically difficult. Moreover, since the acidity of the surface of the solid acid whose argon adsorption heat is larger than −14.5 kJ / mol is low, the catalytic activity in various acid catalytic reactions is low.

本発明の固体酸において、上記タングステン酸の含有量は、酸化物(WO3)として0.1〜10質量%の範囲が好ましい。固体酸中のタングステン酸の含有量が酸化物として0.1質量%未満では、高温での焼成により3m2/g以上の比表面積を維持することが難しくなり、一方、10質量%を超えると、十分な酸性度を得ることが難しくなる。これらの観点から、上記タングステン酸の含有量は、酸化物として1〜5質量%の範囲が更に好ましい。 In the solid acid of the present invention, the content of the tungstic acid is preferably in the range of 0.1 to 10% by mass as an oxide (WO 3 ). When the content of tungstic acid in the solid acid is less than 0.1% by mass as an oxide, it becomes difficult to maintain a specific surface area of 3 m 2 / g or more by firing at a high temperature, while when the content exceeds 10% by mass. It becomes difficult to obtain sufficient acidity. From these viewpoints, the content of the tungstic acid is more preferably in the range of 1 to 5% by mass as an oxide.

<固体酸の製造方法>
上述した本発明の固体酸は、水酸化アルミニウムにタングステン酸化合物を含浸させた後、1000℃以上の焼成温度で焼成することにより製造することができる。例えば、水酸化アルミニウム粉末を100℃で乾燥した後、メタタングステン酸アンモニウム水溶液を含浸させ、乾燥させた後、空気中、1000℃以上で3時間焼成することにより、上記固体酸を製造することができる。なお、固体酸にタングステン酸を含有させることにより、理由は明らかではないが、α−アルミナ表面で強い酸性度を示すようになる。
<Method for producing solid acid>
The solid acid of the present invention described above can be produced by impregnating aluminum hydroxide with a tungstic acid compound and then firing at a firing temperature of 1000 ° C. or higher. For example, after the aluminum hydroxide powder is dried at 100 ° C., impregnated with an ammonium metatungstate aqueous solution and dried, the solid acid is produced by baking in air at 1000 ° C. or higher for 3 hours. it can. In addition, when tungstic acid is contained in the solid acid, the reason is not clear, but strong acidity is exhibited on the α-alumina surface.

上記固体酸の原料の水酸化アルミニウムとしては、特に限定されるものではないが、通常は、粉末を用いる。また、該水酸化アルミニウムの製造方法も、特に限定されるものではなく、一般的な方法で製造することができる。   Although it does not specifically limit as aluminum hydroxide of the said solid acid raw material, Usually, a powder is used. Moreover, the manufacturing method of this aluminum hydroxide is not specifically limited, either, It can manufacture by a general method.

上記固体酸の原料として使用するタングステン酸化合物は、焼成によりタングステン酸になり得る化合物であればよい。該タングステン酸化合物として、具体的には、三酸化タングステン(WO3)、タングステン酸アンモニウム[(NH4)WO4]、パラタングステン酸アンモニウム[5(NH4)2O・12WO3・5H2O]、メタタングステン酸アンモニウム[(NH4)6(H21240)・nH2O]などを使用することができ、これらの中でも、メタタングステン酸アンモニウムを使用することが好ましい。 The tungstic acid compound used as the raw material for the solid acid may be any compound that can be converted to tungstic acid by firing. Specific examples of the tungstic acid compound include tungsten trioxide (WO 3 ), ammonium tungstate [(NH 4 ) WO 4 ], and ammonium paratungstate [5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O. ], Ammonium metatungstate [(NH 4 ) 6 (H 2 W 12 O 40 ) · nH 2 O], etc., among these, it is preferable to use ammonium metatungstate.

上記タングステン酸化合物は、最終的な固体酸においてタングステン酸含有量が酸化物として0.1〜10質量%の範囲になるように、上記水酸化アルミニウムに含浸させることが好ましく、1〜5質量%の範囲になるように含浸させることが更に好ましい。また、水酸化アルミニウムへのタングステン酸化合物の担持方法は、特に限定されず、通常の担持方法で実施することができる。なお、通常は、タングステン酸化合物の水溶液を水酸化アルミニウムに含浸させて担持する。更に、水酸化アルミニウムへのタングステン酸化合物の含浸方法も、特に限定されず、通常の含浸方法で実施することができる。ここで、含浸方法としては、例えば、ポアフィリング法、加熱含浸法、真空含浸法、浸漬法、スプレー法等を挙げることができる。なお、通常は、水酸化アルミニウムにタングステン酸化合物を含む水溶液を含浸させた後、乾燥させる。   The tungstic acid compound is preferably impregnated in the aluminum hydroxide so that the tungstic acid content in the final solid acid is in the range of 0.1 to 10% by mass as an oxide, and is preferably 1 to 5% by mass. It is more preferable to impregnate so that it may become this range. Further, the method for supporting the tungstic acid compound on the aluminum hydroxide is not particularly limited, and can be carried out by a normal supporting method. Usually, an aqueous solution of a tungstic acid compound is impregnated with aluminum hydroxide and supported. Furthermore, the impregnation method of the tungstic acid compound into aluminum hydroxide is not particularly limited, and can be carried out by a normal impregnation method. Here, examples of the impregnation method include a pore filling method, a heating impregnation method, a vacuum impregnation method, an immersion method, and a spray method. Usually, aluminum hydroxide is impregnated with an aqueous solution containing a tungstic acid compound and then dried.

上記のようにして、水酸化アルミニウムにタングステン酸化合物を含む水溶液を含浸させた後、1000℃以上で焼成することにより、固体酸中のアルミナが熱的安定性の高いα−アルミナとして存在するようになる。なお、焼成温度が1000℃未満では、固体酸中のアルミナがγ−アルミナやδ−アルミナの形態で存在するようになるため、固体酸の酸性度が不十分となり、触媒としての活性が低くなる。ここで、上記焼成温度は、1000〜1250℃の範囲が好ましく、1000〜1200℃の範囲が更に好ましい。焼成温度が1200℃を超えると、比表面積の低下が観察され始め、また、1250℃を超えると、急激な比表面積の低下が起こることがある。なお、焼成時間は、1〜5時間の範囲が好ましく、2〜4時間の範囲が更に好ましい。   As described above, after impregnating aluminum hydroxide with an aqueous solution containing a tungstic acid compound and firing at 1000 ° C. or higher, alumina in the solid acid is present as α-alumina having high thermal stability. become. If the calcination temperature is less than 1000 ° C., alumina in the solid acid is present in the form of γ-alumina or δ-alumina, so that the acidity of the solid acid becomes insufficient and the activity as a catalyst is lowered. . Here, the firing temperature is preferably in the range of 1000 to 1250 ° C, and more preferably in the range of 1000 to 1200 ° C. When the firing temperature exceeds 1200 ° C., a decrease in specific surface area starts to be observed, and when it exceeds 1250 ° C., a rapid decrease in specific surface area may occur. The firing time is preferably in the range of 1 to 5 hours, and more preferably in the range of 2 to 4 hours.

<固体酸触媒>
上述した本発明の固体酸は、高い表面酸性度を有するため、異性化反応、クラッキング、不均化反応、エステル化反応、エステル交換反応などの種々の反応の触媒として好適に使用することができる。また、本発明の固体酸は、α−アルミナを含み、材料としての安定性に優れるため、触媒として安定に使用することができ、触媒寿命が長い。また、本発明の固体酸は、耐水性や耐熱性に優れているので、水性ガスシフト反応やジメチルエーテル水蒸気改質触媒をはじめ、触媒燃焼、水和反応、脱水反応などの触媒、あるいは担体として使用することができる。
<Solid acid catalyst>
Since the solid acid of the present invention described above has high surface acidity, it can be suitably used as a catalyst for various reactions such as isomerization reaction, cracking, disproportionation reaction, esterification reaction and transesterification reaction. . In addition, the solid acid of the present invention contains α-alumina, and is excellent in stability as a material. Therefore, it can be used stably as a catalyst and has a long catalyst life. In addition, since the solid acid of the present invention is excellent in water resistance and heat resistance, it is used as a catalyst or a carrier for catalytic combustion, hydration reaction, dehydration reaction, etc., including water gas shift reaction and dimethyl ether steam reforming catalyst. be able to.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、調製した触媒の比表面積及びアルゴン吸着熱は下記の方法で測定した。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. In addition, the specific surface area and argon adsorption heat of the prepared catalyst were measured by the following method.

[分析方法]
(1)比表面積
2吸着によるBET法で比表面積を測定した。
[Analysis method]
(1) Specific surface area The specific surface area was measured by the BET method using N 2 adsorption.

(2)アルゴン吸着熱
J. Phys. Chem., B vol.105, p9669 (2001) に記載の方法に従って、−30〜−60℃の温度範囲におけるArの吸着量を測定し、吸着量の温度依存性から吸着熱を求めた。
(2) Heat of argon adsorption
According to the method described in J. Phys. Chem., B vol.105, p9669 (2001), the adsorption amount of Ar in the temperature range of −30 to −60 ° C. is measured, and the heat of adsorption is determined from the temperature dependence of the adsorption amount. Asked.

(実施例1)
[1%−WO3/Al23(1200℃)の製造(触媒1)]
水酸化アルミニウム(高純度化学製、100メッシュ以下)を100℃で乾燥させた後、固体酸中のタングステン酸含有量が酸化物として1質量%になるように、メタタングステン酸アンモニウム(日本無機化学工業製)の水溶液を含浸した。その後、水分を蒸発させた後、乾燥した。次いで、空気中、1200℃で3時間焼成して触媒1を得た。得られた触媒1は、比表面積が7.7m2/gであり、Ar吸着熱が−14.7kJ/molであった。また、得られた触媒1をXRD分析したところ、アルミナがα−アルミナの形態で存在することが確認された。
Example 1
[Production of 1% -WO 3 / Al 2 O 3 (1200 ° C.) (Catalyst 1)]
After aluminum hydroxide (product of high purity chemical, 100 mesh or less) is dried at 100 ° C., ammonium metatungstate (Nippon Inorganic Chemistry) is used so that the content of tungstic acid in the solid acid is 1% by mass as an oxide. (Made by Kogyo) was impregnated. Thereafter, the water was evaporated and dried. Subsequently, the catalyst 1 was obtained by calcining in air at 1200 ° C. for 3 hours. The obtained catalyst 1 had a specific surface area of 7.7 m 2 / g and an Ar adsorption heat of −14.7 kJ / mol. Further, when the obtained catalyst 1 was subjected to XRD analysis, it was confirmed that alumina was present in the form of α-alumina.

(実施例2)
[3%−WO3/Al23(1100℃)の製造(触媒2)]
水酸化アルミニウム(高純度化学製、100メッシュ以下)を100℃で乾燥させた後、固体酸中のタングステン酸含有量が酸化物として3質量%になるように、メタタングステン酸アンモニウム(日本無機化学工業製)の水溶液を含浸した。その後、水分を蒸発させた後、乾燥した。次いで、空気中、1100℃で3時間焼成して触媒2を得た。得られた触媒2は、比表面積が15.0m2/gであり、Ar吸着熱が−15.5kJ/molであった。また、得られた触媒2をXRD分析したところ、アルミナがα−アルミナの形態で存在することが確認された。
(Example 2)
[Production of 3% -WO 3 / Al 2 O 3 (1100 ° C.) (Catalyst 2)]
After aluminum hydroxide (product of high purity chemical, 100 mesh or less) is dried at 100 ° C., ammonium metatungstate (Nippon Inorganic Chemistry) is used so that the content of tungstic acid in the solid acid becomes 3% by mass as an oxide. (Made by Kogyo) was impregnated. Thereafter, the water was evaporated and dried. Subsequently, the catalyst 2 was obtained by calcining in air at 1100 ° C. for 3 hours. The obtained catalyst 2 had a specific surface area of 15.0 m 2 / g and an Ar adsorption heat of −15.5 kJ / mol. Further, when the obtained catalyst 2 was subjected to XRD analysis, it was confirmed that alumina was present in the form of α-alumina.

(実施例3)
[5%−WO3/Al23(1000℃)の製造(触媒3)]
水酸化アルミニウム(高純度化学製、100メッシュ以下)を100℃で乾燥させた後、固体酸中のタングステン酸含有量が酸化物として5質量%になるように、メタタングステン酸アンモニウム(日本無機化学工業製)の水溶液を含浸した。その後、水分を蒸発させた後、乾燥した。次いで、空気中、1000℃で3時間焼成して触媒3を得た。得られた触媒3は、比表面積が30.2m2/gであり、Ar吸着熱が−16.4kJ/molであった。また、得られた触媒3をXRD分析したところ、アルミナがα−アルミナの形態で存在することが確認された。
(Example 3)
[Production of 5% -WO 3 / Al 2 O 3 (1000 ° C.) (Catalyst 3)]
After aluminum hydroxide (product of high purity chemical, 100 mesh or less) is dried at 100 ° C., ammonium metatungstate (Nippon Inorganic Chemistry) is used so that the content of tungstic acid in the solid acid is 5% by mass as an oxide. (Made by Kogyo) was impregnated. Thereafter, the water was evaporated and dried. Subsequently, the catalyst 3 was obtained by calcining in air at 1000 ° C. for 3 hours. The obtained catalyst 3 had a specific surface area of 30.2 m 2 / g and an Ar adsorption heat of −16.4 kJ / mol. Further, when the obtained catalyst 3 was subjected to XRD analysis, it was confirmed that alumina was present in the form of α-alumina.

(比較触媒1)
500℃で焼成された日本触媒学会の標準触媒[JRC−SAL−2、シリカ−アルミナ(SiO2−Al23)]を比較触媒1とした。該比較触媒1は、比表面積が560m2/gであり、Ar吸着熱が−14.4kJ/molであった。
(Comparative catalyst 1)
A standard catalyst [JRC-SAL-2, silica-alumina (SiO 2 -Al 2 O 3 )] of the Japan Society for Catalysis was calcined at 500 ° C. was used as Comparative Catalyst 1. The comparative catalyst 1 had a specific surface area of 560 m 2 / g and an Ar adsorption heat of −14.4 kJ / mol.

(比較触媒2)
水酸化アルミニウムを、空気中、1200℃で3時間焼成して、アルミナ(Al23)を調製し、比較触媒2とした。該比較触媒2は、比表面積が4.8m2/gであり、Ar吸着熱が−12.5kJ/molであった。
(Comparative catalyst 2)
Aluminum hydroxide was calcined in air at 1200 ° C. for 3 hours to prepare alumina (Al 2 O 3 ), which was used as Comparative Catalyst 2. The comparative catalyst 2 had a specific surface area of 4.8 m 2 / g and an Ar adsorption heat of −12.5 kJ / mol.

(実施例4〜10及び比較例1〜4)
Chem. Commun., (1995), p789に開示の方法に従って、マイクロ触媒パルス反応器(キャリアガス:He、He流量:30ml/min、パルスサイズ:1μl)を用いてアルキルベンゼンの反応(トルエンの不均化反応、エチルベンゼン及びクメンの分解反応)を行った。なお、使用した各触媒は、反応前にHe気流中で、300℃で1時間加熱した。また、反応後、反応器から流出した生成物を直接ガスクロマトグラフのカラム(GLサイエンス製;Bentone 34 + DIDP(5+5)%/Uniport B 80−100、ステンレスカラム:2m×3mmID、カラム温度:80〜100℃)へ導入して、分析を行った。反応器に充填した触媒量、反応温度及び転化率を表1に示す。
(Examples 4 to 10 and Comparative Examples 1 to 4)
According to the method disclosed in Chem. Commun., (1995), p789, reaction of alkylbenzene (toluene disproportionate) using a microcatalyst pulse reactor (carrier gas: He, He flow rate: 30 ml / min, pulse size: 1 μl). Reaction, decomposition reaction of ethylbenzene and cumene). Each catalyst used was heated at 300 ° C. for 1 hour in a He stream before the reaction. In addition, after the reaction, the product flowing out from the reactor was directly converted into a gas chromatograph column (manufactured by GL Sciences; Bentone 34 + DIDP (5 + 5)% / Uniport B 80-100, stainless steel column: 2 m × 3 mm ID, column temperature: 80 to 100 ° C.) for analysis. Table 1 shows the amount of catalyst charged in the reactor, the reaction temperature, and the conversion rate.

Figure 2007175649
Figure 2007175649

表1の結果から、本発明に従う固体酸を種々の触媒反応の触媒として使用することで、一般的な固体酸であるシリカ−アルミナ(比較触媒1)を触媒として使用した場合に比べて、転化率が大幅に向上することが分る。また、比較例4の結果から、1200℃で焼成して得たアルミナ(α−アルミナ)は、触媒作用がないことが分る。   From the results of Table 1, the use of the solid acid according to the present invention as a catalyst for various catalytic reactions results in conversion as compared with the case where silica-alumina (comparative catalyst 1), which is a general solid acid, is used as a catalyst. It can be seen that the rate is significantly improved. Moreover, it turns out that the alumina ((alpha) -alumina) obtained by baking at 1200 degreeC does not have a catalytic action from the result of the comparative example 4.

Claims (5)

α−アルミナ及びタングステン酸を含有し、比表面積が3〜50m2/gであり、かつアルゴン吸着熱が−14.5kJ/mol以下であることを特徴とする固体酸。 A solid acid comprising α-alumina and tungstic acid, having a specific surface area of 3 to 50 m 2 / g and an argon adsorption heat of −14.5 kJ / mol or less. 前記タングステン酸の含有量が、酸化物として0.1〜10質量%であることを特徴とする請求項1に記載の固体酸。   The solid acid according to claim 1, wherein the content of the tungstic acid is 0.1 to 10% by mass as an oxide. 請求項1又は2に記載の固体酸からなることを特徴とする固体酸触媒。   A solid acid catalyst comprising the solid acid according to claim 1. 水酸化アルミニウムにタングステン酸化合物を含浸させた後、1000℃以上の焼成温度で焼成することを特徴とする請求項1又は2に記載の固体酸の製造方法。   The method for producing a solid acid according to claim 1 or 2, wherein the aluminum hydroxide is impregnated with a tungstic acid compound and then calcined at a calcining temperature of 1000 ° C or higher. 前記焼成温度が1000〜1200℃であることを特徴とする請求項4に記載の固体酸の製造方法。   The said baking temperature is 1000-1200 degreeC, The manufacturing method of the solid acid of Claim 4 characterized by the above-mentioned.
JP2005378982A 2005-12-28 2005-12-28 Solid acid, its manufacturing method, and solid acid catalyst Pending JP2007175649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378982A JP2007175649A (en) 2005-12-28 2005-12-28 Solid acid, its manufacturing method, and solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378982A JP2007175649A (en) 2005-12-28 2005-12-28 Solid acid, its manufacturing method, and solid acid catalyst

Publications (1)

Publication Number Publication Date
JP2007175649A true JP2007175649A (en) 2007-07-12

Family

ID=38301360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378982A Pending JP2007175649A (en) 2005-12-28 2005-12-28 Solid acid, its manufacturing method, and solid acid catalyst

Country Status (1)

Country Link
JP (1) JP2007175649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267338A (en) * 2007-09-28 2009-11-12 Nippon Chemicon Corp Electrode body, and electric double layer capacitor
JP2011167677A (en) * 2010-02-22 2011-09-01 Korea Inst Of Energy Research Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105750A (en) * 1980-01-24 1981-08-22 Nippon Shokubai Kagaku Kogyo Co Ltd Silver catalyst for production of ethylene oxide
JPH02119940A (en) * 1988-08-30 1990-05-08 Imperial Chem Ind Plc <Ici> Manufacturing process for ethylene oxide
JPH03207447A (en) * 1989-10-18 1991-09-10 Union Carbide Chem & Plast Co Inc Catalyst for manufacture of alkalene oxide containing high percentage of silver
JPH078798A (en) * 1993-05-17 1995-01-13 Shell Internatl Res Maatschappij Bv Ethylene oxide catalyst and preparation thereof
JPH07275708A (en) * 1994-04-07 1995-10-24 Sumitomo Metal Mining Co Ltd Denox catalyst and its production, and denitrification method
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT
JP2005254088A (en) * 2004-03-10 2005-09-22 Japan Science & Technology Agency Catalyst for manufacture of methylnaphthalene and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105750A (en) * 1980-01-24 1981-08-22 Nippon Shokubai Kagaku Kogyo Co Ltd Silver catalyst for production of ethylene oxide
JPH02119940A (en) * 1988-08-30 1990-05-08 Imperial Chem Ind Plc <Ici> Manufacturing process for ethylene oxide
JPH03207447A (en) * 1989-10-18 1991-09-10 Union Carbide Chem & Plast Co Inc Catalyst for manufacture of alkalene oxide containing high percentage of silver
JPH078798A (en) * 1993-05-17 1995-01-13 Shell Internatl Res Maatschappij Bv Ethylene oxide catalyst and preparation thereof
JPH07275708A (en) * 1994-04-07 1995-10-24 Sumitomo Metal Mining Co Ltd Denox catalyst and its production, and denitrification method
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT
JP2005254088A (en) * 2004-03-10 2005-09-22 Japan Science & Technology Agency Catalyst for manufacture of methylnaphthalene and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010060062, V. LOGIE et al., "Skeletal Isomerization of Hexenes on Tungsten Oxide Supported on Porous α−Alumina", Journal of Catalysis, 19991115, Vol.188 No.1, Pages90−101 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267338A (en) * 2007-09-28 2009-11-12 Nippon Chemicon Corp Electrode body, and electric double layer capacitor
JP2011167677A (en) * 2010-02-22 2011-09-01 Korea Inst Of Energy Research Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst
KR101068112B1 (en) 2010-02-22 2011-09-27 한국에너지기술연구원 Method for preparing tungsten oxide alumina catalyst, tungsten oxide alumina catalyst and method for removing free fatty acid from waste cooking oil containing free fatty acid using the catalyst
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Similar Documents

Publication Publication Date Title
CA2059711C (en) Ethylene oxide catalyst and process
US5395812A (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
KR100336285B1 (en) Epoxidation catalyst and process
KR101399376B1 (en) Catalyst and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
US7803972B2 (en) Shell catalyst, in particular for oxidation of methanol to formaldehyde, and also method for production thereof
KR100452673B1 (en) Catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide
KR20000047661A (en) Carrier for manufacturing ethylene oxide, catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide
KR20120028286A (en) A support for silver catalyst used in the ethylene oxide production, a preparation method for the same, a silver catalyst prepared from the same, and its use in the ethylene oxide production
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2015077543A (en) Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
US4410453A (en) Ethylene oxide catalyst
JP4119652B2 (en) Hydrocarbon cracking catalyst and process for producing the same
KR0145749B1 (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP2007175649A (en) Solid acid, its manufacturing method, and solid acid catalyst
KR20220052099A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
JP4313117B2 (en) Metal oxide coated alumina composite oxide
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
JP2010201398A (en) Catalyst and method for producing the same
CN107398304B (en) Alpha-alumina carrier of silver catalyst for ethylene epoxidation and preparation method thereof
JP4588183B2 (en) Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
RU2200143C1 (en) Hydrocarbon dehydrogenation catalyst and method of preparation thereof
KR102035471B1 (en) Preparation of dehydrogenation catalysts having superior selectivity
KR101618407B1 (en) Oxidative Dehydrogenation Catalyst of Butane, Method for Preparing Them, and Oxidative Dehydrogenation Method of Butane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426