JP2003277048A - FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT - Google Patents

FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT

Info

Publication number
JP2003277048A
JP2003277048A JP2003008052A JP2003008052A JP2003277048A JP 2003277048 A JP2003277048 A JP 2003277048A JP 2003008052 A JP2003008052 A JP 2003008052A JP 2003008052 A JP2003008052 A JP 2003008052A JP 2003277048 A JP2003277048 A JP 2003277048A
Authority
JP
Japan
Prior art keywords
alumina
product
fired
phase
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003008052A
Other languages
Japanese (ja)
Other versions
JP4366939B2 (en
Inventor
Kazuhisa Kajiwara
和久 梶原
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003008052A priority Critical patent/JP4366939B2/en
Publication of JP2003277048A publication Critical patent/JP2003277048A/en
Application granted granted Critical
Publication of JP4366939B2 publication Critical patent/JP4366939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide α alumina powder which easily yields a dense sintered compact, a fired alumina product for manufacturing the same, and a method for manufacturing the fired alumina product. <P>SOLUTION: The fired alumina product is characterized in that its BET specific surface area is 10 to 20 m<SP>2</SP>/g, its main crystalline phase is an α phase and does not substantially contain a θ phase and its average grain size is ≤0.5 μ. The method for manufacturing the fired alumina product is characterized in that an α alumina precursor not substantially containing metal elements exclusive of aluminum is fired in an atmosphere of ≤600 Pa in partial pressure of steam. The fine α alumina powder is characterized in that its purity is ≥99.99% and its BET specific surface area is ≥15 m<SP>2</SP>/g, intermediate alumina is not substantially included and the relative density of the sintered compact obtained by sintering at 1,250°C under atmospheric pressure is ≥95%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルミナ焼成物、ア
ルミナ焼成物の製造方法およびアルミナ焼成物を用いて
得られる微細αアルミナ粉末に関するものである。
TECHNICAL FIELD The present invention relates to a calcined alumina product, a method for producing a calcined alumina product, and a fine α-alumina powder obtained by using the calcined alumina product.

【0002】[0002]

【従来の技術】αアルミナ粉末は、主結晶相がα相であ
るアルミナ(Al)の粒子であって、例えば透光
管などの各種の焼結体を製造するための原料として幅広
く用いられている。
2. Description of the Related Art α-alumina powder is a particle of alumina (Al 2 O 3 ) whose main crystal phase is α-phase, and is widely used as a raw material for manufacturing various sintered bodies such as light-transmitting tubes. It is used.

【0003】かかるαアルミナ粉末は、例えば水酸化ア
ルミニウム、中間アルミナ、アンモニウム明礬、塩化ア
ルミニウム、アンモニウムアルミニウム炭酸塩などのα
アルミナ前駆体を大気中で焼成してアルミナ焼成物を
得、得られたアルミニウム焼成物を粉砕する方法で製造
することができる(特許文献1)。しかし、かかる製造
方法で得られる従来のαアルミナ粉末では、緻密な焼結
体を得ることが困難であった。
Examples of such α-alumina powder include α-alumina powder such as aluminum hydroxide, intermediate alumina, ammonium alum, aluminum chloride and ammonium aluminum carbonate.
It can be manufactured by a method of firing an alumina precursor in the air to obtain an alumina fired product, and pulverizing the obtained aluminum fired product (Patent Document 1). However, it has been difficult to obtain a dense sintered body with the conventional α-alumina powder obtained by such a manufacturing method.

【0004】[0004]

【特許文献1】 特開昭55−113615号公報[Patent Document 1] JP-A-55-113615

【0005】[0005]

【発明が解決しようとする課題】そこで本発明者は、緻
密な焼結体を容易に与え得るαアルミナ粉末を開発する
べく、その原料であるアルミナ焼成物、かかるアルミナ
焼成物の製造方法、および、かかるアルミナ焼成物を粉
砕することで得られるαアルミナ粉末について鋭意検討
した結果、αアルミナ前駆体を大気中で焼成すると、大
気に含まれる水分の影響により、得られるアルミナ焼成
物は、BET比表面積が小さいか、あるいはθ相を含む
ものとなり、これを粉砕して得たαアルミナ粉末を焼結
させても、緻密な焼結体が得にくいことを見出すととも
に、水蒸気分圧600Paの雰囲気でαアルミナ前駆体
を焼成することで比較的大きなBET比表面積で主結晶
相がα相でθ相が実質的に含まれないアルミナ焼成物を
得ることができること、このアルミナ焼成物を粉砕する
ことで微細なαアルミナ粉末が容易に得られること、そ
して、得られた微細αアルミナ粉末を焼結させること
で、緻密な焼結体が容易に得られることを見出し、本発
明に至った。
SUMMARY OF THE INVENTION Therefore, the present inventors have developed an α-alumina powder capable of easily providing a dense sintered body, a raw material thereof, an alumina calcined product, a method for producing such an alumina calcined product, and As a result of intensive studies on α-alumina powder obtained by pulverizing the alumina calcined product, when the α-alumina precursor is calcined in the air, the resulting alumina calcined product has a BET ratio due to the influence of moisture contained in the air. It was found that the surface area is small or contains the θ phase, and it is difficult to obtain a dense sintered body by sintering the α-alumina powder obtained by pulverizing the powder. By calcining the α-alumina precursor, it is possible to obtain a calcined alumina product having a relatively large BET specific surface area, the main crystal phase being the α phase, and the θ phase not being substantially contained. It was found that a fine α-alumina powder can be easily obtained by crushing this alumina calcined product, and a dense sintered body can be easily obtained by sintering the obtained fine α-alumina powder. The present invention has been reached.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、BE
T比表面積が10〜20m2/gであり、主結晶相がα
相であり、θ相を実質的に含まず、粒径が0.5μm以
下であることを特徴とするアルミナ焼成物を提供するも
のである。
That is, the present invention is based on BE
T specific surface area is 10 to 20 m 2 / g, and the main crystalline phase is α
The present invention provides an alumina calcined product which is a phase and which does not substantially contain the θ phase and has a particle size of 0.5 μm or less.

【0007】また本発明は、アルミニウム以外の金属元
素を実質的に含まないαアルミナ前駆体を水蒸気分圧6
00Pa以下の雰囲気で焼成することを特徴とするアル
ミナ焼成物の製造方法を提供することにある。
Further, in the present invention, the α-alumina precursor containing substantially no metal elements other than aluminum has a water vapor partial pressure of 6
Another object of the present invention is to provide a method for producing an alumina fired product, which is characterized by firing in an atmosphere of 00 Pa or less.

【0008】さらに本発明は、純度99.99%以上、
BET比表面積15m2/g以上で実質的に中間アルミ
ナを含まず、1250℃、常圧で焼結したとき、得られ
る焼結体の相対密度が95%以上であることを特徴とす
る微細αアルミナ粉末を提供するものである。
Further, the present invention has a purity of 99.99% or more,
A BET specific surface area of 15 m 2 / g or more and substantially no intermediate alumina, and when sintered at 1250 ° C. under normal pressure, the relative density of the obtained sintered body is 95% or more. Alumina powder is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のアルミナ焼成物は、BET比表面積が10m2
/g以上、好ましくは12m2/g以上、より好ましく
は13m2/g以上であり、また20m2/g以下、好ま
しくは17m2/g以下である。またこのアルミナ焼成
物は、平均粒径が0.5μm以下であり、好ましくは
0.1μm以下である。なお、平均粒径は、焼成物を透
過型電子顕微鏡により写真撮影し、像の中の粒子の粒径
を測定することにより求めることができる。さらに、こ
のアルミナ焼成物は、その主結晶相がα相であり、α相
以外の相、例えばθ相を実質的に含まないものである。
アルミナ焼成物の結晶相は、焼成物のX線回折(XR
D)スペクトルを測定し、そのスペクトルから求めるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The alumina calcined product of the present invention has a BET specific surface area of 10 m 2.
/ G or more, preferably 12 m 2 / g or more, more preferably 13 m 2 / g or more, and 20 m 2 / g or less, preferably 17 m 2 / g or less. The average particle diameter of the fired alumina product is 0.5 μm or less, preferably 0.1 μm or less. The average particle size can be determined by taking a photograph of the fired product with a transmission electron microscope and measuring the particle size of the particles in the image. Further, this alumina calcined product has an α phase as a main crystal phase and does not substantially contain a phase other than the α phase, for example, a θ phase.
The crystal phase of the fired product of the alumina is X-ray diffraction (XR
D) It is possible to obtain a spectrum by measuring the spectrum.

【0010】本発明のアルミナ焼成物は、αアルミナ前
駆体を水蒸気分圧600Pa以下の雰囲気で焼成するこ
とにより求めることができる。
The alumina calcined product of the present invention can be obtained by calcining the α-alumina precursor in an atmosphere having a water vapor partial pressure of 600 Pa or less.

【0011】ここで用いられるαアルミナ前駆体とは、
例えば1000℃以上の温度で焼成することによりαア
ルミナとなる化合物であり、具体的には結晶相がγ相、
χ相、θ相、δ相、ρ相、κ相である結晶質の中間アル
ミナ、非晶質の中間アルミナなどの中間アルミナ、結晶
相がギブサイト、ベーマイト、擬ベーマイト、バイヤラ
イト、ノルストランダイト、ダイアスポアなどである結
晶質の水酸化アルミニウム、非晶質の水酸化アルミニウ
ムなどの水酸化アルミニウムなどのほか、蓚酸アルミニ
ウム、酢酸アルミニウム、ステアリン酸アルミニウム、
アンモニウム明礬、乳酸アルミニウム、ラウリン酸アル
ミニウム、炭酸アンモニウムアルミニウム、硫酸アルミ
ニウム、硫酸アンモニウムアルミニウム、硝酸アルミニ
ウム、硝酸アンモニウムアルミニウムなどがある。これ
らは単独または2種以上混合して用いることができる。
中でも中間アルミナまたは水酸化アルミニウムを主成分
とするものの適用が推奨される。このときの中間アルミ
ナや水酸化アルミニウムの量は、αアルミナ前駆体を基
準にして、通常60重量%以上であり、好ましくは80
重量%以上である。またαアルミナ前駆体は、アルミニ
ウム以外の金属元素を実質的に含まないものであり、例
えば、珪素(Si)、鉄(Fe)、チタン(Ti)、ナ
トリウム(Na)、カルシウム(Ca)の元素含有量が
各々50ppm以下である。またこれらの合計量は10
0ppm以下であることが好ましい。
The α-alumina precursor used here is
For example, it is a compound that becomes α-alumina by firing at a temperature of 1000 ° C. or higher, and specifically the crystal phase is γ-phase,
Crystalline intermediate alumina such as χ phase, θ phase, δ phase, ρ phase, κ phase, intermediate alumina such as amorphous intermediate alumina, gibbsite, boehmite, pseudoboehmite, bayerite, norstrandite, etc. In addition to crystalline aluminum hydroxide such as diaspore, aluminum hydroxide such as amorphous aluminum hydroxide, aluminum oxalate, aluminum acetate, aluminum stearate,
Examples include ammonium alum, aluminum lactate, aluminum laurate, ammonium carbonate, aluminum sulfate, aluminum ammonium sulfate, aluminum nitrate, and ammonium aluminum nitrate. These may be used alone or in combination of two or more.
Above all, it is recommended to use those containing intermediate alumina or aluminum hydroxide as a main component. The amount of intermediate alumina or aluminum hydroxide at this time is usually 60% by weight or more, preferably 80% by weight, based on the α-alumina precursor.
It is more than weight%. The α-alumina precursor is substantially free of metal elements other than aluminum, and is, for example, an element of silicon (Si), iron (Fe), titanium (Ti), sodium (Na), calcium (Ca). Each content is 50 ppm or less. The total amount of these is 10
It is preferably 0 ppm or less.

【0012】このαアルミナ前駆体は、少量のαアルミ
ナの存在下に焼成することが好ましい。少量のαアルミ
ナの存在下にαアルミナ前駆体を焼成することにより、
より微細なαアルミナ粉末を得ることが可能なアルミナ
焼成物を製造することができる。このαアルミナを用い
る場合その存在量は、αアルミナ前駆体を基準にして、
通常1重量%以上であり、また20重量%以下、好まし
くは10重量%以下である。
This α-alumina precursor is preferably calcined in the presence of a small amount of α-alumina. By calcining the α-alumina precursor in the presence of a small amount of α-alumina,
It is possible to manufacture an alumina calcined product that can obtain a finer α-alumina powder. When this α-alumina is used, its abundance is based on the α-alumina precursor,
It is usually 1% by weight or more, and 20% by weight or less, preferably 10% by weight or less.

【0013】αアルミナ前駆体をαアルミナと共存させ
るには、例えばαアルミナ前駆体をαアルミナ粒子と混
合してもよいし、αアルミナ前駆体を仮焼して、αアル
ミナ前駆体の一部をαアルミナに転移させて、αアルミ
ナ前駆体をαアルミナと共存させてもよい。αアルミナ
前駆体をαアルミナ粒子と混合する方法では、混合する
αアルミナ粒子は、その粒径が、αアルミナ前駆体を焼
成し粉砕し得られる微細αアルミナ粉末の粒径より小さ
いことが好ましく、例えば0.1μm以下であることが
好ましい。
To make the α-alumina precursor coexist with the α-alumina, for example, the α-alumina precursor may be mixed with the α-alumina particles, or the α-alumina precursor may be calcined to form a part of the α-alumina precursor. May be converted to α-alumina, and the α-alumina precursor may coexist with α-alumina. In the method of mixing the α-alumina precursor with the α-alumina particles, the particle size of the α-alumina particles to be mixed is preferably smaller than the particle size of the fine α-alumina powder obtained by firing and grinding the α-alumina precursor, For example, it is preferably 0.1 μm or less.

【0014】αアルミナ前駆体を仮焼する方法では、α
アルミナ前駆体中に、微小のαアルミナを存在させるこ
とができる。このときの仮焼は、例えばαアルミナ前駆
体を800℃以上、1200℃以下の空気中に保持する
ことにより行うことができる。微小αアルミナの含有量
は、焼成温度および時間を変えることにより調節するこ
とができ、例えば、焼成温度を高くしたり、または焼成
時間を長くすることにより、αアルミナ含有量を増やす
ことができる。
In the method of calcining the α-alumina precursor, α
Fine α-alumina can be present in the alumina precursor. The calcination at this time can be performed, for example, by holding the α-alumina precursor in the air at 800 ° C. or higher and 1200 ° C. or lower. The content of fine α-alumina can be adjusted by changing the firing temperature and time, and for example, the α-alumina content can be increased by increasing the firing temperature or prolonging the firing time.

【0015】また上で示した所定量のαアルミナを含む
αアルミナ前駆体であれば、市販のものを用いることが
できる。
As the α-alumina precursor containing the predetermined amount of α-alumina shown above, a commercially available product can be used.

【0016】αアルミナを含むαアルミナ前駆体には、
必要に応じて粉砕を施してもよい。粉砕を行うことによ
り、αアルミナ前駆体にαアルミナをより均一に分散さ
せることができる。粉砕は、振動ミル、ボールミルまた
はジェットミルなどを用いて行うことができる。粉砕で
は、粉砕媒体からの珪素、カルシウムの汚染を低減する
ことが好ましく、そのため、振動ミルやボールミルの粉
砕媒体またはジェットミルのノズル、ライナーには純度
99重量%以上のアルミナを材料として用いることが推
奨される。
The α-alumina precursor containing α-alumina includes
You may pulverize as needed. By pulverizing, α-alumina can be more uniformly dispersed in the α-alumina precursor. The pulverization can be performed using a vibration mill, a ball mill, a jet mill or the like. In the pulverization, it is preferable to reduce the contamination of silicon and calcium from the pulverizing medium. Therefore, alumina having a purity of 99% by weight or more is used as a material for the pulverizing medium of the vibration mill or the ball mill, the nozzle of the jet mill, or the liner. Recommended.

【0017】アルミナ焼成物の製造に用いられるαアル
ミナ前駆体は、その嵩密度(嵩比重)が低い方が好まし
く、例えば酸化物であるαアルミナ(Al23)換算の
嵩密度が0.5g/cm3以下、さらには0.3g/cm
3以下であることが好ましい。嵩密度が低いαアルミナ
前駆体を焼成することにより、より微細なアルミナ粉末
を得るのに適したアルミナ焼成物を製造することができ
る。ここでαアルミナ換算の嵩密度とは、αアルミナ前
駆体のαアルミナ換算の質量をαアルミナ前駆体の容積
で除して求めた嵩密度である。
The α-alumina precursor used in the production of the calcined alumina is preferably low in bulk density (bulk specific gravity). For example, the bulk density of the oxide α-alumina (Al 2 O 3 ) is 0. 5g / cm 3 or less, further 0.3g / cm
It is preferably 3 or less. By calcining the α-alumina precursor having a low bulk density, an alumina calcined product suitable for obtaining a finer alumina powder can be manufactured. The α-alumina-equivalent bulk density is the bulk density obtained by dividing the α-alumina-equivalent mass of the α-alumina precursor by the volume of the α-alumina precursor.

【0018】上で示したαアルミナ前駆体または任意に
粉砕を施されたαアルミナ前駆体は焼成される。焼成
は、水蒸気分圧を制御した雰囲気で行われ、通常、水蒸
気分圧が600Pa以下(全圧1気圧(0.1MPa)
のガスであれば露点0℃以下)である雰囲気を維持しな
がら行われる。焼成雰囲気の水蒸気分圧は低い方が好ま
しく、165Pa以下(全圧1気圧のガスであれば露点
−15℃以下)、さらには40Pa以下(全圧1気圧の
ガスであれば露点−30℃以下)であることが好まし
い。
The α-alumina precursor shown above or optionally ground α-alumina precursor is calcined. Firing is performed in an atmosphere in which the partial pressure of water vapor is controlled, and the partial pressure of water vapor is usually 600 Pa or less (total pressure 1 atm (0.1 MPa)).
In the case of the above gas, the dew point is 0 ° C. or less) while maintaining the atmosphere. It is preferable that the partial pressure of water vapor in the firing atmosphere is low, that is, 165 Pa or less (a dew point of -15 ° C or less if the gas has a total pressure of 1 atm), and 40 Pa or less (dew point of -30 ° C or less if the gas has a total pressure of 1 atm). ) Is preferable.

【0019】焼成は、雰囲気を水蒸気分圧600Pa以
下に調節することができる装置で行えばよく、例えば、
管状型電気炉、箱型電気炉、トンネル炉、遠赤外線炉、
マイクロ波加熱炉、シャフト炉、反射炉、ロータリー
炉、ローラーハース炉のような焼成炉を用いて、炉内か
らガスを排出したり、またはガスを導入することにより
行うことができる。また焼成のとき、水蒸気がほとんど
発生しない中間アルミナのようなαアルミナ前駆体を原
料とするときには、容器にαアルミナ前駆体を入れ、水
蒸気分圧が600Pa以下の乾燥空気を導入した後、密
閉して行うこともできる。焼成は、水蒸気分圧600P
a以下の雰囲気であれば、減圧下で行ってもよく、例え
ば、空気、水素、ヘリウム、窒素、アルゴンのようなガ
スからなる全圧600Pa以下の減圧雰囲気下で行うこ
ともできる。このときに用いる焼成炉は回分式、連続式
いずれの方式であってもよい。焼成は、αアルミナ前駆
体をαアルミナに相転移させるのに必要な温度で行えば
よく、このときの温度は、通常1000℃以上、好まし
くは1100℃以上、さらに好ましくは1160℃以上
であり、1250℃以下、好ましくは1200℃以下で
ある。焼成時間は、用いる焼成炉の種類、焼成温度によ
り異なるが、通常10分以上であり、好ましくは30分
以上、12時間以内である。
The firing may be carried out with an apparatus capable of adjusting the atmosphere to a water vapor partial pressure of 600 Pa or less.
Tubular electric furnace, box electric furnace, tunnel furnace, far infrared furnace,
It can be carried out by using a firing furnace such as a microwave heating furnace, a shaft furnace, a reverberation furnace, a rotary furnace, or a roller hearth furnace to discharge gas from the furnace or introduce gas. Further, when using an α-alumina precursor such as intermediate alumina that hardly generates water vapor during firing, put the α-alumina precursor in a container, introduce dry air having a water vapor partial pressure of 600 Pa or less, and then seal the container. You can also do it. Calcination is steam partial pressure 600P
As long as it is an atmosphere of a or less, it may be carried out under reduced pressure, for example, it may be carried out under a reduced pressure atmosphere of a total pressure of 600 Pa or less composed of gas such as air, hydrogen, helium, nitrogen and argon. The firing furnace used at this time may be either a batch type or a continuous type. The calcination may be carried out at a temperature necessary for the α-alumina precursor to undergo a phase transition to α-alumina, and the temperature at this time is usually 1000 ° C. or higher, preferably 1100 ° C. or higher, more preferably 1160 ° C. or higher, It is 1250 ° C or lower, preferably 1200 ° C or lower. The firing time varies depending on the type of firing furnace used and the firing temperature, but is usually 10 minutes or longer, preferably 30 minutes or longer and 12 hours or less.

【0020】炉内に導入するガスは、水蒸気分圧を調節
したものを用いることが好ましく、例えば、空気をコン
プレッサにより圧縮して、空気に含まれる水分を凝縮さ
せ、この凝縮した水分を分離した後、減圧して得られる
乾燥空気、空気を除湿機により水分を除去して得られる
乾燥空気、または液体窒素を気化させた乾燥窒素なども
好適に用いられる。また水分を含まないものであれば、
空気、ヘリウム、窒素などを充填した市販のボンベガス
を用いることもできる。
As the gas introduced into the furnace, it is preferable to use a gas whose steam partial pressure is adjusted. For example, air is compressed by a compressor to condense the water contained in the air, and the condensed water is separated. Then, dry air obtained by decompressing, dry air obtained by removing moisture from the air by a dehumidifier, or dry nitrogen obtained by vaporizing liquid nitrogen is also suitably used. If it does not contain water,
It is also possible to use a commercially available cylinder gas filled with air, helium, nitrogen or the like.

【0021】焼成して得られたアルミナ粉末には、必要
に応じて粉砕、分級などの粒度調整を施してもよい。粉
砕は振動ミル、ボールミル、ジェットミルなどを行うこ
とができ、分級は篩などを用いて行うことができる。
The alumina powder obtained by firing may be subjected to particle size adjustment such as pulverization and classification, if necessary. The pulverization can be performed by a vibration mill, a ball mill, a jet mill, or the like, and the classification can be performed by using a sieve or the like.

【0022】このようにして得られる、本発明のアルミ
ナ焼成物は、容易に粉砕されて微粒子化するものであ
る。このアルミナ焼成物を粉砕することにより、微細ア
ルミナ粉末を容易に得ることができる。粉砕して得られ
る微細アルミナ粉末は、通常、純度が99.99%以上
であり、BET比表面積が15m2/g以上であり、結
晶相は実質的にα相であり、θ相を含まないものであ
る。またこの微細アルミナ粉末は、成形圧30MPaで
1軸プレス、ついで成形圧100MPaで静水圧プレス
(CIP)して成形し、この成形体を1250℃の空気
中、常圧で2時間焼結したときの相対密度95%以上の
ものである。この微細アルミナ粉末は、通常、Si、F
e、Ti、Na、Caの含有量が元素換算で各々50p
pm以下、かつそれらの合計量が100ppm以下であ
る。もちろん、原料であるαアルミナ前駆体の純度向
上、焼成炉の材質の選定および任意に行われる粉砕のと
きに用いられる粉砕媒体の材質の選定などにより、これ
らの元素をさらに低減したものも得ることができる。
The alumina calcined product of the present invention thus obtained is easily pulverized into fine particles. A fine alumina powder can be easily obtained by pulverizing the alumina calcined product. The fine alumina powder obtained by pulverization usually has a purity of 99.99% or more, a BET specific surface area of 15 m 2 / g or more, a crystal phase substantially an α phase, and no θ phase. It is a thing. When this fine alumina powder was uniaxially pressed at a molding pressure of 30 MPa and then hydrostatically pressed (CIP) at a molding pressure of 100 MPa, the compact was sintered in air at 1250 ° C. under normal pressure for 2 hours. Relative density of 95% or more. This fine alumina powder is usually Si, F
The content of e, Ti, Na and Ca is 50p each in element conversion
pm or less, and their total amount is 100 ppm or less. Of course, by further improving the purity of the raw material α-alumina precursor, selecting the material of the firing furnace, and selecting the material of the grinding medium used at the time of optional grinding, it is possible to obtain those in which these elements are further reduced. You can

【0023】かかる微細αアルミナ粉末は、例えば焼結
体を製造するための原料として用いることができる。か
かる微細αアルミナ粉末を焼結させて得られる焼結体と
しては、例えばウエハーハンドラーなどの半導体製造装
置部品、酸素センサーやインクジェットヘッドなどの電
子部品、ローラー、歯車などの機械部品、メタルハライ
ドランプなどの透光管、排ガスなど気体中の固形分除
去、アルミニウム溶湯濾過、ビールなどの液中の固形分
除去、燃料電池の水素選択透過などのために用いられる
セラミックフィルター(多孔質燒結体)などが挙げられ
る。また、かかる微細αアルミナ粉末は、通常のαアル
ミナ粉末と同様に、研磨材、磁気メディアへの添加剤、
トナーへの添加剤、半導体封止剤などへ添加される熱導
電性フィラーなどとしても用いることができる。研磨材
として用いる場合には、そのままで、またはテープ表面
に担持させて研磨テープとして用いることができ、ハー
ドディスクなど金属の表面の精密研磨、半導体などのC
MP研磨などに用いることもできる。
The fine α-alumina powder can be used as a raw material for producing a sintered body, for example. Examples of the sintered body obtained by sintering the fine α-alumina powder include semiconductor manufacturing equipment parts such as wafer handlers, electronic parts such as oxygen sensors and inkjet heads, mechanical parts such as rollers and gears, and metal halide lamps. Translucent tubes, removal of solids in gases such as exhaust gas, filtration of molten aluminum, removal of solids in liquids of beer, etc., ceramic filters (porous sintered bodies) used for selective permeation of hydrogen in fuel cells, etc. To be Further, such fine α-alumina powder is similar to the ordinary α-alumina powder, and is an additive for abrasives and magnetic media,
It can also be used as an additive to a toner, a thermally conductive filler added to a semiconductor sealant, or the like. When it is used as an abrasive, it can be used as it is or as an abrasive tape by being carried on the surface of a tape. It can be used for precision polishing of a metal surface such as a hard disk or C
It can also be used for MP polishing and the like.

【0024】[0024]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが本発明はこれら実施例により制限されるもので
はない。なお、BET比表面積、結晶相およびSi、F
e、Ti、Na、Caの含有量は以下の方法で求めた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. BET specific surface area, crystalline phase and Si, F
The contents of e, Ti, Na and Ca were determined by the following method.

【0025】BET比表面積(m2/g):窒素吸着法
により求めた。
BET specific surface area (m 2 / g): Determined by nitrogen adsorption method.

【0026】結晶相:試料をX線回折装置(商品名「R
int−2100」、理学電機製)により分析し、得ら
れたXRDスペクトルのピークデータから結晶相を同定
し、そのうち相対ピーク強度の最も高いものを主結晶相
とした。
Crystal phase: A sample was analyzed by an X-ray diffractometer (trade name "R
int-2100 ", manufactured by Rigaku Denki Co., Ltd.), and the crystal phase was identified from the peak data of the obtained XRD spectrum, and the crystal phase having the highest relative peak intensity was selected as the main crystal phase.

【0027】Si、Fe、Ti、Na、Caの含有量
(ppm):発光分光分析により求めた。
Content (ppm) of Si, Fe, Ti, Na, Ca: Determined by optical emission spectroscopy.

【0028】実施例1 〔中間アルミナ粉末の調製〕アルミニウムイソプロポキ
サイドを加水分解して得られた水酸化アルミニウムを仮
焼して、主結晶相がθ相であり、αアルミナを3重量%
含む中間アルミナを得た。なお、中間アルミナ中のαア
ルミナ含有量は、中間アルミナをX線回折装置により分
析し、得られたXRDスペクトルと、中間アルミナに対
してαアルミナを所定量添加して得た標準スペクトルと
を対比して、αアルミナ含有量を算出した。上の中間ア
ルミナをジェットミル粉砕して、嵩密度(αアルミナ換
算)0.21g/cm3の中間アルミナ粉末を得た。
Example 1 [Preparation of Intermediate Alumina Powder] Aluminum hydroxide obtained by hydrolyzing aluminum isopropoxide was calcined, and the main crystal phase was θ phase, and α alumina was 3% by weight.
The intermediate alumina containing was obtained. The α-alumina content in the intermediate alumina is obtained by analyzing the intermediate alumina with an X-ray diffractometer and comparing the obtained XRD spectrum with a standard spectrum obtained by adding a predetermined amount of α-alumina to the intermediate alumina. Then, the α-alumina content was calculated. The above intermediate alumina was pulverized by a jet mill to obtain an intermediate alumina powder having a bulk density (converted to α-alumina) of 0.21 g / cm 3 .

【0029】〔アルミナ焼成物の製造〕この中間アルミ
ナ粉末100gを容積8L(リットル)の雰囲気焼成炉
(商品名「管状型雰囲気炉」、株式会社モトヤマ製)に
入れ、炉内に露点−15℃(水蒸気分圧165Pa)の
乾燥空気を1L/分で導入して、炉内雰囲気の露点を−
15℃に保持しながら、1170℃まで昇温し、そのま
ま3時間保持した後、徐冷する条件で焼成して、アルミ
ナ焼成物を得た。このアルミナ焼成物は、BET比表面
積が13m2/gであり、主結晶相がα相でありθ相を
含まないものであり、平均粒径が0.1μmであった。
ここで用いた中間アルミナのX線回折(XRD)スペク
トルを図1に示し、得られたアルミナ焼成物のXRDス
ペクトルを図2に示す。なお、アルミナ焼成物中のθ相
の有無は、アルミナ焼成物をX線回折装置により分析
し、得られたXRDスペクトルからθ相(回折角32.
7°)のピーク強度Zと、α相(回折角57.5°)の
ピーク強度Wを求め、このときの比Z/Wが0.01よ
り大きいものをθ相有りと評価した。
[Production of Alumina Burned Product] 100 g of this intermediate alumina powder was placed in an atmosphere firing furnace (trade name “Tube type atmosphere furnace”, manufactured by Motoyama Co., Ltd.) having a volume of 8 L (liter), and the dew point was −15 ° C. in the furnace. Dry air having a water vapor partial pressure of 165 Pa was introduced at a rate of 1 L / min to change the dew point of the atmosphere in the furnace to −
While maintaining the temperature at 15 ° C., the temperature was raised to 1170 ° C., and the temperature was maintained for 3 hours, followed by calcining under the condition of slow cooling to obtain a calcined alumina product. This alumina calcined product had a BET specific surface area of 13 m 2 / g, a main crystal phase of α phase and no θ phase, and an average particle size of 0.1 μm.
The X-ray diffraction (XRD) spectrum of the intermediate alumina used here is shown in FIG. 1, and the XRD spectrum of the obtained calcined alumina is shown in FIG. The presence or absence of the θ phase in the fired alumina was analyzed by an X-ray diffractometer, and the θ phase (diffraction angle 32.
The peak intensity Z of 7 °) and the peak intensity W of the α phase (diffraction angle 57.5 °) were obtained, and the one having a ratio Z / W of more than 0.01 at this time was evaluated as having the θ phase.

【0030】〔微細アルミナ粉末の製造〕このアルミナ
焼成物を、振動ミル(粉砕媒体:アルミナ製)を用いて
粉砕し、微細アルミナ粉末を得た。この微細アルミナ粉
末は、BET比表面積が16m2/gであり、またSi
含有量19ppm、Fe含有量8ppm、Ti含有量1
ppm以下、Na含有量8ppm、Ca含有量3ppm
であり、純度が99.996%であった。この粉末の透
過型電子顕微鏡(TEM)写真を図3に示す。この粉末
を成形圧30MPaで1軸プレス、ついで成形圧100
MPaで静水圧プレス(CIP)して成形し、この成形
体を1250℃の空気中、常圧で2時間焼結して得られ
る焼結体の相対密度は97%であった。
[Production of Fine Alumina Powder] This alumina fired product was pulverized using a vibration mill (pulverization medium: made of alumina) to obtain fine alumina powder. This fine alumina powder has a BET specific surface area of 16 m 2 / g and Si
Content 19ppm, Fe content 8ppm, Ti content 1
ppm or less, Na content 8 ppm, Ca content 3 ppm
And the purity was 99.996%. A transmission electron microscope (TEM) photograph of this powder is shown in FIG. This powder is uniaxially pressed at a molding pressure of 30 MPa, then a molding pressure of 100
It was molded by isostatic pressing (CIP) at MPa, and the relative density of the sintered body obtained by sintering this molded body in air at 1250 ° C. for 2 hours at normal pressure was 97%.

【0031】上で示した微細アルミナ粉末を用いれば、
機械的強度や耐食性に優れるセラミックスを容易に得る
ことができる。またこの微細アルミナ粉末を砥粒として
用いれば、高い研磨速度で、かつ研磨キズを生じない研
磨材を得ることができる。
If the fine alumina powder shown above is used,
Ceramics having excellent mechanical strength and corrosion resistance can be easily obtained. Further, if this fine alumina powder is used as abrasive grains, it is possible to obtain an abrasive having a high polishing rate and free from polishing scratches.

【0032】実施例2 アルミニウムイソプロポキサイドに、平均粒径0.1μ
mのαアルミナ粉末を添加した後、加水分解して、主結
晶相が擬ベーマイトであり、1重量%のαアルミナを含
む水酸化アルミニウムを得た。
Example 2 Aluminum isopropoxide was mixed with an average particle size of 0.1 μm.
After the addition of α-alumina powder of m, hydrolysis was performed to obtain aluminum hydroxide having a main crystal phase of pseudo-boehmite and containing 1% by weight of α-alumina.

【0033】得られた水酸化アルミニウム100gを、
実施例1の〔アルミナ焼成物の製造〕と同じ条件で焼成
して、アルミナ焼成物を得た。このアルミナ焼成物は、
BET比表面積が14m2/gであり、主結晶相がα相
でありθ相を含まないものであり、平均粒径が0.1μ
mであった。
100 g of the obtained aluminum hydroxide was added to
Firing was performed under the same conditions as in [Production of Alumina Calcined Product] of Example 1 to obtain an alumina calcined product. This alumina calcined product is
It has a BET specific surface area of 14 m 2 / g, a main crystal phase of α phase and no θ phase, and an average particle size of 0.1 μm.
It was m.

【0034】上で示した微細アルミナ粉末を用いれば、
機械的強度や耐食性に優れるセラミックスを容易に得る
ことができる。またこの微細アルミナ粉末を砥粒として
用いれば、高い研磨速度で、かつ研磨キズを生じない研
磨材を得ることができる。
If the fine alumina powder shown above is used,
Ceramics having excellent mechanical strength and corrosion resistance can be easily obtained. Further, if this fine alumina powder is used as abrasive grains, it is possible to obtain an abrasive having a high polishing rate and free from polishing scratches.

【0035】実施例3 焼成のとき、炉内に導入する空気の露点を0℃(水蒸気
分圧600Pa)に変えた以外は、実施例1と同じ操作
を行って、アルミナ焼成物を得た。このアルミナ焼成物
は、BET比表面積が11m2/gであり、主結晶相が
α相でありθ相を含まないものであり、平均粒径が0.
1μmであった。
Example 3 An alumina calcined product was obtained by performing the same operation as in Example 1 except that the dew point of the air introduced into the furnace during the calcination was changed to 0 ° C. (steam partial pressure 600 Pa). This alumina calcined product had a BET specific surface area of 11 m 2 / g, a main crystal phase of α phase and no θ phase, and an average particle size of 0.1.
It was 1 μm.

【0036】上で示した微細アルミナ粉末を用いれば、
機械的強度や耐食性に優れるセラミックスを容易に得る
ことができる。またこの微細アルミナ粉末を砥粒として
用いれば、高い研磨速度で、かつ研磨キズを生じない研
磨材を得ることができる。
If the fine alumina powder shown above is used,
Ceramics having excellent mechanical strength and corrosion resistance can be easily obtained. Further, if this fine alumina powder is used as abrasive grains, it is possible to obtain an abrasive having a high polishing rate and free from polishing scratches.

【0037】比較例1 焼成のとき、炉内に導入する空気の露点を20℃(水蒸
気分圧2300Pa)に変えた以外は、実施例1と同じ
操作を行って、アルミナ焼成物を得た。このアルミナ焼
成物は、BET比表面積が9m2/gであり、主結晶相
がα相でありθ相を含まないものであった。
Comparative Example 1 An alumina calcined product was obtained by the same procedure as in Example 1 except that the dew point of the air introduced into the furnace during the calcining was changed to 20 ° C. (steam partial pressure 2300 Pa). This alumina calcined product had a BET specific surface area of 9 m 2 / g, a main crystal phase of α phase and no θ phase.

【0038】このアルミナ焼成物について、実施例1の
〔微細アルミナ粉末の製造〕と同じ操作を行って、アル
ミナ粉末を得た。このアルミナ粉末は、BET比表面積
が11m2/gであった。この粉末を成形圧30MPa
で1軸プレス、ついで成形圧100MPaで静水圧プレ
ス(CIP)して成形し、この成形体を1250℃の空
気中、常圧で2時間焼結して得られた焼結体の相対密度
は90%であった。
The same operation as in [Production of Fine Alumina Powder] of Example 1 was performed on this fired alumina product to obtain an alumina powder. This alumina powder had a BET specific surface area of 11 m 2 / g. This powder is molded at a pressure of 30 MPa
By uniaxial pressing, then isostatic pressing (CIP) at a molding pressure of 100 MPa, and molding the molded body in air at 1250 ° C. for 2 hours at normal pressure. It was 90%.

【0039】比較例2 焼成温度を1150℃に変えた以外は、比較例1と同じ
操作を行って、アルミナ粉末を得た。このアルミナ粉末
は、BET比表面積が10m2/gであり、主結晶相はα
相であったが、θ相を含むものであった。
Comparative Example 2 Alumina powder was obtained in the same manner as in Comparative Example 1 except that the firing temperature was changed to 1150 ° C. This alumina powder has a BET specific surface area of 10 m 2 / g and a main crystal phase of α
Although it was a phase, it contained a θ phase.

【0040】試験例1 嵩密度(αアルミナ換算)0.2g/cm3の中間アル
ミナ粉末を用い、炉内雰囲気の露点と焼成温度を変えた
以外は、実施例1の〔アルミナ焼成物の製造〕と同じ操
作を行って、アルミナ焼成物を得た。各露点における焼
成温度と得られたアルミナ焼成物のBET比表面積の相
関を図4に示す。
Test Example 1 [Production of Alumina Burned Product of Example 1], except that an intermediate alumina powder having a bulk density (α-alumina conversion) of 0.2 g / cm 3 was used and the dew point of the furnace atmosphere and the firing temperature were changed. ] The same operation as above was performed to obtain an alumina calcined product. FIG. 4 shows the correlation between the firing temperature at each dew point and the BET specific surface area of the obtained alumina fired product.

【0041】試験例2 嵩密度(αアルミナ換算)0.9g/cm3の中間アル
ミナ粉末を用い、焼成温度を変えた以外は、実施例1の
〔アルミナ焼成物の製造〕と同じ操作を行って、アルミ
ナ焼成物を得た。焼成温度と得られたアルミナ焼成物の
BET比表面積の相関を図5に示す。
Test Example 2 The same operation as in [Production of Alumina Burned Product] of Example 1 was carried out except that an intermediate alumina powder having a bulk density (converted to α-alumina) of 0.9 g / cm 3 was used and the firing temperature was changed. As a result, an alumina calcined product was obtained. FIG. 5 shows the correlation between the calcination temperature and the BET specific surface area of the obtained calcinated alumina.

【0042】試験例3 水酸化アルミナ粉末を用い、焼成温度を変えた以外は、
実施例1の〔アルミナ焼成物の製造〕と同じ操作を行っ
て、アルミナ焼成物を得た。焼成温度と得られたアルミ
ナ焼成物のBET比表面積の相関を図6に示す。
Test Example 3 Alumina hydroxide powder was used, except that the firing temperature was changed.
The same operation as in [Production of Alumina Fired Product] of Example 1 was performed to obtain an alumina fired product. FIG. 6 shows the correlation between the calcination temperature and the BET specific surface area of the obtained calcinated alumina.

【0043】[0043]

【発明の効果】本発明のアルミナ焼成物は、微細αアル
ミナ粉末の製造用原料として好適である。また本発明の
アルミナ焼成物の製造方法によれば、前記のアルミナ焼
成物を容易に得ることができる。さらに、本発明の微細
αアルミナ粉末を焼結させると緻密な焼結体となるの
で、機械的強度や耐食性に優れる焼結体(セラミック
ス)を得ることができる。
The alumina calcined product of the present invention is suitable as a raw material for producing fine α-alumina powder. Further, according to the method for producing a calcined alumina product of the present invention, the calcined alumina product can be easily obtained. Furthermore, when the fine α-alumina powder of the present invention is sintered, a dense sintered body is obtained, so that a sintered body (ceramics) having excellent mechanical strength and corrosion resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で用いた中間アルミナのXRDスペク
トル。
1 is an XRD spectrum of the intermediate alumina used in Example 1. FIG.

【図2】実施例1で得られたアルミナ焼成物のXRDス
ペクトル。
2 is an XRD spectrum of the calcined alumina material obtained in Example 1. FIG.

【図3】実施例1で得られた微細アルミナ粉末のTEM
写真。
FIG. 3 TEM of the fine alumina powder obtained in Example 1.
Photo.

【図4】嵩密度0.2g/cm3の中間アルミナ粉末を
焼成したときの焼成温度と得られたアルミナ焼成物のB
ET比表面積の相関図。
FIG. 4 is a firing temperature when firing an intermediate alumina powder having a bulk density of 0.2 g / cm 3 and the obtained alumina fired product B.
Correlation diagram of ET specific surface area.

【図5】嵩密度0.9g/cm3の中間アルミナ粉末を
焼成したときの焼成温度と得られたアルミナ焼成物のB
ET比表面積の相関図。
FIG. 5: Baking temperature when firing an intermediate alumina powder having a bulk density of 0.9 g / cm 3 and B of the obtained alumina fired product
Correlation diagram of ET specific surface area.

【図6】水酸化アルミニウムを焼成したときの焼成温度
と得られたアルミナ焼成物のBET比表面積の相関図。
FIG. 6 is a correlation diagram between the baking temperature when baking aluminum hydroxide and the BET specific surface area of the obtained baked alumina product.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA36 GA01 4G076 AA02 AB02 AB06 BA38 BD02 BD04 CA02 CA26 CA28 FA02 FA06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G030 AA36 GA01                 4G076 AA02 AB02 AB06 BA38 BD02                       BD04 CA02 CA26 CA28 FA02                       FA06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】BET比表面積が10〜20m2/gであ
り、主結晶相がα相であり、θ相を実質的に含まず、平
均粒径が0.5μm以下であることを特徴とするアルミ
ナ焼成物。
1. A BET specific surface area of 10 to 20 m 2 / g, a main crystalline phase is an α phase, a θ phase is not substantially contained, and an average particle diameter is 0.5 μm or less. A fired alumina product.
【請求項2】アルミニウム以外の金属元素を実質的に含
まないαアルミナ前駆体を水蒸気分圧600Pa以下の
雰囲気で焼成することを特徴とするアルミナ焼成物の製
造方法。
2. A method for producing a calcined alumina product, which comprises calcining an α-alumina precursor substantially free of metal elements other than aluminum in an atmosphere having a steam partial pressure of 600 Pa or less.
【請求項3】αアルミナ前駆体をαアルミナの共存下に
焼成する請求項2に記載の製造方法。
3. The method according to claim 2, wherein the α-alumina precursor is fired in the presence of α-alumina.
【請求項4】αアルミナ前駆体のαアルミナ換算の嵩密
度が0.5g/cm3以下である請求項2または請求項3
に記載の製造方法。
4. The bulk density of the α-alumina precursor converted to α-alumina is 0.5 g / cm 3 or less.
The manufacturing method described in.
【請求項5】αアルミナ前駆体は、その主成分が中間ア
ルミナまたは水酸化アルミニウムである請求項2〜請求
項4のいずれか1項に記載の製造方法。
5. The production method according to claim 2, wherein the α-alumina precursor has a main component of intermediate alumina or aluminum hydroxide.
【請求項6】焼成前に、αアルミナ前駆体を仮焼して、
αアルミナ前駆体をαアルミナと共存させる請求項3に
記載の製造方法。
6. An α-alumina precursor is calcined before firing,
The manufacturing method according to claim 3, wherein the α-alumina precursor is allowed to coexist with the α-alumina.
【請求項7】焼成前に、αアルミナ前駆体をαアルミナ
粒子と混合して、αアルミナ前駆体をαアルミナと共存
させる請求項3に記載の製造方法。
7. The method according to claim 3, wherein the α-alumina precursor is mixed with the α-alumina particles before the calcination so that the α-alumina precursor coexists with the α-alumina.
【請求項8】焼成が、1000℃以上、1250℃以下
で行われる請求項2〜請求項7のいずれか1項に記載の
製造方法。
8. The manufacturing method according to claim 2, wherein the firing is performed at 1000 ° C. or higher and 1250 ° C. or lower.
【請求項9】純度99.99%以上、BET比表面積1
5m2/g以上で実質的に中間アルミナを含まず、12
50℃、常圧で焼結して得られる焼結体の相対密度が9
5%以上であることを特徴とする微細αアルミナ粉末。
9. A BET specific surface area of 1 with a purity of 99.99% or more.
12 m 2 / g or more, containing substantially no intermediate alumina,
The relative density of the sintered body obtained by sintering at 50 ° C. and normal pressure is 9
Fine α-alumina powder characterized by being 5% or more.
JP2003008052A 2002-01-16 2003-01-16 Method for producing an alumina fired product Expired - Fee Related JP4366939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008052A JP4366939B2 (en) 2002-01-16 2003-01-16 Method for producing an alumina fired product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-7169 2002-01-16
JP2002007169 2002-01-16
JP2003008052A JP4366939B2 (en) 2002-01-16 2003-01-16 Method for producing an alumina fired product

Publications (2)

Publication Number Publication Date
JP2003277048A true JP2003277048A (en) 2003-10-02
JP4366939B2 JP4366939B2 (en) 2009-11-18

Family

ID=29252917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008052A Expired - Fee Related JP4366939B2 (en) 2002-01-16 2003-01-16 Method for producing an alumina fired product

Country Status (1)

Country Link
JP (1) JP4366939B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206460A (en) * 2003-12-25 2005-08-04 Showa Denko Kk Easily sinterable alumina particle
JP2005263499A (en) * 2003-02-26 2005-09-29 Sumitomo Chemical Co Ltd Method for producing particulate alpha alumina
JP2006069858A (en) * 2004-09-03 2006-03-16 Sumitomo Chemical Co Ltd alphaALUMINA POWDER FOR PRODUCING POROUS CERAMIC FORMED BODY FOR GAS SEPARATION
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2007175649A (en) * 2005-12-28 2007-07-12 Japan Energy Corp Solid acid, its manufacturing method, and solid acid catalyst
JP2008100903A (en) * 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd Alpha-alumina powder
JP2010150090A (en) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd alpha-ALUMINA POWDER
JP2011057492A (en) * 2009-09-09 2011-03-24 Tosoh Corp Powder for translucent alumina and method for producing the same and method for producing translucent alumina sintered compact using the same
JP2011084431A (en) * 2009-10-15 2011-04-28 Hitachi Chem Co Ltd High heat-resistant aluminum hydroxide particle, method for producing the same, resin composition containing the particle, and printed wiring board using the resin composition
JP2011206727A (en) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd Method for producing catalyst carrier and catalyst carrier
CN104164557A (en) * 2014-09-05 2014-11-26 合肥工业大学 Method for preparing porous structure material taking pyrrhotite as main phase through mixing and roasting pyrite and limonite
JP2019006650A (en) * 2017-06-27 2019-01-17 Agc株式会社 Method for producing chemically strengthened glass and chemically strengthened glass
JP2022507877A (en) * 2018-07-27 2022-01-18 サゾル ジャーマニー ゲーエムベーハー High-purity alpha alumina with high relative density, method for producing the alpha alumina, and use of the alpha alumina

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534524B2 (en) * 2003-02-26 2010-09-01 住友化学株式会社 Method for producing fine α-alumina
JP2005263499A (en) * 2003-02-26 2005-09-29 Sumitomo Chemical Co Ltd Method for producing particulate alpha alumina
JP2005206460A (en) * 2003-12-25 2005-08-04 Showa Denko Kk Easily sinterable alumina particle
JP2006069858A (en) * 2004-09-03 2006-03-16 Sumitomo Chemical Co Ltd alphaALUMINA POWDER FOR PRODUCING POROUS CERAMIC FORMED BODY FOR GAS SEPARATION
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP4601497B2 (en) * 2005-06-28 2010-12-22 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
JP2007175649A (en) * 2005-12-28 2007-07-12 Japan Energy Corp Solid acid, its manufacturing method, and solid acid catalyst
JP2008100903A (en) * 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd Alpha-alumina powder
JP2010150090A (en) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd alpha-ALUMINA POWDER
JP2011057492A (en) * 2009-09-09 2011-03-24 Tosoh Corp Powder for translucent alumina and method for producing the same and method for producing translucent alumina sintered compact using the same
JP2011084431A (en) * 2009-10-15 2011-04-28 Hitachi Chem Co Ltd High heat-resistant aluminum hydroxide particle, method for producing the same, resin composition containing the particle, and printed wiring board using the resin composition
JP2011206727A (en) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd Method for producing catalyst carrier and catalyst carrier
CN104164557A (en) * 2014-09-05 2014-11-26 合肥工业大学 Method for preparing porous structure material taking pyrrhotite as main phase through mixing and roasting pyrite and limonite
JP2019006650A (en) * 2017-06-27 2019-01-17 Agc株式会社 Method for producing chemically strengthened glass and chemically strengthened glass
JP2022507877A (en) * 2018-07-27 2022-01-18 サゾル ジャーマニー ゲーエムベーハー High-purity alpha alumina with high relative density, method for producing the alpha alumina, and use of the alpha alumina
JP7354247B2 (en) 2018-07-27 2023-10-02 サゾル ジャーマニー ゲーエムベーハー High purity alpha alumina with high relative density, method for producing the alpha alumina, and use of the alpha alumina

Also Published As

Publication number Publication date
JP4366939B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
TWI254699B (en) Calcined alumina, its production method and fine alpha\-alumina powder obtained by using the calcined alumina
US8021451B2 (en) Fine α-alumina particle
EP0976697B1 (en) Alumina sintered body and process for producing the same
JP3744006B2 (en) α-Alumina powder and method for producing the same
JP4122746B2 (en) Method for producing fine α-alumina powder
JP4366939B2 (en) Method for producing an alumina fired product
US4746638A (en) Alumina-titania composite powder and process for preparing the same
IL111763A (en) Method for producing alpha-alumina powder
JPH07100608B2 (en) Manufacturing method of alumina powder and sintered body
HUT61949A (en) Process for producing sintered material based on alpha-aluminium oxide
WO2014050900A1 (en) Method for producing conductive mayenite compound having high-electron-density
JPH07206432A (en) Alpha-alumina powder and its production
KR20040100934A (en) METHOD FOR PRODUCING α-ALUMINA POWDER
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
Kreisberg et al. Content and diffusion of water and gases in MgAl2O4 spinel crystals synthesized to produce ceramics
WO2014050899A1 (en) Method for producing conductive mayenite compound having high electron density
EP3560904B1 (en) Oriented aln sintered body, and production method therefor
EP3560905B1 (en) Transparent aln sintered body and production method therefor
JP4570516B2 (en) Barium titanate powder and method for producing the same, and barium titanate sintered body
JP2005097075A (en) Method for producing alpha-alumina particulate
JP6885015B2 (en) Method for Producing Conductive Mayenite Compound and Sintered Body of Conductive Mayenite Compound
Delfrate et al. Slip casting of submicron BaTiO3 produced by low-temperature aqueous synthesis
JP2006076799A (en) Method for producing fine particle alpha-alumina
JP5100982B2 (en) Method for producing fine α-alumina
JP2001130950A (en) Alumina mixed composition, formed product therefrom and use of sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R151 Written notification of patent or utility model registration

Ref document number: 4366939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees