JP4672540B2 - Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas - Google Patents

Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas Download PDF

Info

Publication number
JP4672540B2
JP4672540B2 JP2005352848A JP2005352848A JP4672540B2 JP 4672540 B2 JP4672540 B2 JP 4672540B2 JP 2005352848 A JP2005352848 A JP 2005352848A JP 2005352848 A JP2005352848 A JP 2005352848A JP 4672540 B2 JP4672540 B2 JP 4672540B2
Authority
JP
Japan
Prior art keywords
catalyst
component
nitrous oxide
oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005352848A
Other languages
Japanese (ja)
Other versions
JP2007152263A (en
Inventor
博信 小野
敦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005352848A priority Critical patent/JP4672540B2/en
Publication of JP2007152263A publication Critical patent/JP2007152263A/en
Application granted granted Critical
Publication of JP4672540B2 publication Critical patent/JP4672540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、亜酸化窒素分解用触媒およびこの触媒を用いた亜酸化窒素含有ガスの浄化方法に関する。   The present invention relates to a nitrous oxide decomposition catalyst and a method for purifying a nitrous oxide-containing gas using the catalyst.

燃焼排ガスや化学プラントなどから排出される各種産業排ガス中に含まれる亜酸化窒素(NO)は、成層圏で分解して一酸化窒素を生成し、また高い温室効果を示すことから、その効率的な分解除去が望まれている。そこで、亜酸化窒素を触媒に接触させて分解除去する方法として、酸化アルミニウムや酸化ジルコニウムのような担体にパラジウム、ニッケル、コバルトなどを担持した触媒を用いる方法(特許文献1)、疎水性アルミナにルテニウムおよび/またはロジウムと酸化ジルコニウムなどとを担持した触媒を用いる方法(特許文献2)、また、酸化ロジウムや酸化コバルトと、マンガン化合物と、アルカリまたはアルカリ土類金属化合物とを含有する触媒を用いる方法(特許文献3)などが提案されている。 Nitrous oxide (N 2 O) contained in various industrial exhaust gas discharged from combustion exhaust gas and chemical plants decomposes in the stratosphere to produce nitric oxide and shows high greenhouse effect. Decomposition and removal are desired. Therefore, as a method for decomposing and removing nitrous oxide by contacting it with a catalyst, a method using a catalyst in which palladium, nickel, cobalt or the like is supported on a carrier such as aluminum oxide or zirconium oxide (Patent Document 1), or hydrophobic alumina. A method using a catalyst supporting ruthenium and / or rhodium and zirconium oxide or the like (Patent Document 2), or a catalyst containing rhodium oxide or cobalt oxide, a manganese compound, and an alkali or alkaline earth metal compound. A method (Patent Document 3) and the like have been proposed.

特開昭63−7826号公報JP-A-63-7826 特開平6−142517号公報JP-A-6-142517 特開平6−106027号公報JP-A-6-106027

本発明の目的は、亜酸化窒素を効率よく分解除去し得る新規な亜酸化窒素分解用触媒、およびこの触媒に亜酸化窒素を含むガスを接触させて亜酸化窒素を効率よく分解除去する亜酸化窒素含有ガスの浄化方法を提供することにある。   An object of the present invention is to provide a novel nitrous oxide decomposition catalyst capable of efficiently decomposing and removing nitrous oxide, and nitrous oxide for efficiently decomposing and removing nitrous oxide by contacting the catalyst with a gas containing nitrous oxide. The object is to provide a method for purifying nitrogen-containing gas.

本発明者らの研究によれば、上記目的は、下記発明により達成できることがわかった。
(1)(A)アルカリ金属、アルカリ土類金属および希土類金属から選ばれる少なくとも1種の元素または化合物と、(B)ニッケル、コバルト、銅、鉄、マンガン、銀、ルテニウム、ロジウム、白金、金、パラジウムおよびイリジウムから選ばれる少なくとも1種の元素または化合物とを含有し、細孔容積が0.1〜0.6ml/gの範囲にあることを特徴とする亜酸化窒素分解用触媒。
(2)(A)アルカリ土類金属から選ばれる少なくとも1種の元素の化合物と、(B)ニッケル、コバルト、銅、ルテニウム、ロジウムおよび白金から選ばれる少なくとも1種の元素または化合物とを含有し、細孔容積が0.1〜0.6ml/gの範囲にあることを特徴とする亜酸化窒素分解用触媒。
(3)さらに、(C)チタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素の酸化物を含む上記(1)または(2)記載の亜酸化窒素分解用触媒。
(4)亜酸化窒素を含有するガスを上記(1)、(2)または(3)の触媒と接触させて亜酸化窒素を分解除去することを特徴とする亜酸化窒素含有ガスの浄化方法。
According to the studies by the present inventors, it has been found that the above object can be achieved by the following invention.
(1) (A) at least one element or compound selected from alkali metals, alkaline earth metals and rare earth metals, and (B) nickel, cobalt, copper, iron, manganese, silver, ruthenium, rhodium, platinum, gold And a catalyst for nitrous oxide decomposition, comprising at least one element or compound selected from palladium and iridium and having a pore volume in the range of 0.1 to 0.6 ml / g.
(2) containing (A) a compound of at least one element selected from alkaline earth metals and (B) at least one element or compound selected from nickel, cobalt, copper, ruthenium, rhodium and platinum. A catalyst for nitrous oxide decomposition, wherein the pore volume is in the range of 0.1 to 0.6 ml / g.
(3) The nitrous oxide decomposition catalyst according to (1) or (2), further comprising (C) an oxide of at least one element selected from titanium, aluminum, silicon and zirconium.
(4) A method for purifying a nitrous oxide-containing gas, wherein a gas containing nitrous oxide is brought into contact with the catalyst of (1), (2) or (3) to decompose and remove nitrous oxide.

本発明の亜酸化窒素分解用触媒は、高性能であって、亜酸化窒素を高い除去率をもって分解除去することができる。したがって、本発明の亜酸化窒素分解用触媒を用いることにより、亜酸化窒素含有ガスを効率よく浄化することができる。   The nitrous oxide decomposition catalyst of the present invention has high performance and can decompose and remove nitrous oxide with a high removal rate. Therefore, the nitrous oxide-containing gas can be efficiently purified by using the nitrous oxide decomposition catalyst of the present invention.

本発明の亜酸化窒素分解用触媒(以下、単に「触媒」ということもある。)は、(A)アルカリ金属、アルカリ土類金属および希土類金属から選ばれる少なくとも1種の元素またはその化合物と、(B)ニッケル、コバルト、銅、鉄、マンガン、銀、ルテニウム、ロジウム、白金、金、パラジウムおよびイリジウムから選ばれる少なくとも1種の元素または化合物とを必須成分として含有する。なお、成分Aおよび成分Bは各々2種以上の異なる元素または化合物から構成されていてもよいことはいうまでもない。   The nitrous oxide decomposition catalyst of the present invention (hereinafter sometimes simply referred to as “catalyst”) includes (A) at least one element selected from alkali metals, alkaline earth metals, and rare earth metals, or a compound thereof, (B) At least one element or compound selected from nickel, cobalt, copper, iron, manganese, silver, ruthenium, rhodium, platinum, gold, palladium and iridium is contained as an essential component. Needless to say, each of component A and component B may be composed of two or more different elements or compounds.

上記成分Aのアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどを、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどを、また希土類金属としては、スカンジウム、イットリウム、ランタン、セリウムなどを例示することができる。これらのなかでも、アルカリ土類金属、特にカルシウムが好適に用いられる。上記成分(B)のなかでも、ニッケル、コバルト、銅、ルテニウム、ロジウムおよび白金から選ばれる少なくとも1種が好適に用いられる。   Examples of the alkali metal of component A include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Examples of the rare earth metal include scandium, yttrium, lanthanum, Cerium and the like can be exemplified. Of these, alkaline earth metals, particularly calcium, are preferably used. Among the components (B), at least one selected from nickel, cobalt, copper, ruthenium, rhodium and platinum is preferably used.

したがって、本発明の触媒のなかでも、(A)アルカリ土類金属から選ばれる少なくとも1種の元素の化合物と、(B)ニッケル、コバルト、銅、ルテニウム、ロジウムおよび白金から選ばれる少なくとも1種の元素または化合物とを必須成分として含有するものが好適に用いられる。   Accordingly, among the catalysts of the present invention, (A) a compound of at least one element selected from alkaline earth metals and (B) at least one selected from nickel, cobalt, copper, ruthenium, rhodium and platinum. What contains an element or a compound as an essential component is used suitably.

本発明の触媒における成分Aおよび成分Bの割合は、特に限定されるものではないが、通常、次のとおりである(触媒全質量基準)。すなわち、成分Bがニッケル、コバルト、銅、鉄、マンガンおよび銀の場合、成分A(酸化物換算)は、1〜99質量%、好ましくは5〜95質量%であり、成分B(酸化物換算)は、1〜99質量%、好ましくは5〜95質量%である(合計100質量%)。また、成分Bがルテニウム、ロジウム、白金、金、パラジウムおよびイリジウムの場合、成分A(酸化物換算)は、1〜99.99質量%、好ましくは5〜99.95質量%であり、成分B(金属換算)は、0.01〜10質量%、好ましくは0.05〜5質量%である(合計100質量%)。上記のような割合で成分Aおよび成分Bを含むことにより、触媒の亜酸化窒素分解性能が十分に発揮される。   The proportion of component A and component B in the catalyst of the present invention is not particularly limited, but is usually as follows (based on the total mass of the catalyst). That is, when component B is nickel, cobalt, copper, iron, manganese and silver, component A (oxide conversion) is 1 to 99% by mass, preferably 5 to 95% by mass, and component B (oxide conversion) ) Is 1 to 99% by mass, preferably 5 to 95% by mass (total 100% by mass). When component B is ruthenium, rhodium, platinum, gold, palladium and iridium, component A (as oxide) is 1 to 99.99% by mass, preferably 5 to 99.95% by mass. (Metal conversion) is 0.01 to 10% by mass, preferably 0.05 to 5% by mass (total 100% by mass). By including the component A and the component B in the ratio as described above, the nitrous oxide decomposition performance of the catalyst is sufficiently exhibited.

本発明の触媒は、上記成分Aおよび成分Bに加えて、成分Cとしてチタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素の酸化物を含有していてもよい。成分Cとしては、酸化チタン、酸化アルミニウム、酸化ケイ素、酸化ジルコニウムやこれらの2種以上の混合物、あるいはチタンとアルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種との複合酸化物など触媒の担体として一般に用いられている金属酸化物を例示することができる。これらはいずれも触媒の強度に寄与することが知られており、本発明においても、成分Cを用いることにより、触媒強度の向上などが期待される。   The catalyst of the present invention may contain an oxide of at least one element selected from titanium, aluminum, silicon and zirconium as component C in addition to component A and component B. Component C is generally used as a catalyst carrier such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide or a mixture of two or more thereof, or a composite oxide of titanium and at least one selected from aluminum, silicon and zirconium. The metal oxide used can be illustrated. These are all known to contribute to the strength of the catalyst, and in the present invention, the use of component C is expected to improve the strength of the catalyst.

本発明の触媒における成分A、成分Bおよび成分Cの割合は、特に限定されるものではないが、通常、次のとおりである(触媒全質量基準)。すなわち、成分Bがニッケル、コバルト、銅、鉄、マンガンおよび銀の場合、成分A(酸化物換算)は、1〜98質量%、好ましくは5〜94質量%であり、成分B(酸化物換算)は、1〜98質量%、好ましくは5〜94質量%であり、成分C(酸化物)は1〜50質量%、好ましくは1〜40質量%である(合計100質量%)。また、成分Bがルテニウム、ロジウム、白金、金、パラジウムおよびイリジウムの場合、成分A(酸化物換算)は、1〜98.99質量%、好ましくは5〜98.95質量%であり、成分B(金属換算)は、0.01〜10質量%、好ましくは0.05〜5質量%であり、成分C(酸化物)は1〜50質量%、好ましくは1〜40質量%である(合計100質量%)。上記のような割合で成分A、成分Bおよび成分Cを含むことにより、触媒の亜酸化窒素分解性能が十分に発揮される。   The proportions of component A, component B, and component C in the catalyst of the present invention are not particularly limited, but are usually as follows (based on the total mass of the catalyst). That is, when component B is nickel, cobalt, copper, iron, manganese, and silver, component A (as oxide) is 1 to 98% by mass, preferably 5 to 94% by mass, and component B (as oxide) ) Is 1 to 98% by mass, preferably 5 to 94% by mass, and component C (oxide) is 1 to 50% by mass, preferably 1 to 40% by mass (total 100% by mass). When component B is ruthenium, rhodium, platinum, gold, palladium and iridium, component A (as oxide) is 1 to 99.99% by mass, preferably 5 to 98.95% by mass. (Metal conversion) is 0.01 to 10% by mass, preferably 0.05 to 5% by mass, and component C (oxide) is 1 to 50% by mass, preferably 1 to 40% by mass (total) 100% by mass). By including component A, component B, and component C in the proportions described above, the nitrous oxide decomposition performance of the catalyst is sufficiently exhibited.

本発明の触媒の細孔容積は0.1〜0.6ml/gであり、好ましくは0.1〜0.5ml/g、より好ましくは0.1〜0.4ml/gである。細孔容積が0.1ml/gより小さいと、触媒性能(NO除去率)が大幅に低下し、一方、0.6ml/gを超えると触媒が脆くなり、使用に耐え得る触媒強度を維持できなくなる。なお、細孔容積は、水銀圧入法により測定した。 The pore volume of the catalyst of the present invention is 0.1 to 0.6 ml / g, preferably 0.1 to 0.5 ml / g, more preferably 0.1 to 0.4 ml / g. When the pore volume is smaller than 0.1 ml / g, the catalyst performance (N 2 O removal rate) is greatly reduced. On the other hand, when the pore volume exceeds 0.6 ml / g, the catalyst becomes brittle and has a catalyst strength that can withstand use. It cannot be maintained. The pore volume was measured by mercury porosimetry.

本発明の、成分Aおよび成分B、あるいは成分A、成分Bおよび成分Cを含有し、細孔容積が0.1〜0.6ml/gの範囲にある触媒は、例えば、次のようにして得られる。   The catalyst of the present invention containing component A and component B, or component A, component B and component C and having a pore volume in the range of 0.1 to 0.6 ml / g is, for example, as follows. can get.

上記成分Aおよび成分Bを含む触媒は、例えば、成分Aの元素を含む原料化合物と成分Bの元素を含む原料化合物とを適量の水と成型助剤などと十分に混合し、所望形状に成型した後、乾燥し、300〜600℃、好ましくは350〜550℃の範囲で焼成することにより調製することができる。また、成分A、成分Bおよび成分Cを含む触媒は、上記と同様に、成分Aの元素を含む原料化合物と成分Bの元素を含む原料化合物と成分Cの金属酸化物とを適量の水と成型助剤などと十分に混合し、所望形状に成型した後、乾燥し、300〜600℃、好ましくは350〜550℃の範囲で焼成することにより調製することができる。そのほか、例えば、成分Aの原料化合物を水に溶解して、成分Bおよび成分Cの粉体と混合し、所望形状に成型した後、乾燥し、300〜600℃、好ましくは350〜550℃の範囲で焼成することにより調製することもできる。本発明は上記方法に限定されるものではなく、細孔容積が0.1〜0.6ml/gの範囲にあり、十分な亜酸化窒素分解性能が得られる限り各種方法にしたがって調製することができる。   The catalyst containing the component A and the component B is formed into a desired shape by sufficiently mixing, for example, a raw material compound containing the element A and a raw material compound containing the element B with an appropriate amount of water and a molding aid. Then, it can be prepared by drying and baking in the range of 300 to 600 ° C, preferably 350 to 550 ° C. Similarly to the above, the catalyst containing component A, component B and component C comprises a raw material compound containing the element of component A, a raw material compound containing the element of component B, and a metal oxide of component C with an appropriate amount of water. It can be prepared by thoroughly mixing with a molding aid or the like, molding into a desired shape, drying, and firing at 300 to 600 ° C., preferably 350 to 550 ° C. In addition, for example, the raw material compound of component A is dissolved in water, mixed with the powders of component B and component C, molded into a desired shape, dried, and then dried at 300 to 600 ° C., preferably 350 to 550 ° C. It can also be prepared by firing within a range. The present invention is not limited to the above method, and the pore volume is in the range of 0.1 to 0.6 ml / g, and can be prepared according to various methods as long as sufficient nitrous oxide decomposition performance is obtained. it can.

上記原料化合物としては、各元素を含む、酸化物、水酸化物、炭酸塩、アンモニウム塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、シュウ酸塩、ハロゲン化合物などを例示することができる。   Examples of the raw material compound include oxides, hydroxides, carbonates, ammonium salts, nitrates, sulfates, phosphates, acetates, oxalates, and halogen compounds containing each element.

成分Aおよび成分Bの形態については、特に限定されるものではないが、金属、または酸化物、炭酸塩、硫酸塩、リン酸塩などの化合物の形態で触媒中に存在する。成分Aのアルカリ土類金属の場合には、アルカリ土類金属の酸化物や炭酸塩、例えば、酸化カルシウム(CaO)や炭酸カルシウム(CaCO)の形態で存在する。成分Bのニッケル、コバルトおよび銅の場合には、それらの酸化物、例えば、酸化ニッケル(NiO)、酸化コバルト(Co)や酸化銅(CuO)として、またルテニウム、ロジウムおよび白金の場合には、それぞれ、金属として存在する。成分Cは、そのまま、金属酸化物の形態で存在する。 The form of component A and component B is not particularly limited, but is present in the catalyst in the form of a metal or a compound such as an oxide, carbonate, sulfate, phosphate or the like. In the case of the alkaline earth metal of component A, it exists in the form of an oxide or carbonate of an alkaline earth metal, for example, calcium oxide (CaO) or calcium carbonate (CaCO 3 ). In the case of component B nickel, cobalt and copper, their oxides, such as nickel oxide (NiO), cobalt oxide (Co 3 O 4 ) and copper oxide (CuO), and in the case of ruthenium, rhodium and platinum Are each present as a metal. Component C is present as it is in the form of a metal oxide.

本発明の触媒の形状については特に制限はなく、円柱状、円筒状(ペレット状)、球状、板状、ハニカム状、その他一体に成型されたものなど適宜選択することができる。この触媒の成型は一般的な成型方法、例えば打錠成型法、押出成型法などによって行うことができる。球状触媒の場合、その平均粒径は、通常、1〜10mmである。ハニカム状触媒の場合は、いわゆるモノリス担体と同様であり、押出成型法やシート状素子を巻き固める方法などにより製造される。そのガス通過口(セル形状)の形は6角形、4角形、3角形またはコルゲーション形のいずれであってもよい。セル密度(セル数/単位断面)は、通常、25〜800セル/平方インチ(x2.5cm)である。   The shape of the catalyst of the present invention is not particularly limited, and may be appropriately selected from a columnar shape, a cylindrical shape (pellet shape), a spherical shape, a plate shape, a honeycomb shape, and other integrally molded ones. The catalyst can be molded by a general molding method such as a tableting molding method or an extrusion molding method. In the case of a spherical catalyst, the average particle diameter is usually 1 to 10 mm. In the case of a honeycomb-shaped catalyst, it is the same as a so-called monolithic carrier, and is manufactured by an extrusion molding method or a method of winding and solidifying a sheet-like element. The shape of the gas passage port (cell shape) may be hexagonal, quadrangular, triangular or corrugated. The cell density (number of cells / unit cross section) is usually 25 to 800 cells / in 2 (x2.5 cm).

本発明の亜酸化窒素含有ガスの浄化方法によれば、上記触媒に亜酸化窒素含有ガスを接触させて排ガス中の亜酸化窒素を酸化分解する。本発明の方法は、亜酸化窒素濃度が1〜500,000ppm、好ましくは10〜100,000ppm、より好ましくは10〜10,000ppmの排ガスの浄化に好適に用いられる。亜酸化窒素含有ガスと本発明の触媒と接触させて亜酸化窒素を分解除去する際の反応温度およびガスの空間速度については特に制限はなく、亜酸化窒素の分解が効率よく進行するように、適宜、決定することができる。具体的には、例えば、反応温度は、100〜600℃、好ましくは200〜600℃であり、ガスの空間速度(SV)は、1,000〜50,000hr−1、好ましくは2,000〜20,000hr−1である。 According to the method for purifying a nitrous oxide-containing gas of the present invention, the nitrous oxide-containing gas is brought into contact with the catalyst to oxidatively decompose nitrous oxide in the exhaust gas. The method of the present invention is suitably used for purification of exhaust gas having a nitrous oxide concentration of 1 to 500,000 ppm, preferably 10 to 100,000 ppm, more preferably 10 to 10,000 ppm. There are no particular limitations on the reaction temperature and gas space velocity when the nitrous oxide-containing gas is brought into contact with the catalyst of the present invention to decompose and remove the nitrous oxide, so that the decomposition of nitrous oxide proceeds efficiently. It can be determined as appropriate. Specifically, for example, the reaction temperature is 100 to 600 ° C., preferably 200 to 600 ° C., and the gas space velocity (SV) is 1,000 to 50,000 hr −1 , preferably 2,000 to 2,000. 20,000 hr −1 .

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
(実施例1)
炭酸カルシウム800g、酸化ニッケル(NiO)200gに適量の水と成型助剤とを添加しつつニーダーでよく混合した後、押出成型機で直径5mm、長さ5mmのペレット状に成型した。このペレットを100℃で10時間乾燥した後、500℃で5時間空気雰囲気下で焼成してペレット状の触媒(1)を得た。この触媒の組成は、Ca:Ni(CaO:NiOとして)=69.1:30.9(質量%)であり、その細孔容積は0.25ml/gであった。
(実施例2〜4)
実施例1の炭酸カルシウムの代わりに、塩基性炭酸マグネシウム、炭酸ストロンチウム、あるいは炭酸バリウムを用いた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(2)〜(4)を得た。
(実施例5、6)
実施例1における炭酸カルシウムの代わりに、リン酸三カルシウムまたは硫酸カルシウムを用いた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(5)および(6)を得た。
(実施例7、8)
実施例1における酸化ニッケル(NiO)の代わりに、酸化コバルト(Co)または酸化銅(CuO)を用いた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(7)および(8)を得た。
(実施例9)
炭酸カルシウム995g、酸化ルテニウム(田中貴金属(株)製、ルテニウムを65質量%含有)5gに適量の水と成型助剤とを添加しつつニーダーでよく混合した後、押出成型機で直径5mm、長さ5mmのペレット状に成型した。このペレットを100℃で10時間乾燥した後、500℃で5時間空気雰囲気下で焼成してペレット状の触媒(9)を得た。この触媒の組成は、Ca:Ru(CaO:Ruとして)=99.4:0.6(質量%)であり、その細孔容積は0.22ml/gであった。
(実施例10、11)
実施例9における酸化ルテニウムの代わりに、酸化ロジウムまたは酸化白金を用いた以外は実施例9と同様にして、表1に示す組成と細孔容積の触媒(10)および(11)を得た。
(実施例12、13)
実施例9における炭酸カルシウムの代わりに、リン酸三カルシウムまたは硫酸カルシウムを用いた以外は実施例9と同様にして、表1に示す組成と細孔容積の触媒(12)および(13)を得た。
(実施例14)
炭酸カルシウム600g、酸化ニッケル(NiO)200g、酸化アルミニウム(α−Al)200gに適量の水と成型助剤とを添加しつつニーダーでよく混合した後、押出成型機で直径5mm、長さ5mmのペレット状に成型した。このペレットを100℃で10時間乾燥した後、500℃で5時間空気雰囲気下で焼成してペレット状の触媒(14)を得た。この触媒の組成は、Ca:Ni:Al(CaO:NiO:Alとして)=45.7:30.8:23.5(質量%)であり、その細孔容積は0.17ml/gであった。
(実施例15、16)
実施例14における酸化アルミニウム(α−Al)の代わりに、酸化チタン(TiO)または酸化ケイ素(SiO)を用いた以外は実施例14と同様にして、表1に示す組成と細孔容積の触媒(15)および(16)を得た。
(比較例1)
実施例1における炭酸カルシウムの代わりに、酸化アルミニウム(α−Al)を用いた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(比較1)を得た。
(比較例2)
実施例1における酸化ニッケルの代わりに、酸化アルミニウム(α−Al)を用いた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(比較2)を得た。
(比較例3)
実施例9における炭酸カルシウムの代わりに、酸化アルミニウム(α−Al)を用いた以外は実施例9と同様にして、表1に示す組成と細孔容積の触媒(比較3)を得た。
(比較例4)
実施例1における炭酸カルシウムの代わりに硫酸カルシウムを用い、さらに押出成型機内の真空度を高めた以外は実施例1と同様にして、表1に示す組成と細孔容積の触媒(比較4)を得た。
(比較例5)
実施例9における炭酸カルシウムの代わりに硫酸カルシウムを用い、さらに押出成型機内の真空度を高めた以外は実施例9と同様にして、表1に示す組成と細孔容積の触媒(比較5)を得た。
(実施例17)
触媒(1)〜(16)および比較触媒(比較1)〜(比較5)の亜酸化窒素分解能を下記の方法により評価した。
(評価方法)
触媒120mlを内径30mmのガラス製反応管に充填した。この触媒層に下記組成の合成ガスを下記条件下に導入した。
<合成ガス組成>
亜酸化窒素(NO):500ppm、酸素(O):5容量%、HO:10容量%、残り:窒素(N
<処理条件>
ガス量:10NL/min、処理温度:450℃、空間速度(SV):5,000hr−1(STP)
上記合成ガスを導入してから10時間後、上記触媒層の入口および出口における合成ガス中の亜酸化窒素(NO)濃度を非分散赤外線式NO計(日本サーモエレクトロン(株)製、Model 46C−HL)により測定し、次式に従ってNO除去率を算出した。結果を表1に示す。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
Example 1
After adding an appropriate amount of water and a molding aid to 800 g of calcium carbonate and 200 g of nickel oxide (NiO), the mixture was mixed well with a kneader, and then molded into a pellet having a diameter of 5 mm and a length of 5 mm with an extruder. The pellet was dried at 100 ° C. for 10 hours and then calcined at 500 ° C. for 5 hours in an air atmosphere to obtain a pellet-shaped catalyst (1). The composition of this catalyst was Ca: Ni (as CaO: NiO) = 69.1: 30.9 (mass%), and its pore volume was 0.25 ml / g.
(Examples 2 to 4)
Catalysts (2) to (2) to (1) of the compositions and pore volumes shown in Table 1 were used in the same manner as in Example 1 except that basic magnesium carbonate, strontium carbonate, or barium carbonate was used instead of calcium carbonate in Example 1. 4) was obtained.
(Examples 5 and 6)
Catalysts (5) and (6) having the compositions and pore volumes shown in Table 1 were obtained in the same manner as in Example 1 except that tricalcium phosphate or calcium sulfate was used instead of calcium carbonate in Example 1. It was.
(Examples 7 and 8)
In the same manner as in Example 1 except that cobalt oxide (Co 3 O 4 ) or copper oxide (CuO) was used instead of nickel oxide (NiO) in Example 1, the compositions and pore volumes shown in Table 1 were used. Catalysts (7) and (8) were obtained.
Example 9
After mixing 995g of calcium carbonate and 5g of ruthenium oxide (made by Tanaka Kikinzoku Co., Ltd., containing 65% by mass of ruthenium) with a suitable amount of water and a molding aid and mixing well with a kneader, the diameter is 5mm and long with an extruder. It was molded into a 5 mm pellet. The pellet was dried at 100 ° C. for 10 hours and then calcined at 500 ° C. for 5 hours in an air atmosphere to obtain a pellet-shaped catalyst (9). The composition of this catalyst was Ca: Ru (as CaO: Ru) = 99.4: 0.6 (mass%), and the pore volume was 0.22 ml / g.
(Examples 10 and 11)
Catalysts (10) and (11) having the compositions and pore volumes shown in Table 1 were obtained in the same manner as in Example 9, except that rhodium oxide or platinum oxide was used instead of ruthenium oxide in Example 9.
(Examples 12 and 13)
Catalysts (12) and (13) having the compositions and pore volumes shown in Table 1 were obtained in the same manner as in Example 9, except that tricalcium phosphate or calcium sulfate was used instead of calcium carbonate in Example 9. It was.
(Example 14)
A mixture of 600 g of calcium carbonate, 200 g of nickel oxide (NiO), and 200 g of aluminum oxide (α-Al 2 O 3 ) was mixed well with a kneader while adding an appropriate amount of water and a molding aid, and then 5 mm in diameter and long in an extruder. It was molded into a 5 mm pellet. The pellet was dried at 100 ° C. for 10 hours and then calcined at 500 ° C. for 5 hours in an air atmosphere to obtain a pellet-shaped catalyst (14). The composition of this catalyst is Ca: Ni: Al (as CaO: NiO: Al 2 O 3 ) = 45.7: 30.8: 23.5 (mass%), and the pore volume is 0.17 ml / g.
(Examples 15 and 16)
In the same manner as in Example 14 except that titanium oxide (TiO 2 ) or silicon oxide (SiO 2 ) was used instead of aluminum oxide (α-Al 2 O 3 ) in Example 14, the compositions shown in Table 1 were obtained. Pore volume catalysts (15) and (16) were obtained.
(Comparative Example 1)
A catalyst (comparative 1) having the composition and pore volume shown in Table 1 was obtained in the same manner as in Example 1 except that aluminum oxide (α-Al 2 O 3 ) was used instead of calcium carbonate in Example 1. It was.
(Comparative Example 2)
A catalyst (comparative 2) having the composition and pore volume shown in Table 1 was obtained in the same manner as in Example 1 except that aluminum oxide (α-Al 2 O 3 ) was used instead of nickel oxide in Example 1. It was.
(Comparative Example 3)
A catalyst having the composition and pore volume shown in Table 1 (Comparative 3) was obtained in the same manner as in Example 9, except that aluminum oxide (α-Al 2 O 3 ) was used instead of calcium carbonate in Example 9. It was.
(Comparative Example 4)
In the same manner as in Example 1 except that calcium sulfate was used instead of calcium carbonate in Example 1 and the degree of vacuum in the extruder was further increased, a catalyst having a composition and pore volume shown in Table 1 (Comparative 4) was used. Obtained.
(Comparative Example 5)
In the same manner as in Example 9 except that calcium sulfate was used instead of calcium carbonate in Example 9 and the degree of vacuum in the extruder was further increased, a catalyst having a composition and pore volume shown in Table 1 (Comparative 5) was used. Obtained.
(Example 17)
The nitrous oxide resolution of the catalysts (1) to (16) and the comparative catalysts (Comparative 1) to (Comparative 5) was evaluated by the following method.
(Evaluation methods)
120 ml of catalyst was filled in a glass reaction tube having an inner diameter of 30 mm. A synthesis gas having the following composition was introduced into the catalyst layer under the following conditions.
<Syngas composition>
Nitrous oxide (N 2 O): 500 ppm, oxygen (O 2 ): 5% by volume, H 2 O: 10% by volume, remaining: nitrogen (N 2 )
<Processing conditions>
Gas amount: 10 NL / min, treatment temperature: 450 ° C., space velocity (SV): 5,000 hr −1 (STP)
10 hours after the synthesis gas was introduced, the concentration of nitrous oxide (N 2 O) in the synthesis gas at the inlet and outlet of the catalyst layer was measured using a non-dispersive infrared N 2 O meter (manufactured by Nippon Thermo Electron Co. , Model 46C-HL), and the N 2 O removal rate was calculated according to the following formula. The results are shown in Table 1.

Figure 0004672540
Figure 0004672540

Figure 0004672540
Figure 0004672540

Claims (7)

ルカリ土類金属から選ばれる少なくとも1種の元素化合物を触媒A成分として、ニッケル、コバルト、銅、ルテニウム、ロジウムおよび金から選ばれる少なくとも1種の元素または化合物を触媒B成分として含有し、前記触媒A成分の化合物がアルカリ土類金属の酸化物、炭酸塩、硫酸塩またはリン酸塩のいずれかの形態であって、細孔容積が0.1〜0.6ml/gの範囲にあることを特徴とする亜酸化窒素分解用触媒。 The compound of at least one element as the catalyst component A is selected from A alkaline earth metal, nickel, cobalt, copper, Le ruthenium, at least one element or compound selected rhodium and platinum or found as a catalyst component B The catalyst A component compound is in the form of an alkaline earth metal oxide, carbonate, sulfate or phosphate, and has a pore volume of 0.1 to 0.6 ml / g A nitrous oxide decomposition catalyst characterized by being in the range. 前記触媒B成分がニッケル、コバルトおよび銅から選ばれる少なくとも1種の元素または化合物であり、触媒A成分が酸化物換算で1〜99質量%および触媒B成分が酸化物換算で1〜99質量%(合計100質量%)の割合で含有する請求項1記載の亜酸化窒素分解用触媒。The catalyst B component is at least one element or compound selected from nickel, cobalt and copper, the catalyst A component is 1 to 99% by mass in terms of oxide, and the catalyst B component is 1 to 99% by mass in terms of oxide. The nitrous oxide decomposition catalyst according to claim 1, which is contained in a ratio of (total 100 mass%). 前記触媒B成分がルテニウム、ロジウムおよび白金から選ばれる少なくとも1種の元素または化合物であり、触媒A成分が酸化物換算で90〜99.99質量%、触媒B成分が金属換算で0.01〜10質量%(合計100質量%)の割合で含有する請求項1記載の亜酸化窒素分解用触媒。The catalyst B component is at least one element or compound selected from ruthenium, rhodium and platinum, the catalyst A component is 90 to 99.99% by mass in terms of oxide, and the catalyst B component is 0.01 to in terms of metal. The nitrous oxide decomposition catalyst according to claim 1, which is contained at a ratio of 10% by mass (total of 100% by mass). さらに、触媒C成分としてチタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素の酸化物を1〜50質量%(合計100質量%)含有する請求項1記載の亜酸化窒素分解用触媒。 Furthermore, the catalyst for nitrous oxide decomposition | disassembly of 1-50 mass% (total 100 mass%) of the oxide of the at least 1 sort (s) of element chosen from titanium, aluminum, a silicon, and a zirconium as a catalyst C component . 前記触媒A成分および触媒B成分あるいは触媒A成分、触媒B成分および触媒C成分の各原料化合物を混合し、円柱状、円筒状、球状、板状またはハニカム状に一体成形し、乾燥した後に、300〜600℃で焼成して得られる請求項1または2記載の亜酸化窒素分解用触媒の製造方法。After mixing the raw material compounds of the catalyst A component and the catalyst B component or the catalyst A component, the catalyst B component and the catalyst C component, integrally forming into a cylindrical shape, a cylindrical shape, a spherical shape, a plate shape or a honeycomb shape, and drying, The method for producing a nitrous oxide decomposition catalyst according to claim 1 or 2, obtained by calcination at 300 to 600 ° C. 前記触媒A成分の原料化合物がアルカリ土類金属の炭酸塩、塩基性炭酸塩、硫酸塩またはリン酸塩のいずれかである請求項5記載の亜酸化窒素分解用触媒の製造方法。6. The method for producing a nitrous oxide decomposition catalyst according to claim 5, wherein the raw material compound of the catalyst A component is any one of an alkaline earth metal carbonate, basic carbonate, sulfate or phosphate. 亜酸化窒素を含有するガスを請求項1〜4のいずれかに記載の亜酸化窒素分解用触媒と接触させて亜酸化窒素を分解除去することを特徴とする亜酸化窒素含有ガスの浄化方法。 A method for purifying a nitrous oxide-containing gas, comprising bringing a gas containing nitrous oxide into contact with the nitrous oxide decomposition catalyst according to any one of claims 1 to 4 to decompose and remove the nitrous oxide.
JP2005352848A 2005-12-07 2005-12-07 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas Expired - Fee Related JP4672540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352848A JP4672540B2 (en) 2005-12-07 2005-12-07 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352848A JP4672540B2 (en) 2005-12-07 2005-12-07 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas

Publications (2)

Publication Number Publication Date
JP2007152263A JP2007152263A (en) 2007-06-21
JP4672540B2 true JP4672540B2 (en) 2011-04-20

Family

ID=38237285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352848A Expired - Fee Related JP4672540B2 (en) 2005-12-07 2005-12-07 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas

Country Status (1)

Country Link
JP (1) JP4672540B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570122B2 (en) * 2006-12-26 2014-08-13 株式会社日本触媒 Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
WO2008142765A1 (en) * 2007-05-18 2008-11-27 Nippon Shokubai Co., Ltd. Catalyst for nitrous oxide decomposition and method of purifying gas containing nitrous oxide
JP5709125B2 (en) * 2010-08-03 2015-04-30 鹿島建設株式会社 Nitrous oxide decomposition equipment
JP5483723B2 (en) * 2010-09-03 2014-05-07 株式会社日本触媒 Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
CZ305451B6 (en) * 2013-12-27 2015-09-23 Vysoká škola chemicko- technologická v Praze Catalyst for removing N2O from waste gases and process for preparing thereof
WO2016087269A1 (en) 2014-12-03 2016-06-09 Basf Se Rhodium catalyst for decomposing nitrous oxide, the production thereof, and the use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637826A (en) * 1986-06-30 1988-01-13 Ebara Res Co Ltd Removing method for nitrous oxide in gas mixture
JPH06106027A (en) * 1992-04-28 1994-04-19 Mitsui Mining Co Ltd Decomposition removal method for nitrous oxide
JPH06142515A (en) * 1992-11-12 1994-05-24 Sakai Chem Ind Co Ltd Catalyst for decomposing nitrous oxide
JPH06142517A (en) * 1992-11-04 1994-05-24 Sakai Chem Ind Co Ltd Catalyst for decomposition of nitrous oxide
JPH08505567A (en) * 1993-01-21 1996-06-18 ビーエーエスエフ アクチエンゲゼルシャフト Process for the catalytic cracking of dinitrogen monoxide contained in pure or gas mixtures
JP2000317307A (en) * 1999-05-10 2000-11-21 Nippon Fine Gas Kk Catalyst for decomposing nitrous oxide and its using method
JP2002253967A (en) * 2001-02-28 2002-09-10 Showa Denko Kk Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637826A (en) * 1986-06-30 1988-01-13 Ebara Res Co Ltd Removing method for nitrous oxide in gas mixture
JPH06106027A (en) * 1992-04-28 1994-04-19 Mitsui Mining Co Ltd Decomposition removal method for nitrous oxide
JPH06142517A (en) * 1992-11-04 1994-05-24 Sakai Chem Ind Co Ltd Catalyst for decomposition of nitrous oxide
JPH06142515A (en) * 1992-11-12 1994-05-24 Sakai Chem Ind Co Ltd Catalyst for decomposing nitrous oxide
JPH08505567A (en) * 1993-01-21 1996-06-18 ビーエーエスエフ アクチエンゲゼルシャフト Process for the catalytic cracking of dinitrogen monoxide contained in pure or gas mixtures
JP2000317307A (en) * 1999-05-10 2000-11-21 Nippon Fine Gas Kk Catalyst for decomposing nitrous oxide and its using method
JP2002253967A (en) * 2001-02-28 2002-09-10 Showa Denko Kk Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide

Also Published As

Publication number Publication date
JP2007152263A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
CA2696028C (en) Catalyst, production method therefor and use thereof for decomposing n2o
EP2226308B1 (en) Molded porous article, method for production thereof, catalyst carrier, and catalyst
JP4672540B2 (en) Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
RU2684908C2 (en) Nitrous oxide decomposition catalyst
JP2009254981A (en) Ammonia decomposing catalyst and method of decomposing ammonia
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JPWO2008142765A1 (en) Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas
RU2397810C2 (en) Catalyst and method of decomposing dinitrogen monoxide and method and device for producing nitric acid
JP5483723B2 (en) Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
JP4745271B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JP2006181473A (en) Catalyst for water-gas-shift reaction and its manufacturing method
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JPH0838889A (en) Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same
JP3031823B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3660080B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide
JP3705933B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent and method for removing nitrogen oxide and / or sulfur oxide using the adsorbent
JP2006239557A (en) Catalyst for water gas shift reaction
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JP5812788B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst, and method for treating nitrous oxide-containing gas
JPH05123571A (en) Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same
RU2531116C1 (en) Method of preparing nickelchromepalladium catalyst for purification of discharged gas from carbon oxide and hydrocarbons
JP5812789B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst
WO2013047484A1 (en) Catalyst for decomposition of nitrous oxide, method for producing catalyst for decomposition of nitrous oxide, and method for processing nitrous oxide-containing gas

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees