JPH0975739A - Waste gas purification material and method for purifying waste gas - Google Patents

Waste gas purification material and method for purifying waste gas

Info

Publication number
JPH0975739A
JPH0975739A JP8199668A JP19966896A JPH0975739A JP H0975739 A JPH0975739 A JP H0975739A JP 8199668 A JP8199668 A JP 8199668A JP 19966896 A JP19966896 A JP 19966896A JP H0975739 A JPH0975739 A JP H0975739A
Authority
JP
Japan
Prior art keywords
exhaust gas
purifying material
silver
gas purifying
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199668A
Other languages
Japanese (ja)
Inventor
Akira Abe
晃 阿部
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP8199668A priority Critical patent/JPH0975739A/en
Publication of JPH0975739A publication Critical patent/JPH0975739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently reduce and remove NOx from waste combustion gas contg. NOx and a larger amt. of oxygen than the amt. of oxygen reacting theoretically with unburnt components such as CO, hydrogen and hydrocarbons. SOLUTION: This waste gas purification material is made of a catalyst obtd. by carrying 0.2-15wt.% (expressed in terms of silver) silver and/or one or more kinds of silver compds. and <=1wt.% (expressed in terms of iron) iron compd. on a porous inorg. oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素酸化物と過剰の
酸素を含む燃焼排ガスから、窒素酸化物を効果的に還元
除去することのできる排ガス浄化材及びそれを用いた浄
化方法に関する。
The present invention relates to an exhaust gas purifying material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーター等から排出される各種の燃焼
排ガス中には、過剰の酸素とともに一酸化窒素、二酸化
窒素等の窒素酸化物が含まれている。ここで、「過剰の
酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas emitted from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】そこで、ゼオライト又はアルミナに遷移金
属を担持した触媒を用いて、排ガス中の酸素との理論反
応量以下の還元剤を添加して窒素酸化物を除去する方法
が数多く提案されている。しかしながら、これらの方法
では、窒素酸化物除去率が十分ではなく、また水分や硫
黄酸化物を含み、運転条件によって排ガス温度が大きく
変化する車等からの排ガスでは、窒素酸化物の除去率が
著しく低下する。
Therefore, many methods have been proposed for removing nitrogen oxides by using a catalyst in which a transition metal is supported on zeolite or alumina and adding a reducing agent having a theoretical reaction amount or less with oxygen in exhaust gas. However, in these methods, the nitrogen oxide removal rate is not sufficient, and in the case of exhaust gas from a vehicle or the like which contains moisture and sulfur oxides and the exhaust gas temperature greatly changes depending on operating conditions, the nitrogen oxide removal rate is remarkably large. descend.

【0007】したがって、本発明の目的は、固定燃焼装
置及び酸素過剰条件で燃焼するガソリンエンジン、ディ
ーゼルエンジン等からの燃焼排ガスのように、窒素酸化
物や、一酸化炭素、水素、炭化水素等の未燃焼分に対す
る理論反応量以上の酸素を含有し、水分を含有する燃焼
排ガスから、効率良く窒素酸化物を還元除去することが
できる排ガス浄化材及び排ガス浄化方法を提供すること
である。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, or the like, which burns under oxygen excess conditions. An object of the present invention is to provide an exhaust gas purifying material and an exhaust gas purifying method which can efficiently reduce and remove nitrogen oxides from a combustion exhaust gas containing oxygen at a theoretical reaction amount or more with respect to an unburned portion and containing water.

【0008】[0008]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、銀成分と鉄系成分を担持した触媒
からなる排ガス浄化材を用い、排ガス中に炭化水素と炭
素数2以上の含酸素有機化合物のいずれか又はそれらを
含む燃料を添加し、上記の浄化材に排ガスを接触させれ
ば、広い温度領域で窒素酸化物を効果的に除去できるこ
とを発見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventor has used an exhaust gas purifying material comprising a catalyst supporting a silver component and an iron component, and contained hydrocarbons and carbon atoms of 2 in the exhaust gas. By adding any one of the above oxygenated organic compounds or a fuel containing them, and contacting the exhaust gas with the above-mentioned purifying material, it has been found that nitrogen oxides can be effectively removed in a wide temperature range, and the present invention completed.

【0009】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の排ガス浄化材
は、多孔質の無機酸化物に銀及び銀化合物からなる群よ
り選ばれる一種以上の元素及び/又は化合物0.2〜1
5重量%(金属元素換算値)と、鉄の化合物1重量%以
下(金属元素換算値)とを担持した触媒からなることを
特徴とする。
That is, the exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than the theoretical reaction amount of coexisting unburned components is used as a porous inorganic oxide. One or more elements and / or compounds 0.2 to 1 selected from the group consisting of silver and silver compounds
It is characterized by comprising a catalyst supporting 5% by weight (converted to metal element) and 1% by weight or less of iron compound (converted to metal element).

【0010】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する本発明の排ガス浄化方法
は、上記の排ガス浄化材を用い、前記排ガス浄化材を排
ガス導管の途中に設置し、前記浄化材の上流側で炭化水
素及び/又は含酸素有機化合物を添加した排ガスを、1
50〜650℃において前記浄化材に接触させ、もって
前記排ガス中の炭化水素及び/又は含酸素有機化合物と
の反応により前記窒素酸化物を除去することを特徴とす
る。
[0010] A method of purifying exhaust gas of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount of coexisting unburned components uses the above exhaust gas purifying material. The exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added upstream of the purifying material is
The method is characterized in that the nitrogen oxide is removed by contacting the purification material at 50 to 650 ° C. with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。 [1]排ガス浄化材 本発明の排ガス浄化材は、多孔質無機酸化物に触媒活性
種として銀及び銀化合物からなる群より選ばれる一種以
上の元素及び/又は化合物と、鉄の化合物とを担持した
触媒からなり、広い温度領域での窒素酸化物の除去に作
用する。多孔質無機酸化物としては、アルミナ単独、又
はチタニア、シリカ、ジルコニア、酸化亜鉛、酸化錫、
酸化マグネシウム、ゼオライトのいずれか一種以上とア
ルミナとの複合又は混合酸化物を用いるのが好ましい。
ゼオライトとして、フェリエライト、モルテナイト、Z
SM−5など各種のゼオライトを用いることができる。
なお、ここでいう酸化錫は各種酸化状態の錫酸化物を含
み、主な錫酸化物として、酸化第一錫、酸化第二錫等が
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. [1] Exhaust gas purifying material The exhaust gas purifying material of the present invention carries one or more elements and / or compounds selected from the group consisting of silver and silver compounds as a catalytically active species on a porous inorganic oxide and an iron compound. And acts to remove nitrogen oxides over a wide temperature range. As the porous inorganic oxide, alumina alone, or titania, silica, zirconia, zinc oxide, tin oxide,
It is preferable to use a composite or mixed oxide of alumina and at least one of magnesium oxide and zeolite.
As zeolite, ferrierite, mortenite, Z
Various zeolites such as SM-5 can be used.
Here, the tin oxide includes tin oxide in various oxidation states, and examples of the main tin oxide include stannous oxide and stannic oxide.

【0012】アルミナ等の多孔質の無機酸化物の比表面
積は10m2 /g以上であるのが好ましい。比表面積が
10m2 /g未満であると、触媒活性種の分散が低下
し、良好な窒素酸化物の除去が行えない。より好ましい
多孔質無機酸化物の比表面積は30m2 /g以上であ
る。
The specific surface area of a porous inorganic oxide such as alumina is preferably 10 m 2 / g or more. When the specific surface area is less than 10 m 2 / g, the dispersion of the catalytically active species is reduced, and good removal of nitrogen oxides cannot be performed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0013】銀化合物は銀の酸化物、ハロゲン化銀、硫
酸銀及び燐酸銀等からなる群より選ばれた少なくとも一
種であり、好ましくは銀の酸化物、塩化銀及び硫酸銀の
いずれか一種以上であり、更に好ましくは銀の酸化物及
び/又は塩化銀である。銀成分の担持量は、多孔質無機
酸化物100重量%に対して0.2〜15重量%(銀元
素換算値)とする。0.2重量%未満では窒素酸化物の
除去率が低下する。また、15重量%を超す量の銀成分
を担持すると炭化水素及び/又は含酸素有機化合物自身
の燃焼が起きやすく、窒素酸化物の除去率はかえって低
下する。好ましい銀成分の担持量は0.5〜12重量%
である。
The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate and the like, and preferably at least one of silver oxide, silver chloride and silver sulfate. And more preferably silver oxide and / or silver chloride. The supported amount of the silver component is 0.2 to 15% by weight (in terms of silver element) based on 100% by weight of the porous inorganic oxide. If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 15% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. A preferable loading amount of the silver component is 0.5 to 12% by weight.
It is.

【0014】鉄化合物は鉄の酸化物、ハロゲン化鉄、硫
酸鉄及び燐酸鉄等からなる群より選ばれた少なくとも一
種であり、好ましくは酸化鉄である。鉄成分の担持量
は、多孔質無機酸化物100重量%に対して1重量%以
下(鉄元素換算値)とする。鉄成分の担持量が1重量%
を超すと、窒素酸化物の除去特性が低下する。好ましい
鉄成分の担持量は0.001〜0.8重量%である。
The iron compound is at least one selected from the group consisting of iron oxide, iron halide, iron sulfate, iron phosphate and the like, and is preferably iron oxide. The carrying amount of the iron component is 1% by weight or less (in terms of iron element) with respect to 100% by weight of the porous inorganic oxide. 1% by weight of iron component supported
Is exceeded, the removal characteristics of nitrogen oxides deteriorate. The preferable loading amount of the iron component is 0.001 to 0.8% by weight.

【0015】アルミナ等の無機酸化物に銀成分及び鉄成
分を担持する方法としては、公知の含浸法、沈澱法等を
用いることができる。含浸法を用いる際、銀、鉄の硝酸
塩、塩化物、硫酸塩、炭酸塩等の水溶液に多孔質無機酸
化物を浸漬する。ハロゲン化物又は硫酸塩を担持する場
合、硝酸塩水溶液に多孔質無機酸化物を浸漬し、乾燥
後、塩化アンモニウム又は硫酸アンモニウムの水溶液に
再び浸漬する。沈澱法でハロゲン化物を調製するには硝
酸塩とハロゲン化アンモニウムとを反応させて、ハロゲ
ン化物として多孔質無機酸化物上に沈澱させる。これを
50〜150℃、特に70℃程度で乾燥後、100〜6
00℃で段階的に昇温して焼成するのが好ましい。焼成
は、空気中、酸素を含む窒素気流下や水素ガス気流下で
行うのが好ましい。窒素気流下又は水素ガス気流下で焼
成した場合には、最後に300〜650℃で酸化処理す
るのが好ましい。アルミナ、アルミナ系混合又は複合酸
化物への銀の担持では、ベーマイト等のアルミナ水和物
を出発物質として利用すると効果的である。なお、65
0℃までの焼成過程で、部分的に酸化分解する銀、鉄の
化合物もある。しかし、理由はまだはっきり分からない
が、これらの化合物を出発物質とすることにより、高い
窒素酸化物除去特性が得られる。
As a method for supporting a silver component and an iron component on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, a porous inorganic oxide is immersed in an aqueous solution of silver, iron nitrate, chloride, sulfate, carbonate or the like. When a halide or a sulfate is supported, the porous inorganic oxide is immersed in an aqueous nitrate solution, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. To prepare a halide by a precipitation method, a nitrate is reacted with an ammonium halide to precipitate on the porous inorganic oxide as a halide. After drying this at 50 to 150 ° C, especially about 70 ° C,
It is preferable that the temperature is raised stepwise at 00 ° C. and firing is performed. The calcination is preferably performed in air, under a stream of nitrogen containing oxygen or under a stream of hydrogen gas. When calcination is performed under a nitrogen gas stream or a hydrogen gas stream, it is preferable to perform an oxidation treatment at 300 to 650 ° C. at last. In carrying silver on alumina, an alumina-based mixed or composite oxide, it is effective to use alumina hydrate such as boehmite as a starting material. Note that 65
Some silver and iron compounds are partially oxidatively decomposed during the firing process up to 0 ° C. However, for unknown reasons, high nitrogen oxide removal properties are obtained by using these compounds as starting materials.

【0016】[2]排ガス浄化材の形態 本発明の排ガス浄化材の第一の好ましい形態は、上記触
媒を浄化材基体にコートしてなる浄化材である。浄化材
の基体を形成するセラミックス材料としては、コージェ
ライト、ムライト、アルミナ及びその複合物等を用いる
のが好ましい。また、排ガス浄化材の基体に公知の金属
材料を用いることもできる。
[2] Form of Exhaust Gas Purifying Material A first preferred embodiment of the exhaust gas purifying material of the present invention is a purifying material obtained by coating the above-mentioned catalyst on a purifying material base. As the ceramic material forming the base of the purifying material, cordierite, mullite, alumina and a composite thereof are preferably used. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0017】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。またその構造としては、
ハニカム構造型、フォーム型、繊維状耐火物からなる三
次元網目構造型、あるいは顆粒状、ペレット状等が挙げ
られる。ウォッシュコート法、粉末法等を用いて上記基
体に触媒をコートしたり、ウォッシュコート法、ゾル・
ゲル法等を用いて基体に多孔質無機酸化物をコートした
後、触媒活性種を公知の含浸法、イオン交換法等を用い
て担持することもできる。
The shape and size of the substrate of the exhaust gas purifying material are as follows:
Various changes can be made according to the purpose. Also, as its structure,
Examples include a honeycomb structure type, a foam type, a three-dimensional network structure type made of a fibrous refractory, a granular form, a pellet form, and the like. The catalyst may be coated on the substrate using a wash coat method, a powder method, or the like, or a wash coat method, a sol
After the porous inorganic oxide is coated on the substrate using a gel method or the like, the catalytically active species can be supported using a known impregnation method, an ion exchange method, or the like.

【0018】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状、顆粒状、粉末状、ハニカム状又は板
状の多孔質無機酸化物に触媒活性種を担持してなる触
媒、又は触媒をハニカム状、フォーム状、板状、ペレッ
ト状、顆粒状に成形してなる浄化材である。
The second preferred form of the exhaust gas purifying material of the present invention is a catalyst comprising a porous inorganic oxide in the form of pellets, granules, powders, honeycombs or plates carrying a catalytically active species, or a catalyst. Is formed into a honeycomb, foam, plate, pellet, or granule.

【0019】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける触媒の厚さ
は、一般に、基体材と、触媒との熱膨張特性の違いから
制限される場合が多い。浄化材基体上に設ける触媒の厚
さを300μm以下とするのがよい。このような厚さと
すれば、使用中に熱衝撃等で浄化材が破損することを防
ぐことができる。浄化材基体の表面に触媒を形成する方
法は公知のウォッシュコート法等によって行われる。
When the purifying material is in the above-described first preferred embodiment, the thickness of the catalyst provided on the purifying material base is generally limited by the difference in thermal expansion characteristics between the base material and the catalyst. In many cases. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. A method for forming a catalyst on the surface of the purifying material base is performed by a known wash coat method or the like.

【0020】また、浄化材基体の表面上に設ける触媒の
量は、浄化材基体の20〜300g/リットルとするの
が好ましい。触媒の量が20g/リットル未満では良好
なNOx の除去が行えない。一方、触媒の量が300g/
リットルを超えると除去特性はそれほど上がらず、圧力
損失が大きくなる。より好ましくは、浄化材基体の表面
上に設ける触媒を浄化材基体の50〜200g/リット
ルとする。
Further, the amount of the catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter of the purifying material base. If the amount of the catalyst is less than 20 g / liter, good NOx removal cannot be performed. On the other hand, when the amount of the catalyst is 300 g /
If it exceeds 1 liter, the removal characteristics are not so improved, and the pressure loss increases. More preferably, the amount of the catalyst provided on the surface of the purifying material base is 50 to 200 g / liter of the purifying material base.

【0021】上述した構成の浄化材を用いれば、100
〜500℃の広い温度領域において、水分10%程度及
び硫黄酸化物を含む排ガスでも、良好な窒素酸化物の除
去を行うことができる。
If the purifying material having the above structure is used, 100
In a wide temperature range of up to 500 ° C., good removal of nitrogen oxides can be performed even with exhaust gas containing about 10% of moisture and sulfur oxides.

【0022】[3]排ガス浄化方法 次に、本発明の方法について説明する。まず、本発明の
排ガス浄化材を排ガス導管の途中に設置する。
[3] Exhaust gas purification method Next, the method of the present invention will be described. First, the exhaust gas purifying material of the present invention is installed in the middle of an exhaust gas conduit.

【0023】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度含まれるが、一般に排ガス
中のNOx を還元するのに十分な量ではないので、外部か
ら炭化水素及び/又は含酸素有機化合物、好ましくは含
酸素有機化合物又はそれと炭化水素燃料と混合してなる
還元剤を排ガス中に導入する。還元剤の導入位置は、浄
化材を設置した位置より上流側である。
The exhaust gas contains ethylene, propylene, etc. to a certain extent as residual hydrocarbons. However, since the amount is generally not sufficient to reduce NOx in the exhaust gas, hydrocarbons and / or oxygen-containing organic compounds are supplied from outside. Preferably, an oxygen-containing organic compound or a reducing agent obtained by mixing the compound with a hydrocarbon fuel is introduced into the exhaust gas. The position where the reducing agent is introduced is upstream of the position where the purifying material is installed.

【0024】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカンでは炭
素数2以上が好ましい。標準状態で液体状の炭化水素と
しては、具体的に、軽油、セタン、ヘプタン、灯油、ガ
ソリン等の炭化水素が挙げられる。その中でも、沸点5
0〜350℃の炭化水素が特に好ましい。外部から導入
する含酸素有機化合物として、炭素数2以上のエタノー
ル、イソプロピルアルコール等のアルコール類、又はそ
れらを含む燃料を用いることができる。
As the hydrocarbon introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, alkanes preferably have 2 or more carbon atoms. Specific examples of the hydrocarbon in a liquid state in a standard state include hydrocarbons such as light oil, cetane, heptane, kerosene, and gasoline. Among them, boiling point 5
Hydrocarbons at 0-350 ° C are particularly preferred. As the oxygen-containing organic compound introduced from the outside, alcohols such as ethanol and isopropyl alcohol having 2 or more carbon atoms, or a fuel containing them can be used.

【0025】外部から導入する炭化水素及び/又は含酸
素有機化合物の量は、重量比(添加する還元剤の重量/
排ガス中の窒素酸化物の重量)が0.1〜5となるよう
にするのが好ましい。この重量比が0.1未満である
と、窒素酸化物の除去率が大きくならない。一方、5を
超えると、燃費悪化につながる。
The amount of the hydrocarbon and / or oxygen-containing organic compound introduced from the outside is determined by the weight ratio (weight of the reducing agent added / weight of the reducing agent /
(Weight of nitrogen oxides in the exhaust gas) is preferably 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0026】また、炭化水素又は含酸素有機化合物を含
有する燃料を添加する場合、燃料としてガソリン、軽
油、灯油等を用いるのが好ましい。この場合、還元剤の
量は上記と同様に重量比(添加する還元剤の重量/排ガ
ス中の窒素酸化物の重量)が0.1〜5となるように設
定する。
When a fuel containing a hydrocarbon or an oxygen-containing organic compound is added, it is preferable to use gasoline, light oil, kerosene or the like as the fuel. In this case, the amount of the reducing agent is set such that the weight ratio (the weight of the reducing agent to be added / the weight of the nitrogen oxide in the exhaust gas) is 0.1 to 5 in the same manner as described above.

【0027】本発明では、含酸素有機化合物、炭化水素
等による窒素酸化物の還元除去を効率的に進行させるた
めに、空間速度は 500,000h-1以下、好ましくは 300,0
00h-1以下とする。
In the present invention, the space velocity is 500,000 h -1 or less, preferably 300,0 h or less, in order to efficiently promote the reduction and removal of nitrogen oxides by oxygen-containing organic compounds and hydrocarbons.
00h -1 or less.

【0028】また、本発明では、炭化水素及び/又は含
酸素有機化合物と窒素酸化物とが反応する部位である浄
化材設置部位における排ガスの温度を150〜650℃
に保つ。排ガスの温度が150℃未満であると還元剤と
窒素酸化物との反応が進行せず、良好な窒素酸化物の除
去を行うことができない。一方、650℃を超す温度と
すると炭化水素及び/又は含酸素有機化合物自身の燃焼
が始まり、窒素酸化物の還元除去が行えない。好ましい
排ガス温度は200〜600℃であり、より好ましくは
250〜550℃である。
Further, in the present invention, the temperature of the exhaust gas at the purification material installation site where the hydrocarbon and / or the oxygen-containing organic compound reacts with the nitrogen oxide is set at 150 to 650 ° C.
To keep. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, if the temperature exceeds 650 ° C., combustion of the hydrocarbon and / or the oxygen-containing organic compound itself starts, and reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 200 to 600 ° C, more preferably from 250 to 550 ° C.

【0029】[0029]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販の粉末状シリカ・アルミナ(SiO2 含有量:5重
量%、平均粒径0.05mm、比表面積350m2
g)を硝酸銀水溶液に浸漬し、塩化アンモニウム水溶液
を入れてシリカ・アルミナに塩化銀を沈殿させた後、7
0℃で乾燥し、空気中で、100℃〜600℃まで段階
的に昇温し、 最後に600℃で3時間焼成した後、硝酸
第二鉄水溶液に投入して30分間浸漬し、70℃で乾燥
させて、シリカ・アルミナ粉末に対して塩化銀4重量%
(銀元素換算値)及び鉄0.01重量%(鉄元素換算
値)を担持した触媒を得た。
The present invention will be described in more detail with reference to the following specific examples. Example 1 Commercially available powdered silica-alumina (SiO 2 content: 5% by weight, average particle size 0.05 mm, specific surface area 350 m 2 /
g) was immersed in an aqueous solution of silver nitrate, and an aqueous solution of ammonium chloride was added to precipitate silver chloride on silica-alumina.
After drying at 0 ° C., the temperature was increased stepwise from 100 ° C. to 600 ° C. in the air, and finally calcined at 600 ° C. for 3 hours. And 4% by weight of silver chloride based on silica-alumina powder
A catalyst supporting (silver element conversion value) and 0.01% by weight of iron (iron element conversion value) was obtained.

【0030】この触媒0.52gをスラリー化した後、
市販のコージェライト製ハニカム成形体(400セル/
インチ2 、直径20mm、長さ16.6mm)にウォッ
シュコート法によりコートした。これを80℃、空気中
で3時間乾燥し、100℃〜600℃まで段階的に昇温
し、 最後に600℃で3時間焼成し、銀、鉄系排ガス浄
化材を作製した。
After slurrying 0.52 g of this catalyst,
A commercially available cordierite honeycomb molded body (400 cells /
Inch 2 , diameter 20 mm, length 16.6 mm) by a wash coat method. This was dried in air at 80 ° C. for 3 hours, heated stepwise from 100 ° C. to 600 ° C., and finally baked at 600 ° C. for 3 hours to produce a silver- and iron-based exhaust gas purifying material.

【0031】反応管内に上記排ガス浄化材をセットし
た。次に、表1に示す組成のガス(一酸化窒素、酸素、
エタノール、二酸化硫黄、窒素及び水分)を毎分3.4
8リットル(標準状態)の流量で流して(浄化材の見か
け空間速度は約40,000h-1である)、反応管内の
排ガス温度を300〜550℃の範囲に保ち、エタノー
ルと窒素酸化物とを反応させた。
The exhaust gas purifying material was set in a reaction tube. Next, gases having the composition shown in Table 1 (nitrogen monoxide, oxygen,
Ethanol, sulfur dioxide, nitrogen and water) at 3.4
At a flow rate of 8 liters (standard state) (the apparent space velocity of the purifying material is about 40,000 h -1 ), the temperature of the exhaust gas in the reaction tube is kept in the range of 300 to 550 ° C., and ethanol and nitrogen oxides are removed. Was reacted.

【0032】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表2に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured with a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 2 shows the results.

【0033】 表1 成分 濃度(乾燥ベース) 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm (一酸化窒素の質量の3倍) 二酸化硫黄 30 ppm 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Concentrations of components (dry basis) Nitric oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm (3 times the mass of nitric oxide) Sulfur dioxide 30 ppm Nitrogen Residual moisture 10% by volume (to the total volume of the above components) for)

【0034】実施例2 市販の粉末状γ−アルミナ(平均粒径0.05mm、比
表面積200m2 /g)に実施例1と同じ方法で塩化銀
4重量%(銀元素換算値)及び鉄0.05重量%(鉄元
素換算値)を担持し銀、鉄系触媒0.52gを実施例1
と同様にスラリー化し、市販のコージェライト製ハニカ
ム状成形体(直径20mm、長さ16.6mm、400
セル/インチ2 )にコートし、乾燥後600℃まで段階
的に焼成し、銀、鉄系排ガス浄化材を調製した。
Example 2 A commercially available powdery γ-alumina (average particle size: 0.05 mm, specific surface area: 200 m 2 / g) was treated in the same manner as in Example 1 with 4% by weight of silver chloride (in terms of silver element) and 0% of iron. Example 1 containing 0.52 g of a silver and iron-based catalyst carrying 0.055% by weight (converted to iron element).
A slurry was prepared in the same manner as described above, and a commercially available cordierite honeycomb-shaped formed body (diameter 20 mm, length 16.6 mm, 400
Cells / inch < 2 >), dried and baked stepwise to 600 [deg.] C. to prepare a silver / iron-based exhaust gas purifying material.

【0035】反応管内に排ガス浄化材をセットした。実
施例1と同様の反応条件(浄化材の見かけ空間速度は約
40,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
An exhaust gas purifying material was set in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of the purification material was about 40,000 h -1 ). Table 2 shows the results.

【0036】実施例3 硝酸銀水溶液及び硝酸第二鉄水溶液を用いて、実施例1
と同じ方法で市販の粉末状シリカ・アルミナ(SiO2
含有量:5重量%、平均粒径0.05mm、比表面積3
50m2 /g)に銀4重量%(銀元素換算値)及び鉄
0.05重量%(鉄元素換算値)を担持した触媒0.5
2gをスラリー化した後、市販のコージェライト製ハニ
カム状成形体(直径20mm、長さ16.6mm、40
0セル/インチ2 )にコートし、乾燥後600℃まで段
階的に焼成し、排ガス浄化材を調製した。
Example 3 Example 1 was performed using an aqueous solution of silver nitrate and an aqueous solution of ferric nitrate.
Powdered silica-alumina (SiO 2
Content: 5% by weight, average particle size 0.05 mm, specific surface area 3
Catalyst 0.5 supporting 4% by weight of silver (converted to elemental silver) and 0.05% by weight of iron (converted to elemental iron) on 50 m 2 / g)
After slurrying 2 g, a commercially available honeycomb shaped body made of cordierite (diameter 20 mm, length 16.6 mm, 40
0 cells / inch 2 ), dried and baked stepwise to 600 ° C. to prepare an exhaust gas purifying material.

【0037】反応管内に排ガス浄化材をセットした。実
施例1と同様の反応条件(浄化材の見かけ空間速度は約
40,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
An exhaust gas purifying material was set in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of the purification material was about 40,000 h -1 ). Table 2 shows the results.

【0038】比較例1 硝酸銀水溶液を用いて、実施例1と同じ方法でγ−アル
ミナ粉末(平均粒径0.05mm、比表面積200m2
/g)に銀を4重量%(銀元素換算値)担持し、銀系触
媒を作製した。この触媒0.52gを市販のコージェラ
イト製ハニカム状成形体(直径20mm、長さ16.6
mm、400セル/インチ2 )に実施例1と同じ方法で
コートし、乾燥後600℃まで段階的に焼成し、排ガス
浄化材を調製した。
Comparative Example 1 γ-alumina powder (average particle size: 0.05 mm, specific surface area: 200 m 2) was prepared in the same manner as in Example 1 using an aqueous silver nitrate solution.
/ G) carrying 4% by weight of silver (in terms of silver element) to prepare a silver-based catalyst. 0.52 g of this catalyst was used as a commercially available cordierite honeycomb-shaped formed body (diameter 20 mm, length 16.6).
mm, 400 cells / inch 2 ) was coated in the same manner as in Example 1, dried, and fired stepwise to 600 ° C. to prepare an exhaust gas purifying material.

【0039】反応管内に排ガス浄化材をセットした。実
施例1と同様の反応条件(浄化材の見かけ空間速度は約
40,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
An exhaust gas purifying material was set in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of the purification material was about 40,000 h -1 ). Table 2 shows the results.

【0040】 表2 窒素酸化物の除去率(%) 温度 実施例1 実施例2 実施例3 比較例1 300℃ 68.7 65.3 65.3 25.2 350℃ 70.3 75.6 76.2 41.8 400℃ 85.6 86.3 87.8 52.6 450℃ 79.4 83.7 84.3 60.2 500℃ 65.6 70.5 70.2 50.5 550℃ 54.8 57.3 52.3 35.8 Table 2 Nitrogen oxide removal rate (%) temperature Example 1 Example 2 Example 3 Comparative Example 1 300 ° C. 68.7 65.3 65.3 25.2 350 ° C. 70.3 75.6 76 .2 41.8 400 ° C. 85.6 86.3 87.8 52.6 450 ° C. 79.4 83.7 84.3 60.2 500 ° C. 65.6 70.5 70.2 50.5 550 ° C. 54 .8 57.3 52.3 35.8

【0041】実施例4 反応管内に実施例1の排ガス浄化材をセットした。次
に、表3に示す組成のガス(一酸化窒素、酸素、プロピ
レン、窒素及び水分)を毎分3.48リットル(標準状
態)の流量で流して(浄化材の見かけ空間速度は約4
0,000h-1である)、反応管内の排ガス温度を30
0〜500℃の範囲に保ち、プロピレンと窒素酸化物と
を反応させた。
Example 4 The exhaust gas purifying material of Example 1 was set in a reaction tube. Next, a gas having the composition shown in Table 3 (nitrogen monoxide, oxygen, propylene, nitrogen and moisture) was flowed at a flow rate of 3.48 liters per minute (standard state) (the apparent space velocity of the purification material was about 4
0,000h -1), the exhaust gas temperature in the reaction tube 30
While maintaining the temperature in the range of 0 to 500 ° C., propylene was reacted with nitrogen oxide.

【0042】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表4に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 4 shows the results.

【0043】 表3 成分 濃度 一酸化窒素 800 ppm (乾燥ベース) 酸素 10 容量% (乾燥ベース) プロピレン 1714 ppm (乾燥ベース) 窒素 残部 (バランス) 水分 10 容量%(上記成分の総体積に対して)Table 3 Component Concentrations Nitric Oxide 800 ppm (dry basis) Oxygen 10% by volume (dry basis) Propylene 1714 ppm (dry basis) Nitrogen Balance (balance) Moisture 10% by volume ( based on the total volume of the above components)

【0044】実施例5 反応管内に実施例2の排ガス浄化材をセットした。実施
例4と同様の反応条件(浄化材の見かけ空間速度は約4
0,000h-1である)で、表3に示す組成のガスを用
いて評価を行った。結果を表4に示す。
Example 5 The exhaust gas purifying material of Example 2 was set in a reaction tube. The same reaction conditions as in Example 4 (the apparent space velocity of the purifying material was about 4
(Equivalent to 3,000 h −1 )), and was evaluated using a gas having a composition shown in Table 3. Table 4 shows the results.

【0045】実施例6 市販の粉末状γ−アルミナ(平均粒径0.05mm、比
表面積200m2 /g)と酸化第二錫粉末(平均粒径
0.1mm以下、比表面積71m2 /g)とを95:5
の重量比で混合した粉末に、実施例1と同じ方法で塩化
銀4重量%(銀元素換算値)及び鉄0.05重量%(鉄
元素換算値)を担持し銀、鉄系触媒0.52gを実施例
1と同様にスラリー化し、市販のコージェライト製ハニ
カム状成形体(直径20mm、長さ16.6mm、40
0セル/インチ2 )にコートし、乾燥後600℃まで段
階的に焼成し、銀、鉄系排ガス浄化材を調製した。
Example 6 Commercially available powdery γ-alumina (average particle size: 0.05 mm, specific surface area: 200 m 2 / g) and stannic oxide powder (average particle size: 0.1 mm or less, specific surface area: 71 m 2 / g) And 95: 5
In the same manner as in Example 1, 4% by weight of silver chloride (in terms of silver element) and 0.05% by weight of iron (in terms of iron element) are supported on the powder mixed at a weight ratio of 1%. 52 g was slurried in the same manner as in Example 1, and a commercially available cordierite honeycomb-shaped formed body (diameter 20 mm, length 16.6 mm, 40
0 cells / inch 2 ), dried and baked stepwise to 600 ° C. to prepare a silver- and iron-based exhaust gas purifying material.

【0046】反応管内に排ガス浄化材をセットした。実
施例1と同様の反応条件(浄化材の見かけ空間速度は約
40,000h-1である)で、表3に示す組成のガスを
用いて評価を行った。結果を表4に示す。
An exhaust gas purifying material was set in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 3 under the same reaction conditions as in Example 1 (the apparent space velocity of the purifying material was about 40,000 h -1 ). Table 4 shows the results.

【0047】比較例2 反応管内に比較例1の排ガス浄化材をセットした。実施
例4と同様の反応条件(浄化材の見かけ空間速度は約4
0,000h-1である)で、表3に示す組成のガスを用
いて評価を行った。結果を表4に示す。
Comparative Example 2 The exhaust gas purifying material of Comparative Example 1 was set in a reaction tube. The same reaction conditions as in Example 4 (the apparent space velocity of the purifying material was about 4
(Equivalent to 3,000 h −1 )), and was evaluated using a gas having a composition shown in Table 3. Table 4 shows the results.

【0048】 表4 窒素酸化物の除去率(%) 温度 実施例4 実施例5 実施例6 比較例2 300℃ 19.5 24.3 25.1 15.6 350℃ 26.7 30.4 31.4 22.5 400℃ 64.7 67.4 65.4 59.6 450℃ 60.4 64.7 64.0 54.5500℃ 35.9 40.4 38.2 24.6 Table 4 Nitrogen oxide removal rate (%) temperature Example 4 Example 5 Example 6 Comparative Example 2 300 ° C. 19.5 24.3 25.1 15.6 350 ° C. 26.7 30.4 31 .4 22.5 400 ° C. 64.7 67.4 65.4 59.6 450 ° C. 60.4 64.7 64.0 54.5 500 ° C. 35.9 40.4 38.2 24.6

【0049】表2及び表4からわかるように、銀系触媒
からなる浄化材を用いた比較例1、2に比べて、本発明
の銀、鉄浄化材を用いた実施例1〜6では広い排ガス温
度領域において窒素酸化物の良好な除去がみられた。
As can be seen from Tables 2 and 4, as compared with Comparative Examples 1 and 2 using a purifying material composed of a silver-based catalyst, Examples 1 to 6 using the silver and iron purifying materials of the present invention were wider. Good removal of nitrogen oxides was observed in the exhaust gas temperature range.

【0050】[0050]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, the use of the exhaust gas purifying material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purification method of the present invention can be widely used for purifying exhaust gas of various types of combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 27/10 B01D 53/36 ZAB 27/18 102B 102H ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B01J 27/10 B01D 53/36 ZAB 27/18 102B 102H

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に銀及び銀化合物からなる群より選ばれる
一種以上の元素及び/又は化合物0.2〜15重量%
(金属元素換算値)と、鉄の化合物1重量%以下(金属
元素換算値)とを担持した触媒からなることを特徴とす
る排ガス浄化材。
1. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components, wherein silver and silver are used as porous inorganic oxides. 0.2 to 15% by weight of one or more elements selected from the group consisting of compounds and / or compounds
An exhaust gas purifying material comprising a catalyst supporting (a metal element conversion value) and 1% by weight or less of an iron compound (a metal element conversion value).
【請求項2】 請求項1に記載の排ガス浄化材におい
て、前記銀化合物は銀の酸化物、ハロゲン化銀、硫酸銀
及び燐酸銀からなる群より選ばれた少なくとも一種であ
り、前記鉄化合物は鉄の酸化物、ハロゲン化鉄、硫酸鉄
及び燐酸鉄からなる群より選ばれた少なくとも一種であ
ることを特徴とする排ガス浄化材。
2. The exhaust gas purifying material according to claim 1, wherein the silver compound is at least one selected from the group consisting of an oxide of silver, silver halide, silver sulfate and silver phosphate, and the iron compound is An exhaust gas purifying material, which is at least one selected from the group consisting of iron oxide, iron halide, iron sulfate and iron phosphate.
【請求項3】 請求項1又は2に記載の排ガス浄化材に
おいて、前記多孔質無機酸化物がアルミナ単独、又はチ
タニア、シリカ、ジルコニア、ZnO、MgO、酸化錫
のいずれか一種以上とアルミナとの複合又は混合酸化物
であることを特徴とする排ガス浄化材。
3. The exhaust gas purifying material according to claim 1, wherein the porous inorganic oxide is composed of alumina alone or a mixture of alumina and any one or more of titania, silica, zirconia, ZnO, MgO, and tin oxide. An exhaust gas purifying material characterized by being a composite or mixed oxide.
【請求項4】 請求項1〜3に記載の排ガス浄化材にお
いて、前記触媒がセラミックス製又は金属製の基体の表
面にコートされたものであることを特徴とする排ガス浄
化材。
4. The exhaust gas purifying material according to claim 1, wherein the catalyst is coated on a surface of a ceramic or metal substrate.
【請求項5】 請求項1〜3に記載の排ガス浄化材にお
いて、前記触媒がペレット状、顆粒状、ハニカム状、フ
ォーム状又は板状に成形されていることを特徴とする排
ガス浄化材。
5. The exhaust gas purifying material according to claim 1, wherein the catalyst is formed into a pellet, a granule, a honeycomb, a foam, or a plate.
【請求項6】 請求項1〜5のいずれかに記載の排ガス
浄化材を用い、窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化方法において、前記
排ガス浄化材を排ガス導管の途中に設置し、前記浄化材
の上流側で炭化水素及び/又は含酸素有機化合物を添加
した排ガスを、150〜650℃において前記浄化材に
接触させ、もって前記排ガス中の炭化水素及び/又は含
酸素有機化合物との反応により前記窒素酸化物を除去す
ることを特徴とする排ガス浄化方法。
6. An exhaust gas purifying material according to claim 1, wherein nitrogen oxide is reduced from a combustion exhaust gas containing nitrogen oxide and oxygen in an amount larger than a theoretical reaction amount for a coexisting unburned component. In the exhaust gas purifying method for removing, the exhaust gas purifying material is provided in the middle of an exhaust gas conduit, and the exhaust gas to which a hydrocarbon and / or an oxygen-containing organic compound is added at an upstream side of the purifying material is subjected to the purifying material at 150 to 650 ° C. Exhaust gas purifying method, wherein the nitrogen oxides are removed by contact with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.
JP8199668A 1995-07-11 1996-07-10 Waste gas purification material and method for purifying waste gas Pending JPH0975739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199668A JPH0975739A (en) 1995-07-11 1996-07-10 Waste gas purification material and method for purifying waste gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19920795 1995-07-11
JP7-199207 1995-07-11
JP8199668A JPH0975739A (en) 1995-07-11 1996-07-10 Waste gas purification material and method for purifying waste gas

Publications (1)

Publication Number Publication Date
JPH0975739A true JPH0975739A (en) 1997-03-25

Family

ID=26511401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199668A Pending JPH0975739A (en) 1995-07-11 1996-07-10 Waste gas purification material and method for purifying waste gas

Country Status (1)

Country Link
JP (1) JPH0975739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128175A1 (en) * 2008-04-14 2009-10-22 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
WO2009144847A1 (en) * 2008-05-29 2009-12-03 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
US7737078B2 (en) 2004-12-03 2010-06-15 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737078B2 (en) 2004-12-03 2010-06-15 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
WO2009128175A1 (en) * 2008-04-14 2009-10-22 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
US20110030354A1 (en) * 2008-04-14 2011-02-10 Mitsui Mining & Smelting Co., Ltd Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
JP5579596B2 (en) * 2008-04-14 2014-08-27 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purification device
WO2009144847A1 (en) * 2008-05-29 2009-12-03 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
JP5328783B2 (en) * 2008-05-29 2013-10-30 三井金属鉱業株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purification device
US9393522B2 (en) 2008-05-29 2016-07-19 Mitsui Mining & Smelting Co., Ltd. Method for combusting diesel exhaust gas

Similar Documents

Publication Publication Date Title
JP3440290B2 (en) Exhaust gas purification method
JPH0975739A (en) Waste gas purification material and method for purifying waste gas
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JPH0985053A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH09248459A (en) Material and method for exhaust gas-purifying
JPH09262439A (en) Nitrogen oxide removing material and removing method of nitrogen oxide
JPH0975730A (en) Waste gas purification material and method for purifying waste gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH10328567A (en) Waste gas purifying material and waste gas purifying method
JPH0957063A (en) Waste gas purifying material and waste gas purifying method
JPH08168650A (en) Material and method for purifying exhaust gas
JPH06262078A (en) Exhaust gas purification material and method of exhaust gas purification
JPH09122488A (en) Exhaust gas cleaning material, manufacture thereof and cleaning of exhaust gas
JPH10165816A (en) Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol
JPH06238164A (en) Catalyst and method for removing nitrogen oxides
JPH10128116A (en) Material for purification of exhaust gas and method therefor
JPH0852327A (en) Exhaust gas purifying material and method
JPH06198130A (en) Nitrogen oxide removal material and method for removing nitrogen oxide
JPH0985057A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH0947660A (en) Material and process for purifying exhaust gas
JPH1043592A (en) Waste gas purification material and method for purifying waste gas
JPH0824646A (en) Material and method for purifying exhaust gas
JPH0999241A (en) Waste gas purification material and method for purifying waste gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JPH0857263A (en) Exhaust gas purifying material and method therefor