JPH10165816A - Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol - Google Patents

Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol

Info

Publication number
JPH10165816A
JPH10165816A JP8340435A JP34043596A JPH10165816A JP H10165816 A JPH10165816 A JP H10165816A JP 8340435 A JP8340435 A JP 8340435A JP 34043596 A JP34043596 A JP 34043596A JP H10165816 A JPH10165816 A JP H10165816A
Authority
JP
Japan
Prior art keywords
exhaust gas
silver
oxide
catalyst
purifying material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8340435A
Other languages
Japanese (ja)
Inventor
Mika Saitou
美香 斎藤
Akira Abe
晃 阿部
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHOSANGYOSHO KISO SANGYO KY
TSUSHOSANGYOSHO KISO SANGYO KYOKUCHO
Original Assignee
TSUSHOSANGYOSHO KISO SANGYO KY
TSUSHOSANGYOSHO KISO SANGYO KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHOSANGYOSHO KISO SANGYO KY, TSUSHOSANGYOSHO KISO SANGYO KYOKUCHO filed Critical TSUSHOSANGYOSHO KISO SANGYO KY
Priority to JP8340435A priority Critical patent/JPH10165816A/en
Publication of JPH10165816A publication Critical patent/JPH10165816A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove nitrogen oxide from a combustion exhaust gas containing a larger amt. of oxygen than the stoichiometric amt. by depositing a specified amt. of one or more kinds selected from silver and silver compds. on a porous inorg. oxide to prepare first and second catalysts and depositing each specified amt. of iron oxides and copper oxides on the second catalyst. SOLUTION: The first catalyst is prepared by depositing one or more kinds selected from silver and silver compds. on a porous inorg. oxide. the amt, of the silver component deposited is 0.2 to 15wt.% (calculated as silver element) to 100wt.% porous inorg. oxide. The second catalyst is prepared by depositing one ore more kinds selected from silver and silver compds. by 0.2 to 15wt.% (calculated as silver element) and iron oxides and copper oxides by each 0.1 to 30wt.% (calculated as each metal element) on 100wt.% porous inorg oxide. The first and second catalysts are disposed in a conduit for exhaust gas in such a manner that the first catalyst is arranged in the entrance side of the cleaning material for the exhaust gas where the gas flows and that the second catalyst is disposed on the exit side of the flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素酸化物と過剰の
酸素を含む燃焼排ガスから、窒素酸化物を効果的に除去
できるとともに、添加したエタノール又は水を添加した
エタノール(以下単にエタノールと呼ぶ)が未反応、不
完全反応のままに排出されない排ガス浄化材及び浄化方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for effectively removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and adding ethanol or ethanol to which water is added (hereinafter simply referred to as ethanol). The present invention relates to an exhaust gas purifying material and a purifying method which are not discharged as unreacted or incompletely reacted.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、コジェネレーション用定置式ディーゼルエンジン、
家庭用ファンヒーターなどから排出される各種の燃焼排
ガス中には、過剰の酸素とともに一酸化窒素、二酸化窒
素等の窒素酸化物(一般にNOx と呼ばれる)が含まれて
いる。ここで、窒素酸化物(NOx)とは一酸化窒素及び
/又は二酸化窒素を指し、「過剰の酸素を含む」とは、
その排ガス中に含まれる一酸化炭素、水素、炭化水素等
の未燃焼成分を燃焼するのに必要な理論酸素量より多い
酸素を含むことを意味する。
2. Description of the Related Art An internal combustion engine such as an automobile engine, a combustion device installed in a factory or the like, a stationary diesel engine for cogeneration,
Various combustion exhaust gases discharged from household fan heaters and the like contain nitrogen oxides (generally called NOx) such as nitric oxide and nitrogen dioxide together with excess oxygen. Here, nitrogen oxides (NOx) refer to nitric oxide and / or nitrogen dioxide, and “containing excess oxygen”
This means that the exhaust gas contains more oxygen than the theoretical amount of oxygen required to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため各種燃
焼機器が排出する排ガス中の窒素酸化物を除去するさま
ざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides from exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、チタニア、アルミナなどの金属酸
化物と希土類酸化物とRu、Rh、Pd、Ag、Ptの内の少なく
とも一種とからなる炭化水素による窒素酸化物接触還元
用触媒が提案された(特開平4-27431 号) 。しかしなが
ら、本発明者等の実験結果によると、この触媒では高い
空間速度における窒素酸化物除去率が低く、特に排ガス
温度の低い領域では窒素酸化物の除去が低い。
Therefore, a catalyst for catalytic reduction of nitrogen oxides by a hydrocarbon comprising a metal oxide such as titania or alumina, a rare earth oxide and at least one of Ru, Rh, Pd, Ag and Pt has been proposed ( JP-A-4-27431). However, according to the experimental results of the present inventors, this catalyst has a low nitrogen oxide removal rate at a high space velocity, and particularly in a region where the exhaust gas temperature is low, the nitrogen oxide removal is low.

【0008】一方、多孔質担体に貴金属元素及びモリブ
デンを担持し、排ガス中の水素による排ガス浄化方法が
提案された(特開平8-10574 号) 。しかしながら、この
方法では排ガス温度の低い領域での窒素酸化物除去率が
高いものの、300℃以上の温度領域での窒素酸化物除
去率が極めて低く、また一酸化炭素、不飽和炭化水素等
を含む排ガスでは窒素酸化物の除去率が著しく低下す
る。
On the other hand, there has been proposed a method of purifying an exhaust gas using hydrogen in an exhaust gas by supporting a noble metal element and molybdenum on a porous carrier (Japanese Patent Application Laid-Open No. H8-10574). However, in this method, although the nitrogen oxide removal rate is high in a region where the exhaust gas temperature is low, the nitrogen oxide removal ratio is extremely low in a temperature region of 300 ° C. or higher and contains carbon monoxide, unsaturated hydrocarbon, and the like. In the exhaust gas, the removal rate of nitrogen oxides is significantly reduced.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物、一酸化炭素、炭化水素等の未燃焼分に対する理論
反応量以上の酸素を含有する燃焼排ガスから、効率良く
窒素酸化物を除去することができる浄化材及びそれを用
いた方法を提供することである。
Accordingly, an object of the present invention is to provide an unburned fuel such as nitrogen oxides, carbon monoxide, and hydrocarbons, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, or the like, which burns under oxygen excess conditions. It is an object of the present invention to provide a purifying material capable of efficiently removing nitrogen oxides from a combustion exhaust gas containing oxygen in an amount equal to or more than a theoretical reaction amount with respect to water and a method using the same.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、排ガスに含まれる窒素酸化物の量
に見合った量のエタノールを添加した排ガスを、(1)
多孔質の無機酸化物に特定量の銀及び/又は銀化合物を
担持した触媒と、(2)多孔質無機酸化物に特定量の銀
成分と、鉄の酸化物と、銅の酸化物とを担持してなる触
媒とからなる排ガス浄化材に特定の温度で接触させれ
ば、窒素酸化物を効果的に除去できるとともに、添加し
たエタノールが未反応のままあるいは不完全反応のまま
放出されないことを発見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventor has found that an exhaust gas to which ethanol is added in an amount corresponding to the amount of nitrogen oxides contained in the exhaust gas is (1)
A catalyst in which a specific amount of silver and / or a silver compound is supported on a porous inorganic oxide; and (2) a specific amount of a silver component, an iron oxide, and a copper oxide on the porous inorganic oxide. By contacting the exhaust gas purifying material consisting of the supported catalyst with a specific temperature at a specific temperature, nitrogen oxides can be effectively removed, and the added ethanol is not released unreacted or incompletely reacted. Discovered and completed the present invention.

【0011】すなわち、本発明の排ガス浄化材は、窒素
酸化物と、共存する未燃焼成分に対する理論反応量より
多い酸素とを含む燃焼排ガスから窒素酸化物を除去する
排ガス浄化材であって、前記排ガス浄化材の排ガス流入
側に第一の触媒を、流出側に第二の触媒を有し、前記第
一の触媒は多孔質の無機酸化物100重量%に銀及び銀
化合物からなる群より選ばれる一種以上を0.2〜15
重量%(銀元素換算値)担持してなり、前記第二の触媒
は多孔質の無機酸化物100重量%に(a) 0.1〜30
重量%(金属元素換算値)の銀及び銀化合物からなる群
より選ばれる一種以上と、(b) 0.1〜30重量%(金
属元素換算値)の鉄の酸化物と、(c) 0.1〜30重量
%(金属元素換算値)の銅の酸化物とを担持してなるこ
とを特徴とする。
That is, the exhaust gas purifying material of the present invention is an exhaust gas purifying material for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount for coexisting unburned components. The exhaust gas purifying material has a first catalyst on an exhaust gas inflow side and a second catalyst on an outflow side, and the first catalyst is selected from the group consisting of silver and silver compounds in 100% by weight of a porous inorganic oxide. 0.2 to 15
% (In terms of silver element), and the second catalyst is (a) 0.1 to 30% based on 100% by weight of the porous inorganic oxide.
At least one selected from the group consisting of silver and silver compounds in terms of weight% (in terms of metal element), (b) 0.1-30% by weight (in terms of metal element) of iron oxide, and (c) 0 0.1 to 30% by weight (in terms of metal element) of copper oxide.

【0012】さらに、本発明の排ガス浄化方法は窒素酸
化物と、共存する未燃焼成分に対する理論反応量より多
い酸素とを含む燃焼排ガスから窒素酸化物を除去する方
法であって、上記排ガス浄化材を用い、前記排ガス浄化
材を排ガス導管の途中に設置し、前記浄化材の上流側
に、前記排ガス中の窒素酸化物重量の5倍以下のエタノ
ールを添加し、150〜650℃において排ガスを前記
浄化材に接触させ、もって、前記窒素酸化物と前記エタ
ノールとを反応させて前記窒素酸化物を除去することを
特徴とする。
Further, the exhaust gas purifying method of the present invention is a method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components. The exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and ethanol not more than 5 times the weight of nitrogen oxides in the exhaust gas is added to the upstream side of the purifying material, and the exhaust gas is cooled at 150 to 650 ° C. The method is characterized in that the nitrogen oxides are removed by contacting with a purifying material, thereby reacting the nitrogen oxides with the ethanol.

【0013】[0013]

【発明の実施の態様】以下、本発明を詳細に説明する。 [1]排ガス浄化材 本発明の排ガス浄化材は、多孔質の無機酸化物に銀及び
銀化合物からなる群より選ばれる一種以上を担持してな
る第一の触媒と、多孔質の無機酸化物に(a) 銀及び銀化
合物からなる群より選ばれる一種以上と、(b) 鉄の酸化
物と、(c) 銅の酸化物とを担持してなる第二の触媒とか
らなる。本発明の排ガス浄化材は排ガス流入側に第一の
触媒を、流出側に第二の触媒を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. [1] Exhaust gas purifying material The exhaust gas purifying material of the present invention comprises: a first catalyst comprising a porous inorganic oxide carrying at least one member selected from the group consisting of silver and a silver compound; And a second catalyst comprising (a) one or more members selected from the group consisting of silver and silver compounds, (b) an iron oxide, and (c) a copper oxide. The exhaust gas purifying material of the present invention has a first catalyst on the exhaust gas inflow side and a second catalyst on the outflow side.

【0014】(1)第一の触媒 第一の触媒は多孔質無機酸化物銀及び銀化合物からなる
群より選ばれる一種以上を担持してなり、広い温度領域
での窒素酸化物除去に作用する。
(1) First Catalyst The first catalyst supports at least one member selected from the group consisting of porous inorganic oxide silver and silver compounds, and acts on nitrogen oxide removal in a wide temperature range. .

【0015】多孔質の無機酸化物としては、アルミナ単
独、又はチタニア、シリカ、ジルコニア、酸化亜鉛、酸
化錫、酸化マグネシウム、ゼオライトのいずれかとアル
ミナとの複合又は混合酸化物を用いることができる。好
ましくはγ−アルミナ単独、又はチタニア、シリカ、ジ
ルコニア、酸化亜鉛、酸化錫、酸化マグネシウム、ゼオ
ライトのいずれかとγ−アルミナとの複合又は混合酸化
物である。アルミナ含有複合又は混合酸化物を用いる場
合、アルミナの含有率を50重量%以上とするのが好ま
しい。アルミナ又はアルミナの複合又は混合酸化物を用
いることにより、触媒の耐熱性及び耐久性が向上する。
As the porous inorganic oxide, alumina alone or a composite or mixed oxide of any of titania, silica, zirconia, zinc oxide, tin oxide, magnesium oxide, and zeolite with alumina can be used. Preferably, γ-alumina alone or a composite or mixed oxide of γ-alumina and any one of titania, silica, zirconia, zinc oxide, tin oxide, magnesium oxide, and zeolite is used. When an alumina-containing composite or mixed oxide is used, the alumina content is preferably 50% by weight or more. The use of alumina or a composite or mixed oxide of alumina improves the heat resistance and durability of the catalyst.

【0016】多孔質の無機酸化物の比表面積は10m2
/g以上であるのが好ましい。比表面積が10m2 /g
未満であると、排ガスと無機酸化物との接触面積が小さ
くなり、良好な窒素酸化物の除去が行えない。より好ま
しい多孔質無機酸化物の比表面積は30m2 /g以上で
ある。
The specific surface area of the porous inorganic oxide is 10 m 2.
/ G or more. Specific surface area is 10m 2 / g
If it is less than 1, the contact area between the exhaust gas and the inorganic oxide becomes small, and good nitrogen oxides cannot be removed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0017】銀化合物は銀の酸化物、ハロゲン化銀、硫
酸銀及び燐酸銀等からなる群より選ばれた少なくとも一
種であり、好ましくは銀の酸化物、塩化銀及び硫酸銀の
いずれか一種以上であり、更に好ましくは銀の酸化物及
び/又は塩化銀である。銀成分の担持量は、多孔質無機
酸化物100重量%に対して0.2〜15重量%(銀元
素換算値)とする。0.2重量%未満では窒素酸化物の
除去率が低下する。また、15重量%を超す量の銀成分
を担持すると還元剤自身の酸化が起きやすく、窒素酸化
物の除去率はかえって低下する。好ましい銀成分の担持
量は0.5〜12重量%である。なお、無機酸化物に担
持された銀は、排ガスの温度領域では金属又は酸化物の
状態にあり、相互に容易に変換し得る。
The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate, and preferably at least one of silver oxide, silver chloride and silver sulfate. And more preferably silver oxide and / or silver chloride. The supported amount of the silver component is 0.2 to 15% by weight (in terms of silver element) based on 100% by weight of the porous inorganic oxide. If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component exceeds 15% by weight, oxidation of the reducing agent itself is likely to occur, and the nitrogen oxide removal rate is rather lowered. The preferred loading of the silver component is 0.5 to 12% by weight. The silver supported on the inorganic oxide is in a metal or oxide state in the temperature range of the exhaust gas, and can be easily converted into each other.

【0018】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法でハロゲン
化銀を調製するには硝酸銀とハロゲン化アンモニウムと
を反応させて、ハロゲン化銀として多孔質無機酸化物上
に沈澱させる。これを50〜150℃、特に70℃程度
で乾燥後、100〜600℃で段階的に昇温して焼成す
るのが好ましい。焼成は、空気中、酸素を含む窒素気流
下や水素ガス気流下で行うのが好ましい。水素ガス気流
下で行う場合には、最後に300〜650℃で酸化処理
するのが好ましい。アルミナ、アルミナ系混合又は複合
酸化物への銀の担持では、ベーマイト等のアルミナ水和
物を出発物質として利用すると効果的である。
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. To prepare silver halide by the precipitation method, silver nitrate and ammonium halide are reacted to precipitate silver halide on the porous inorganic oxide. After drying at 50 to 150 ° C., particularly at about 70 ° C., it is preferable to raise the temperature stepwise at 100 to 600 ° C. for firing. The calcination is preferably performed in air, under a stream of nitrogen containing oxygen or under a stream of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last. In carrying silver on alumina, an alumina-based mixed or composite oxide, it is effective to use alumina hydrate such as boehmite as a starting material.

【0019】(2)第二の触媒 第二の触媒は多孔質の無機酸化物に(a) 銀及び銀化合物
からなる群より選ばれる一種以上と、(b) 鉄の酸化物
と、(c) 銅の酸化物とを担持してなる。
(2) Second Catalyst The second catalyst is a porous inorganic oxide comprising (a) one or more members selected from the group consisting of silver and silver compounds, (b) an iron oxide, and (c) ) Copper oxide.

【0020】多孔質の無機酸化物としては、アルミナ単
独、又はチタニア、シリカ、ジルコニア、酸化亜鉛、酸
化錫、酸化マグネシウム、ゼオライトのいずれかとアル
ミナとの複合又は混合酸化物を用いることができる。好
ましくはγ−アルミナ単独、又はチタニア、シリカ、ジ
ルコニア、酸化亜鉛、酸化錫、酸化マグネシウム、ゼオ
ライトのいずれかとγ−アルミナとの複合又は混合酸化
物である。アルミナ含有複合又は混合酸化物を用いる場
合、アルミナの含有率を50重量%以上とするのが好ま
しい。アルミナ又はアルミナの複合又は混合酸化物を用
いることにより、触媒の耐熱性及び耐久性が向上する。
As the porous inorganic oxide, alumina alone, or a composite or mixed oxide of alumina with any one of titania, silica, zirconia, zinc oxide, tin oxide, magnesium oxide and zeolite can be used. Preferably, γ-alumina alone or a composite or mixed oxide of γ-alumina and any one of titania, silica, zirconia, zinc oxide, tin oxide, magnesium oxide, and zeolite is used. When an alumina-containing composite or mixed oxide is used, the alumina content is preferably 50% by weight or more. The use of alumina or a composite or mixed oxide of alumina improves the heat resistance and durability of the catalyst.

【0021】銀化合物は銀の酸化物、ハロゲン化銀、硫
酸銀及び燐酸銀等からなる群より選ばれた少なくとも一
種であり、好ましくは銀の酸化物、塩化銀及び硫酸銀の
いずれか一種以上であり、更に好ましくは銀の酸化物及
び/又は塩化銀である。銀成分の担持量は、多孔質無機
酸化物100重量%に対して0.1〜30重量%(銀元
素換算値)とする。0.1重量%未満では窒素酸化物の
除去率が低下する。また、30重量%を超す量の銀成分
を担持すると還元剤自身の酸化が起きやすく、窒素酸化
物の除去率はかえって低下する。好ましい銀成分の担持
量は0.5〜20重量%である。なお、無機酸化物に担
持された銀は、排ガスの温度領域では金属又は酸化物の
状態にあり、相互に容易に変換し得る。
The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate, and preferably at least one of silver oxide, silver chloride and silver sulfate. And more preferably silver oxide and / or silver chloride. The supported amount of the silver component is 0.1 to 30% by weight (in terms of silver element) based on 100% by weight of the porous inorganic oxide. If the amount is less than 0.1% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 30% by weight, the reducing agent itself is likely to be oxidized, and the nitrogen oxide removal rate is rather lowered. The preferable loading amount of the silver component is 0.5 to 20% by weight. The silver supported on the inorganic oxide is in a metal or oxide state in the temperature range of the exhaust gas, and can be easily converted into each other.

【0022】鉄の酸化物の担持量は、無機酸化物を10
0重量%として、0.1〜30重量%(金属元素換算
値)とする。0.1重量%未満では、鉄の酸化物の担持
による効果が顕著とはならず、また30重量%を超す量
の鉄の酸化物を担持しても、窒素酸化物の除去性能の向
上はみられない。好ましい鉄の酸化物の担持量の上限は
20重量%である。
The amount of iron oxide supported is 10
As 0% by weight, 0.1 to 30% by weight (in terms of metal element). When the content is less than 0.1% by weight, the effect of supporting the iron oxide is not remarkable, and even when the amount of the iron oxide exceeds 30% by weight, the performance of removing nitrogen oxide is not improved. I can't see it. The preferred upper limit of the amount of iron oxide supported is 20% by weight.

【0023】銅の酸化物の担持量は、無機酸化物を10
0重量%として、0.1〜30重量%(金属元素換算
値)とする。0.1重量%未満では、銅の酸化物の担持
による効果が顕著とはならず、また30重量%を超す量
の銅の酸化物を担持しても、窒素酸化物の除去性能の向
上はみられない。好ましい銅の酸化物の担持量の上限は
20重量%である。
The amount of copper oxide supported is 10
As 0% by weight, 0.1 to 30% by weight (in terms of metal element). If the amount is less than 0.1% by weight, the effect of supporting the copper oxide will not be remarkable, and even if the amount of the copper oxide exceeds 30% by weight, the nitrogen oxide removal performance will not improve. I can't see it. The preferred upper limit of the amount of copper oxide carried is 20% by weight.

【0024】γ−アルミナ等の無機酸化物に銀成分、鉄
の酸化物、銅の酸化物を担持する方法としては、公知の
浸漬法、沈殿法等を用いることができる。例えば含浸法
では、硝酸塩又は塩酸塩等の水溶液に多孔質の無機酸化
物を浸漬して担持した後、70℃程度で乾燥後、100
〜600℃で段階的に昇温して焼成するのが好ましい。
沈澱法で金属塩水溶液又はアルコール溶液とハロゲン化
アンモニウムとを反応させて、ハロゲン化物として多孔
質無機酸化物上に沈澱させる。これを50〜150℃、
特に70℃程度で乾燥後、100〜600℃で段階的に
昇温して焼成するのが好ましい。焼成は、酸素雰囲気、
窒素雰囲気下や水素ガス流下で行うのが好ましい。水素
ガス気流下で行う場合には、最後に300〜650℃で
酸化処理するのが好ましい。アルミナ、アルミナ系混合
又は複合酸化物への銀の担持では、ベーマイト等のアル
ミナ水和物を出発物質として利用すると効果的である。
As a method of supporting a silver component, an iron oxide, and a copper oxide on an inorganic oxide such as γ-alumina, a known immersion method, a precipitation method, or the like can be used. For example, in the impregnation method, a porous inorganic oxide is immersed and supported in an aqueous solution of nitrate or hydrochloride, and then dried at about 70 ° C.
It is preferable to raise the temperature stepwise at ~ 600 ° C and bake.
An aqueous metal salt solution or alcohol solution is reacted with ammonium halide by a precipitation method to precipitate as a halide on the porous inorganic oxide. This is 50-150 ° C,
In particular, it is preferable that after drying at about 70 ° C., the temperature is increased stepwise at 100 to 600 ° C. and firing is performed. Firing is performed in an oxygen atmosphere,
It is preferable to carry out the reaction under a nitrogen atmosphere or a hydrogen gas flow. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last. In carrying silver on alumina, an alumina-based mixed or composite oxide, it is effective to use alumina hydrate such as boehmite as a starting material.

【0025】上記第二の触媒を用いることにより、排ガ
ス条件によって第一の触媒で生成されるアセトアルデヒ
ド等の有機酸化物や、含窒素中間生成物が還元剤として
作用して窒素酸化物を除去できるので、結果的にアルデ
ヒド等の酸化物の生成が抑制されると同時に、窒素酸化
物の除去性能が向上する。
By using the second catalyst, an organic oxide such as acetaldehyde or a nitrogen-containing intermediate product generated by the first catalyst depending on exhaust gas conditions can act as a reducing agent to remove nitrogen oxides. Therefore, as a result, the generation of oxides such as aldehydes is suppressed, and the performance of removing nitrogen oxides is improved.

【0026】(3)第一の触媒と第二の触媒との重量比 第一の触媒と第二の触媒との重量比(多孔質無機酸化物
と触媒活性種との合計重量の比)は、1:10〜20:
1とするのが好ましい。より好ましい第一触媒と第二の
触媒の重量比は1:5〜10:1である。
(3) Weight ratio of the first catalyst to the second catalyst The weight ratio of the first catalyst to the second catalyst (the ratio of the total weight of the porous inorganic oxide and the catalytically active species) is , 1: 10-20:
It is preferably set to 1. More preferably, the weight ratio of the first catalyst to the second catalyst is 1: 5 to 10: 1.

【0027】(4)排ガス浄化材の形態 本発明で用いる浄化材の第一の好ましい形態は、上記第
一の触媒及び第二の触媒をそれぞれ浄化材基体にコート
してなる浄化材である。第一の触媒と第二の触媒をそれ
ぞれ同じ基体の異なる部位に担持してもよいし、それぞ
れ異なる基体に担持して組み合わせて用いてもよい。浄
化材の基体を形成するセラミックス材料としては、アル
ミナ、ジルコニア、チタニア−ジルコニア等の多孔質で
表面積の大きい耐熱性のものが挙げられる。高耐熱性が
要求される場合、コージェライト、ムライト、アルミナ
及びその複合物等を用いるのが好ましい。また、排ガス
浄化材の基体に公知の金属材料を用いることもできる。
(4) Form of Purifying Material for Exhaust Gas A first preferable embodiment of the purifying material used in the present invention is a purifying material obtained by coating the purifying material substrate with the first catalyst and the second catalyst, respectively. The first catalyst and the second catalyst may be supported on different portions of the same substrate, respectively, or may be supported on different substrates and used in combination. Examples of the ceramic material forming the base of the purifying material include heat-resistant ceramics having a large surface area such as alumina, zirconia, and titania-zirconia. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0028】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。またその構造としては、
ハニカム構造型、フォーム型、繊維状耐火物からなる三
次元網目構造型、あるいは顆粒状、ペレット状等が挙げ
られる。ウォッシュコート法、ゾル−ゲル法、粉末法等
を用いて上記基体に触媒をコートした後、焼結すること
により排ガス浄化材を製造することができる。
The shape and size of the substrate of the exhaust gas purifying material
Various changes can be made according to the purpose. Also, as its structure,
Examples include a honeycomb structure type, a foam type, a three-dimensional network structure type made of a fibrous refractory, a granular form, a pellet form, and the like. An exhaust gas purifying material can be produced by coating the above substrate with a catalyst using a wash coat method, a sol-gel method, a powder method, or the like, and then sintering.

【0029】本発明で用いる浄化材の第二の好ましい形
態は、上記触媒をハニカム構造型、フォーム型、板状、
ペレット状又は顆粒状に成形したものを焼結した後、所
望形状のケーシングに充填してなる浄化材である。
[0029] In a second preferred embodiment of the purifying material used in the present invention, the catalyst is a honeycomb structure type, a foam type, a plate type,
It is a purifying material obtained by sintering pellets or granules and then filling a desired shape of the casing.

【0030】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける各触媒の厚
さは、一般に、基体材と、触媒との熱膨張特性の違いか
ら制限される場合が多い。浄化材基体上に設ける触媒の
厚さを300μm以下とするのがよい。このような厚さ
とすれば、使用中に熱衝撃等で浄化材が破損することを
防ぐことができる。浄化材基体の表面に各触媒を形成す
る方法は公知のウォッシュコート法等によって行われ
る。
When the form of the purifying material is the first preferred embodiment described above, the thickness of each catalyst provided on the purifying material base is generally limited by the difference in thermal expansion characteristics between the base material and the catalyst. Often done. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. The method of forming each catalyst on the surface of the purifying material base is performed by a known wash coat method or the like.

【0031】また、浄化材基体の表面上に設ける各触媒
の量は、浄化材基体の20〜300g/リットルとする
のが好ましい。触媒の量が20g/リットル未満では良
好なNOx の除去が行えない。一方、触媒の量が300g
/リットルを超えると除去特性はそれほど上がらず、圧
力損失が大きくなる。より好ましくは、浄化材基体の表
面上に設ける各触媒を浄化材基体の50〜200g/リ
ットルとする。
The amount of each catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter of the purifying material base. If the amount of the catalyst is less than 20 g / liter, good NOx removal cannot be performed. On the other hand, the amount of the catalyst is 300 g
When the pressure exceeds 1 / liter, the removal characteristics do not increase so much and the pressure loss increases. More preferably, each catalyst provided on the surface of the purifying material base is 50 to 200 g / liter of the purifying material base.

【0032】上述した構成の浄化材を用い、下記の方法
に従えば、150〜650℃の広い温度領域において、
良好な窒素酸化物の除去を行うことができる。
According to the following method using the purifying material having the above-described structure, in a wide temperature range of 150 to 650 ° C.
Good removal of nitrogen oxides can be performed.

【0033】[2]排ガス浄化方法 次に、本発明の方法について説明する。上述した排ガス
浄化材を排ガス流入側に前記第一の触媒を、流出側に前
記第二の触媒を有するように排ガス導管の途中に設置す
る。
[2] Exhaust Gas Purification Method Next, the method of the present invention will be described. The exhaust gas purifying material described above is installed in the exhaust gas conduit so as to have the first catalyst on the exhaust gas inflow side and the second catalyst on the outflow side.

【0034】外部からエタノールを還元剤として排ガス
中に導入する。還元剤の導入位置は、浄化材を設置した
位置より上流側である。
Ethanol is externally introduced into the exhaust gas as a reducing agent. The position where the reducing agent is introduced is upstream of the position where the purifying material is installed.

【0035】排ガス中に添加するエタノールの量は、排
ガス中の窒素酸化物の重量の5倍以下とする。5倍を超
すと、添加物が過剰となる場合が多く、未反応のエタノ
ールが排ガス中に残留するので好ましくない。好ましく
は添加量を窒素酸化物量の4倍以下とする。また、添加
量の下限を0.1倍とするのが好ましい。
[0035] The amount of ethanol added to the exhaust gas is not more than 5 times the weight of the nitrogen oxides in the exhaust gas. If it exceeds 5 times, the additive is often excessive, and unreacted ethanol remains in the exhaust gas, which is not preferable. Preferably, the amount of addition is four times or less the amount of nitrogen oxides. Further, it is preferable that the lower limit of the addition amount be 0.1 times.

【0036】本発明では、エタノールによる窒素酸化物
の還元除去を効率的に進行させるために、第一の触媒の
空間速度は 150,000h-1以下、好ましくは 100,000h-1
以下とし、第二の触媒の空間速度は 200,000h-1以下、
好ましくは 150,000h-1以下とする。また、本発明で
は、浄化材設置部位における排ガスの温度を150〜6
50℃に保つ。排ガスの温度が150℃未満であると還
元剤と窒素酸化物との反応が進行せず、良好な窒素酸化
物の除去を行うことができない。一方、650℃を超す
温度とすると、エタノールが燃焼し、窒素酸化物の還元
除去特性は大きく低下する。
[0036] In the present invention, in order to advance the reduction removal of nitrogen oxides with ethanol efficiently, space velocity of the first catalyst 150,000H -1 or less, preferably 100,000 h -1
The space velocity of the second catalyst is 200,000 h -1 or less,
Preferably it is 150,000 h -1 or less. In the present invention, the temperature of the exhaust gas at the purification material installation site is set to 150 to 6
Keep at 50 ° C. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, when the temperature exceeds 650 ° C., ethanol is burned, and the reduction and removal characteristics of nitrogen oxides are greatly reduced.

【0037】[0037]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販の粉末状γ−アルミナ(比表面積200 m2 /g)を
硝酸銀水溶液に浸漬し、70℃で乾燥後、空気中で60
0℃まで段階的に焼成し、γ−アルミナに対して銀4重
量%(銀元素換算値)を担持し、第一の触媒( 銀系触
媒) を調製した。0.52gの第一の触媒をスラリー化
した後、市販のコージェライト製ハニカム状成形体(直
径20mm、長さ16.6mm、200セル/イン
2 )にコートし、空気中、80℃で3時間乾燥後、1
00℃〜600℃まで段階的に昇温し、600℃で3時
間焼成して、銀系排ガス浄化材(第一の触媒をコートし
た浄化材)を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A commercially available powdery γ-alumina (specific surface area: 200 m 2 / g) was immersed in an aqueous silver nitrate solution, dried at 70 ° C., and dried in air.
The first catalyst (silver-based catalyst) was prepared by firing stepwise to 0 ° C. and supporting 4% by weight of silver (converted to silver element) with respect to γ-alumina. After slurrying 0.52 g of the first catalyst, it was coated on a commercially available cordierite honeycomb-shaped formed body (diameter: 20 mm, length: 16.6 mm, 200 cells / inch 2 ), and dried in air at 80 ° C. for 3 hours. After drying for 1 hour
The temperature was raised stepwise from 00 ° C. to 600 ° C. and calcined at 600 ° C. for 3 hours to prepare a silver-based exhaust gas purifying material (a purifying material coated with a first catalyst).

【0038】次に、硝酸銀、硝酸鉄、硝酸銅水溶液を用
いて、市販の粉末状γ−アルミナ(比表面積200 m2
g)に銀10重量%、鉄10重量%、銅5重量%(それ
ぞれ元素換算換算値)を担持し、第二の触媒を調製し
た。0.26gの第二の触媒をスラリー化した後、銀系
浄化材と同様にハニカム状成形体(直径20mm、長さ
8.3mm、200セル/インチ2 )にコートし、乾燥
後600℃まで段階的に焼成し、銀、鉄、銅系排ガス浄
化材(第二の触媒をコートした排ガス浄化材)を調製し
た。
Next, a commercially available powdery γ-alumina (specific surface area: 200 m 2 /
g) was loaded with 10% by weight of silver, 10% by weight of iron, and 5% by weight of copper (each converted to an element) to prepare a second catalyst. After slurrying 0.26 g of the second catalyst, it was coated on a honeycomb formed body (diameter 20 mm, length 8.3 mm, 200 cells / inch 2 ) in the same manner as the silver-based purifying material, and dried to 600 ° C. By firing stepwise, a silver, iron and copper based exhaust gas purifying material (an exhaust gas purifying material coated with a second catalyst) was prepared.

【0039】反応管内の排ガスの流入側に銀系浄化材、
流出側に銀、鉄、銅系浄化材をセットした。次に、表1
に示す組成のガス(一酸化窒素、酸素、エタノール、二
酸化硫黄、窒素及び水分)を毎分4.35リットル(標
準状態)の流量で流して(このとき、銀系浄化材の空間
速度は50,000h-1であり、銀、鉄、銅系浄化材の空間速
度は 100,000h-1である。)、反応管内の排ガス温度を
350〜600℃の範囲に保ち、エタノールと窒素酸化
物とを反応させた。
A silver-based purifying material is provided on the exhaust gas inflow side in the reaction tube,
Silver, iron, and copper-based purifying materials were set on the outflow side. Next, Table 1
Gas (nitrogen monoxide, oxygen, ethanol, sulfur dioxide, nitrogen and water) at a flow rate of 4.35 liters per minute (standard condition) (at this time, the space velocity of the silver-based purifying material is 50,000). an h -1, silver, iron, space velocity of the copper-based purification material is 100,000 h -1.), the exhaust gas temperature in the reaction tube maintained at a range of 350 to 600 ° C., the reaction of ethanol and nitrogen oxides I let it.

【0040】反応管通過後のガス中の窒素酸化物の濃度
を化学発光式窒素酸化物分析計により測定し、窒素酸化
物の除去率を求めたと同時に、ガスクロマトグラフィを
用いてアセトアルデヒドの濃度を定量した。結果を表2
に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescent nitrogen oxide analyzer, and the removal rate of nitrogen oxides was determined. At the same time, the concentration of acetaldehyde was determined by gas chromatography. did. Table 2 shows the results
Shown in

【0041】表1成分 濃度(乾燥ベース) 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm (一酸化窒素の質量の3倍) 二酸化硫黄 30 ppm窒素 残部 水分 上記全体積に対して10容量%Table 1 Concentration of components (dry basis) Nitric oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm (3 times the mass of nitric oxide) Sulfur dioxide 30 ppm Nitrogen Residual moisture 10% by volume based on the above total volume

【0042】実施例2 実施例1と同じ方法で、硝酸銀水溶液と塩化アンモニウ
ム水溶液を用いて、市販の粉末状シリカ・アルミナ(シ
リカ含有量3重量%、比表面積350m2 /g)に4重
量%(銀元素換算値)の塩化銀を担持し、第一の触媒
(銀系触媒)を調製した。0.52gの第一の触媒をス
ラリー化した後、市販のコージェライト製ハニカム状成
形体(直径20mm、長さ16.6mm、200セル/
インチ2 )にコートし、空気中、80℃で3時間乾燥
後、100℃〜600℃まで段階的に昇温し、600℃
で3時間焼成して、銀系浄化材(第一の触媒をコートし
た浄化材)を調製した。
Example 2 In the same manner as in Example 1, 4% by weight of a commercially available powdery silica-alumina (silica content: 3% by weight, specific surface area: 350 m 2 / g) was prepared using an aqueous solution of silver nitrate and an aqueous solution of ammonium chloride. A first catalyst (silver-based catalyst) was prepared by carrying silver chloride (in terms of silver element value). After slurrying 0.52 g of the first catalyst, a commercially available cordierite honeycomb-shaped formed body (diameter 20 mm, length 16.6 mm, 200 cells /
2 ), dried in air at 80 ° C for 3 hours, and then gradually heated to 100 ° C to 600 ° C,
For 3 hours to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0043】次に、実施例1と同じ方法で硝酸銀、硝酸
鉄、硝酸銅水溶液を用いて、市販の粉末状シリカ・アル
ミナ(シリカ含有量3重量%、比表面積350m2
g)に銀5重量%、鉄15重量%、銅4重量%(それぞ
れ元素換算換算値)を担持し、第二の触媒を調製した。
0.26gの第二の触媒をスラリー化した後、銀系浄化
材と同様にハニカム状成形体(直径20mm、長さ8.
3mm、200セル/インチ2 )にコートし、乾燥後6
00℃まで段階的に焼成し、銀、鉄、銅系排ガス浄化材
(第二の触媒をコートした排ガス浄化材)を調製した。
Next, a commercially available powdered silica-alumina (silica content 3% by weight, specific surface area 350 m 2 /
g) was loaded with 5% by weight of silver, 15% by weight of iron, and 4% by weight of copper (each converted in terms of element) to prepare a second catalyst.
After slurrying 0.26 g of the second catalyst, a honeycomb-shaped formed body (diameter 20 mm, length 8.
3 mm, 200 cells / inch 2 ) and after drying 6
It was fired stepwise to 00 ° C. to prepare a silver-, iron-, and copper-based exhaust gas purifying material (an exhaust gas purifying material coated with a second catalyst).

【0044】反応管内の排ガスの流入側に上記銀系浄化
材、流出側に銀、鉄、銅系浄化材をセットした。次に、
表1に示す組成のガスを用いて実施例1と同じ条件(流
量毎分4.35リットル(標準状態)、銀系浄化材の空
間速度は50,000h-1であり、銀、鉄、銅系浄化材の空間
速度は 100,000h-1であった。)で、反応管内の排ガス
温度を350〜600℃の範囲に保ち、エタノールと窒
素酸化物とを反応させた。
The silver-based purifying material was set on the inflow side of the exhaust gas in the reaction tube, and the silver, iron and copper-based purifying materials were set on the outflow side. next,
Using the gas having the composition shown in Table 1, the same conditions as in Example 1 (the flow rate was 4.35 liters per minute (standard state), the space velocity of the silver-based purifying material was 50,000 h- 1 , and the silver, iron, and copper-based materials were used). The space velocity of the purifying material was 100,000 h -1 ), the temperature of the exhaust gas in the reaction tube was kept in the range of 350 to 600 ° C., and ethanol and nitrogen oxide were reacted.

【0045】実施例1と同様にして、反応管通過後のガ
ス中の窒素酸化物の濃度とアセトアルデヒド濃度を測定
し、窒素酸化物の除去率を求めた。結果を表2に示す。
In the same manner as in Example 1, the concentration of nitrogen oxide and the concentration of acetaldehyde in the gas after passing through the reaction tube were measured, and the removal rate of nitrogen oxide was determined. Table 2 shows the results.

【0046】比較例1 実施例1の銀系浄化材を反応管内にセットした。次に、
表1に示す組成のガスを用いて実施例1と同じ条件(流
量毎分4.35リットル(標準状態)、空間速度は50,0
00h-1であった。)で、反応管内の排ガス温度を350
〜600℃の範囲に保ち、エタノールと窒素酸化物とを
反応させた。
Comparative Example 1 The silver-based purifying material of Example 1 was set in a reaction tube. next,
Using the gas having the composition shown in Table 1, the same conditions as in Example 1 (flow rate: 4.35 liters per minute (standard state), space velocity: 50,0
00h -1 . ), The temperature of the exhaust gas in the reaction tube is set to 350
Ethanol and nitrogen oxide were reacted while keeping the temperature in the range of -600 ° C.

【0047】実施例1と同様にして、反応管通過後のガ
ス中の窒素酸化物の濃度とアセトアルデヒド濃度を測定
し、窒素酸化物の除去率を求めた。結果を表2に示す。
In the same manner as in Example 1, the concentration of nitrogen oxides and the concentration of acetaldehyde in the gas after passing through the reaction tube were measured, and the removal rate of nitrogen oxides was determined. Table 2 shows the results.

【0048】表2 窒素酸化物の除去率(%)及び アセトアルデヒドの濃度(ppm) (1)窒素酸化物除去率(%) 排ガス温度 実施例1 実施例2 比較例1 350℃ 32 31 30 400℃ 57 56 45 450℃ 88 86 74 500℃ 86 85 72 550℃ 77 75 70 600℃ 60 59 60 (2)アセトアルデヒド濃度(ppm) 排ガス温度 実施例1 実施例2 比較例1 350℃ 350 310 1600 400℃ 43 45 234 450℃ 0 0 16 500℃ 0 0 0 550℃ 0 0 0 600℃ 0 0 0Table 2 Removal rate of nitrogen oxides (%) and concentration of acetaldehyde (ppm) (1) Removal rate of nitrogen oxides (%) Exhaust gas temperature Example 1 Example 2 Comparative example 1 350 ° C. 32 31 30 400 ° C. 57 56 45 450 ° C. 88 86 74 500 ° C. 86 85 72 550 ° C. 77 75 70 600 ° C. 60 59 60 (2) Acetaldehyde concentration (ppm) exhaust gas temperature Example 1 Example 2 Comparative example 1 350 ° C. 350 310 1600 400 ° C. 43 45 234 450 ° C 00 16 500 ° C 0 0 0 550 ° C 0 0 0 0 0 600 ° C 0 0 0

【0049】以上からわかるように、実施例1、2にお
いては、350〜600℃の排ガス温度で窒素酸化物の
良好な除去がみられたと同時に、低い排ガス温度領域に
おけるアセトアルデヒドの生成量が低かった。一方、
銀、鉄、銅系触媒(第二の触媒)がなく、銀系触媒のみ
の比較例1では、全排ガス温度範囲において窒素酸化物
の除去率が低下し、低い排ガス温度領域において大量の
アセトアルデヒドの生成が見られた。
As can be seen from the above, in Examples 1 and 2, good removal of nitrogen oxides was observed at the exhaust gas temperature of 350 to 600 ° C., and at the same time, the amount of acetaldehyde produced in the low exhaust gas temperature range was low. . on the other hand,
In Comparative Example 1 having no silver, iron, or copper-based catalyst (second catalyst) and only a silver-based catalyst, the removal rate of nitrogen oxides decreased over the entire exhaust gas temperature range, and a large amount of acetaldehyde was removed in a low exhaust gas temperature range. Generation was seen.

【0050】[0050]

【発明の効果】以上詳述したように、本発明の浄化材及
び方法によれば、過剰の酸素を含む排ガス中の窒素酸化
物を効率良く除去することができるとともに、添加した
還元剤の不完全反応物の生成を抑制することができる。
本発明の排ガス浄化材及び方法は、各種燃焼機、自動車
等の排ガスに含まれる窒素酸化物の除去に広く利用する
ことができる。
As described above in detail, according to the purifying material and the method of the present invention, nitrogen oxides in exhaust gas containing excess oxygen can be efficiently removed, and the amount of added reducing agent can be reduced. Generation of complete reactants can be suppressed.
INDUSTRIAL APPLICABILITY The exhaust gas purifying material and method of the present invention can be widely used for removing nitrogen oxides contained in exhaust gas from various combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/36 102H ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B01D 53/36 102H

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する排ガス浄化材において、前記排ガス
浄化材の排ガス流入側に第一の触媒を、流出側に第二の
触媒を有し、前記第一の触媒は多孔質の無機酸化物10
0重量%に銀及び銀化合物からなる群より選ばれる一種
以上を0.2〜15重量%(銀元素換算値)担持してな
り、前記第二の触媒は多孔質の無機酸化物100重量%
に(a) 0.1〜30重量%(金属元素換算値)の銀及び
銀化合物からなる群より選ばれる一種以上と、(b) 0.
1〜30重量%(金属元素換算値)の鉄の酸化物と、
(c) 0.1〜30重量%(金属元素換算値)の銅の酸化
物とを担持してなることを特徴とする排ガス浄化材。
1. An exhaust gas purifying material for removing nitrogen oxides from a flue gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of coexisting unburned components, wherein a first gas is provided on an exhaust gas inflow side of the exhaust gas purifying material. And a second catalyst on the outflow side, wherein the first catalyst is a porous inorganic oxide 10
0% by weight carries at least one member selected from the group consisting of silver and a silver compound in an amount of 0.2 to 15% by weight (in terms of silver element), and the second catalyst comprises 100% by weight of a porous inorganic oxide.
(A) at least one member selected from the group consisting of silver and silver compounds in an amount of 0.1 to 30% by weight (in terms of a metal element);
1 to 30% by weight (in terms of metal element) of iron oxide;
(c) An exhaust gas purifying material which carries 0.1 to 30% by weight (in terms of metal element) of copper oxide.
【請求項2】 請求項1に記載の排ガス浄化材におい
て、前記銀化合物は銀の酸化物、ハロゲン化銀、硫酸銀
及び燐酸銀からなる群より選ばれた少なくとも一種であ
ることを特徴とする排ガス浄化材。
2. The exhaust gas purifying material according to claim 1, wherein said silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate. Exhaust gas purification material.
【請求項3】 請求項1又は2に記載の排ガス浄化材に
おいて、前記第一の触媒及び第二の触媒の多孔質無機酸
化物は、それぞれアルミナ単独、又はチタニア、シリ
カ、ジルコニア、酸化亜鉛、酸化錫、酸化マグネシウ
ム、ゼオライトのいずれかとアルミナとの複合又は混合
酸化物であることを特徴とする排ガス浄化材。
3. The exhaust gas purifying material according to claim 1, wherein the porous inorganic oxides of the first catalyst and the second catalyst are each composed of alumina alone, titania, silica, zirconia, zinc oxide, An exhaust gas purifying material, which is a composite or mixed oxide of any one of tin oxide, magnesium oxide and zeolite with alumina.
【請求項4】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記排ガス浄化材がセラミックス製又
は金属製の基体の表面にコートされていることを特徴と
する排ガス浄化材。
4. The exhaust gas purifying material according to claim 1, wherein the exhaust gas purifying material is coated on a surface of a ceramic or metal substrate.
【請求項5】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記排ガス浄化材がハニカム型、フォ
ーム型、板状、ペレット状、顆粒状のいずれかに成形さ
れていることを特徴とする排ガス浄化材。
5. The exhaust gas purifying material according to claim 1, wherein the exhaust gas purifying material is formed into any one of a honeycomb type, a foam type, a plate shape, a pellet shape, and a granular shape. Exhaust gas purifying material.
【請求項6】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する排ガス浄化方法において、請求項1
〜5のいずれかに記載の排ガス浄化材を用い、前記排ガ
ス浄化材を排ガス導管の途中に設置し、前記浄化材の上
流側に、前記排ガス中の窒素酸化物重量の5倍以下のエ
タノールを添加し、150〜650℃において排ガスを
前記浄化材に接触させ、もって、前記窒素酸化物と前記
エタノールとを反応させて前記窒素酸化物を除去するこ
とを特徴とする方法。
6. An exhaust gas purifying method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components.
The exhaust gas purifying material according to any one of Items 1 to 5, wherein the exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and an amount of ethanol equal to or less than 5 times the weight of nitrogen oxides in the exhaust gas is provided on the upstream side of the purifying material. Adding the exhaust gas to the purification material at 150 to 650 ° C., thereby reacting the nitrogen oxide with the ethanol to remove the nitrogen oxide.
JP8340435A 1996-12-06 1996-12-06 Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol Pending JPH10165816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340435A JPH10165816A (en) 1996-12-06 1996-12-06 Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8340435A JPH10165816A (en) 1996-12-06 1996-12-06 Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol

Publications (1)

Publication Number Publication Date
JPH10165816A true JPH10165816A (en) 1998-06-23

Family

ID=18336941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340435A Pending JPH10165816A (en) 1996-12-06 1996-12-06 Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol

Country Status (1)

Country Link
JP (1) JPH10165816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190955A (en) * 2000-01-11 2001-07-17 Nikki Chemcal Co Ltd Catalyst molding for exhaust gas cleaning
JP2007175597A (en) * 2005-12-27 2007-07-12 Toyobo Co Ltd Aldehydes gas removing agent
WO2016076296A1 (en) * 2014-11-12 2016-05-19 日立造船株式会社 Aldehyde decomposition catalyst, exhaust gas treatment equipment, and exhaust gas treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190955A (en) * 2000-01-11 2001-07-17 Nikki Chemcal Co Ltd Catalyst molding for exhaust gas cleaning
JP2007175597A (en) * 2005-12-27 2007-07-12 Toyobo Co Ltd Aldehydes gas removing agent
WO2016076296A1 (en) * 2014-11-12 2016-05-19 日立造船株式会社 Aldehyde decomposition catalyst, exhaust gas treatment equipment, and exhaust gas treatment method
JP2016093757A (en) * 2014-11-12 2016-05-26 日立造船株式会社 Aldehyde decomposition catalyst and exhaust gas treatment facility and exhaust gas treatment method

Similar Documents

Publication Publication Date Title
JPH0760119A (en) Material for purification of waste gas and method thereof
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH10165816A (en) Cleaning agent consisting of silver catalyst and silver, iron and copper catalyst for exhaust gas and cleaning method of exhaust gas using ethanol
JPH115035A (en) Waste gas purification material and method for purifying waste gas
JP2992629B2 (en) Exhaust gas purification material and exhaust gas purification method using ethanol
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JPH10128116A (en) Material for purification of exhaust gas and method therefor
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH09248459A (en) Material and method for exhaust gas-purifying
JPH10328567A (en) Waste gas purifying material and waste gas purifying method
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH09262439A (en) Nitrogen oxide removing material and removing method of nitrogen oxide
JPH08168650A (en) Material and method for purifying exhaust gas
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH09313892A (en) Cleaning method of exhaust gas
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JPH1028840A (en) Method for removing nitrogen oxide
JPH0824646A (en) Material and method for purifying exhaust gas
JPH08206456A (en) Exhaust gas purifying material and method
JPH0788377A (en) Waste gas purifying material and method for purifying waste gas
JPH09267029A (en) Exhaust gas purifying material and method for purifying exhaust gas