JPH06198195A - Purifying material for exhaust gas and purifying method thereof - Google Patents

Purifying material for exhaust gas and purifying method thereof

Info

Publication number
JPH06198195A
JPH06198195A JP4360377A JP36037792A JPH06198195A JP H06198195 A JPH06198195 A JP H06198195A JP 4360377 A JP4360377 A JP 4360377A JP 36037792 A JP36037792 A JP 36037792A JP H06198195 A JPH06198195 A JP H06198195A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxide
catalyst
silver
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4360377A
Other languages
Japanese (ja)
Inventor
Akira Abe
晃 阿部
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP4360377A priority Critical patent/JPH06198195A/en
Priority to EP93310608A priority patent/EP0605251A1/en
Publication of JPH06198195A publication Critical patent/JPH06198195A/en
Priority to US08/434,915 priority patent/US5589432A/en
Priority to US08/532,260 priority patent/US5658543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a purifying material and purifying method for exhaust gas by which nitrogen oxides can be efficiently removed from combustion exhaust gas containing nitrogen oxides and oxygen in a larger amt. than the stoichiometric amt. for unburnt component such as nitrogen oxide, carbon monoxide, hydrogen, and hydrocarbon. CONSTITUTION:This purifying material for exhaust gas contains a first catalyst in the entrance side for exhaust gas and a second catalyst in the exit side for exhaust gas. The first catalyst consists of a porous inorg. oxide carrying silver or silver oxide by 0.2-15wt.% (calculated as element) as the active component. The second catalyst consists of a porous inorg. oxide carrying (a) 0.2-15wt.% (calculated as element) silver or silver oxide and (b) <=2wt.% copper or copper oxide (calculated as element) as the active component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に除去する
ことのできる排ガス浄化材及びそれを用いた浄化方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification material capable of effectively removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive amounts of combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, etc. Nitrogen oxides such as nitric oxide and nitrogen dioxide are contained together with oxygen. Here, "containing excess oxygen" means containing more oxygen than the theoretical oxygen amount necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. To do. Moreover, the nitrogen oxide in the following refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
This nitrogen oxide is considered to be one of the causes of acid rain and is a serious environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion devices have been studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
As a method for removing nitrogen oxides from combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used, particularly for large-scale fixed combustion devices (large combustors such as factories). It has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic, so that unreacted ammonia is discharged so that nitrogen oxides in exhaust gas are not discharged. There are problems that the amount of ammonia injection must be controlled while measuring the concentration and that the apparatus is generally large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
[0006] As another method, there is a non-selective catalytic reduction method for reducing nitrogen oxides by using a gas such as hydrogen, carbon monoxide or hydrocarbon as a reducing agent, but this method is effective. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or larger than a theoretical reaction amount with oxygen in exhaust gas, and there is a drawback that a large amount of reducing agent is consumed. Therefore, the non-selective catalytic reduction method is practically effective only for the exhaust gas having a low residual oxygen concentration that is burned in the vicinity of the theoretical air-fuel ratio, and is not versatile and impractical.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号、及び日本化学会第59春季年会
(1990年)2A526、同第60秋季年会 (1990年)3L420、3L42
2 、3L423 、「触媒」vol.33 No.2 、59ページ、1991年
等) 。
Therefore, there has been proposed a method for removing nitrogen oxides by adding a reducing agent in an amount equal to or less than a theoretical reaction amount with oxygen in exhaust gas by using zeolite or a catalyst supporting a transition metal thereon (for example, a special method). Kaisho 63-100919, 63-28372
No. 7, JP-A-1-130735, and 59th Annual Meeting of the Chemical Society of Japan
(1990) 2A526, 60th Autumn Meeting (1990) 3L420, 3L42
2, 3L423, "Catalyst" vol.33 No.2, page 59, 1991 etc.).

【0008】しかしながら、これらの方法では、窒素酸
化物の除去温度領域が狭く、また、水分を含むような排
ガスでは、窒素酸化物の除去率が著しく低下することが
わかった。
However, it has been found that these methods have a narrow temperature range for removing nitrogen oxides and that the exhaust gas containing water has a significantly low nitrogen oxide removal rate.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を除去することができる排ガス浄化
材及び排ガス浄化方法を提供することである。
Therefore, an object of the present invention is to remove nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons, etc., such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine, etc. that burn under an excess oxygen condition. From the combustion exhaust gas that contains more than the theoretical reaction amount of oxygen for unburned components,
An exhaust gas purifying material and an exhaust gas purifying method capable of efficiently removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質の無機酸化物に特定量の銀
成分を担持してなる第一の触媒と、銀、銅成分を担持し
てなる第二の触媒とを分離して形成される排ガス浄化材
を用い、排ガス中に炭化水素又は含酸素有機化合物を添
加して特定の温度で上記の触媒に排ガスを接触させれ
ば、10%の水分を含む排ガスでも、広い温度領域で窒
素酸化物を効果的に除去することができることを発見
し、本発明を完成した。
As a result of earnest research in view of the above problems, the present inventors have found that the first catalyst comprising a porous inorganic oxide carrying a specific amount of a silver component and the silver and copper components. Using an exhaust gas purifying material formed by separating the second catalyst supporting the catalyst, the hydrocarbon or oxygen-containing organic compound is added to the exhaust gas, and the exhaust gas is contacted with the catalyst at a specific temperature. For example, they have found that nitrogen oxides can be effectively removed in a wide temperature range even with exhaust gas containing 10% of water, and completed the present invention.

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を除去する本発明の排ガス浄化材は、
浄化材の排ガス流入側に第一の触媒を有し、排ガス流出
側に第二の触媒を有しており、前記第一の触媒が多孔質
の無機酸化物に活性種である銀又は銀酸化物0.2〜1
5重量%(元素換算値)を担持してなり、前記第二の触
媒が多孔質の無機酸化物に活性種である(a) 銀又は銀酸
化物0.2〜15重量%(元素換算値)と、(b) 銅又は
銅酸化物2重量%以下(元素換算値)とを担持してなる
ことを特徴とする。
That is, the exhaust gas purifying material of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount for coexisting unburned components,
The purification material has a first catalyst on the exhaust gas inflow side and a second catalyst on the exhaust gas outflow side, and the first catalyst is silver or silver oxide that is an active species of a porous inorganic oxide. Things 0.2-1
5% by weight (elemental conversion value) is supported, and the second catalyst is an active species in the porous inorganic oxide (a) silver or silver oxide 0.2 to 15% by weight (elemental conversion value) ) And (b) 2% by weight or less of copper or copper oxide (elemental conversion value).

【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を除去する本発明の第一の方法は、上記の
排ガス浄化材を排ガス導管の途中に設置し、前記浄化材
の上流側で炭化水素又は含酸素有機化合物を添加した排
ガスを、200〜600℃において前記浄化材に接触さ
せ、もって前記排ガス中の炭化水素又は含酸素有機化合
物との反応により前記窒素酸化物を除去することを特徴
とする。
Further, the first method of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount with respect to the coexisting unburned components is the exhaust gas purifying material described above. The exhaust gas, which is installed in the middle of the conduit and is added with a hydrocarbon or an oxygen-containing organic compound on the upstream side of the purification material, is brought into contact with the purification material at 200 to 600 ° C., and thus the hydrocarbon or the oxygen-containing organic material in the exhaust gas is provided. It is characterized in that the nitrogen oxide is removed by a reaction with a compound.

【0013】さらに、窒素酸化物と、共存する未燃焼成
分に対する理論反応量より多い酸素とを含む燃焼排ガス
から窒素酸化物を除去する本発明の第二の方法は、上記
の排ガス浄化材を排ガス導管の途中に設置し、前記排ガ
スを200〜600℃において前記浄化材に接触させ、
もって前記排ガス中の残留炭化水素との反応により前記
窒素酸化物を除去することを特徴とする。
Furthermore, the second method of the present invention for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount for coexisting unburned components is the above exhaust gas purification material. It is installed in the middle of the conduit, and the exhaust gas is brought into contact with the purification material at 200 to 600 ° C.
Therefore, the nitrogen oxides are removed by the reaction with the residual hydrocarbons in the exhaust gas.

【0014】以下、本発明を詳細に説明する。本発明で
は、排ガス流入側に、多孔質の無機酸化物に活性種であ
る銀又は銀酸化物を担持してなる第一の触媒を形成し、
流出側に多孔質の無機酸化物に活性種である(a) 銀又は
銀酸化物と、(b) 銅又は銅酸化物とを担持してなる第二
の触媒を形成してなる排ガス浄化材を排ガス導管中に設
置し、排ガス中の残留炭化水素及び/又は浄化材の設置
位置より上流側で排ガス中に添加された炭化水素又は含
酸素有機化合物を還元剤として、排ガス中の窒素酸化物
を還元除去する。
The present invention will be described in detail below. In the present invention, on the exhaust gas inflow side, a first catalyst formed by supporting silver or silver oxide which is an active species on a porous inorganic oxide is formed,
Exhaust gas purification material formed on the outflow side by forming a second catalyst comprising (a) silver or silver oxide, which is an active species in a porous inorganic oxide, and (b) copper or copper oxide. Is installed in the exhaust gas conduit, and the residual hydrocarbons in the exhaust gas and / or the hydrocarbons or oxygen-containing organic compounds added to the exhaust gas upstream of the installation position of the purification material are used as reducing agents, and nitrogen oxides in the exhaust gas are used. Is reduced and removed.

【0015】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びその複合物等を用いるのが好ましい。また、排
ガス浄化材の基体に公知の金属材料を用いることもでき
る。
A first preferred form of the exhaust gas purifying material of the present invention is a purifying material in which a purifying material base is coated with a catalyst comprising a powdery porous inorganic oxide carrying a catalytically active species. As the ceramic material forming the substrate of the purification material, γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and other porous materials are used. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and their composites. Also, a known metal material can be used for the substrate of the exhaust gas purifying material.

【0016】排ガス浄化材の基体の形状及び大きさは目
的に応じて種々変更できる。実用的には、入口部分と出
口部分とからなる二つ又は二つ以上の成形体の組み合わ
せからなることが好ましい。またその構造としては、ハ
ニカム構造型、フォーム型、繊維状耐火物等の三次元網
目構造型が挙げられる。
The shape and size of the substrate of the exhaust gas purifying material can be variously changed according to the purpose. Practically, it is preferably composed of a combination of two or more molded bodies having an inlet portion and an outlet portion. Examples of the structure include a honeycomb structure type, a foam type, and a three-dimensional network structure type such as a fibrous refractory.

【0017】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状の多孔質無機酸化物に触媒
活性種を担持してなる触媒を充填してなる浄化材であ
る。
A second preferred form of the exhaust gas purifying material of the present invention is a purifying material obtained by filling a pellet-like or granular porous inorganic oxide with a catalyst comprising a catalytically active species.

【0018】本発明の浄化材には以下の二つの触媒が形
成されている。 (1)第一の触媒 第一の触媒は、多孔質無機酸化物に銀又は銀酸化物を担
持してなり、浄化材の排ガス流入側に形成される。多孔
質の無機酸化物としては、多孔質のアルミナ、シリカ、
チタニア、ジルコニア、及びそれらの複合酸化物等を使
用することができるが、好ましくはγ−アルミナ又はア
ルミナ系複合酸化物を用いる。γ−アルミナ又はアルミ
ナ系複合酸化物を用いることにより、添加した炭化水
素、含酸素有機化合物及び/又は排ガス中の残留炭化水
素と排ガス中の窒素酸化物との反応が効率良く起こる。
The following two catalysts are formed on the purification material of the present invention. (1) First catalyst The first catalyst is formed by supporting silver or silver oxide on a porous inorganic oxide and is formed on the exhaust gas inflow side of the purification material. As the porous inorganic oxide, porous alumina, silica,
Although titania, zirconia, and their composite oxides can be used, γ-alumina or alumina-based composite oxide is preferably used. By using γ-alumina or an alumina-based composite oxide, the reaction between the added hydrocarbon, the oxygen-containing organic compound and / or the residual hydrocarbon in the exhaust gas and the nitrogen oxide in the exhaust gas occurs efficiently.

【0019】多孔質の無機酸化物の比表面積は20m2
/g以上であるのが好ましい。比表面積が20m2 /g
未満であると、排ガスと無機酸化物(及びこれに担持し
た銀成分)との接触面積が小さくなり、良好な窒素酸化
物の除去が行えない。特に好ましい比表面積は30m2
/g以上である。
The specific surface area of the porous inorganic oxide is 20 m 2
/ G or more is preferable. Specific surface area of 20 m 2 / g
If it is less than the above range, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried on the exhaust gas) becomes small, and the nitrogen oxide cannot be removed well. Particularly preferred specific surface area is 30 m 2
/ G or more.

【0020】上記したγ−アルミナ等の無機酸化物に活
性種として担持する銀又は銀酸化物の担持量は、無機酸
化物100重量%に対して0.2〜15重量%(元素換
算値)とする。0.2重量%未満では窒素酸化物の除去
率が低下する。また、15重量%を超すと炭化水素自身
の燃焼が起きやすく、窒素酸化物の除去率はかえって低
下する。好ましい合計担持量は0.5〜12重量%(元
素換算値)である。なお、銀は排ガスの温度領域では金
属または酸化物の形で存在すると思われる。
The amount of silver or silver oxide supported as an active species on the above-mentioned inorganic oxide such as γ-alumina is 0.2 to 15% by weight (element conversion value) based on 100% by weight of the inorganic oxide. And If it is less than 0.2% by weight, the removal rate of nitrogen oxides is lowered. On the other hand, if it exceeds 15% by weight, combustion of the hydrocarbon itself is likely to occur, and the removal rate of nitrogen oxides is rather lowered. A preferable total supported amount is 0.5 to 12% by weight (elemental conversion value). It is considered that silver exists in the form of metal or oxide in the temperature range of exhaust gas.

【0021】アルミナ等の無機酸化物に銀成分を担持す
る方法としては、公知の含浸法、沈澱法、ゾル−ゲル法
等を用いることができる。含浸法を用いる際、硝酸銀等
の水溶液に多孔質無機酸化物を浸漬し、70℃程度で乾
燥後、100〜600℃で段階的に昇温して焼成するの
が好ましい。この焼成は空気中、酸素雰囲気下、窒素雰
囲気下、あるいは水素ガス流下で行うことができる。窒
素雰囲気下、あるいは水素ガス流下で焼成したときに
は、最後に酸化処理を行うのが好ましい。
As a method for supporting the silver component on the inorganic oxide such as alumina, a known impregnation method, precipitation method, sol-gel method or the like can be used. When the impregnation method is used, it is preferable to immerse the porous inorganic oxide in an aqueous solution of silver nitrate or the like, dry at about 70 ° C., and then gradually raise the temperature at 100 to 600 ° C. and bake. This firing can be performed in air, under an oxygen atmosphere, under a nitrogen atmosphere, or under a hydrogen gas flow. When firing in a nitrogen atmosphere or under a flow of hydrogen gas, it is preferable to perform the oxidation treatment last.

【0022】なお、上記浄化材の第一の好ましい形態で
は、浄化材基体上に設ける第一の触媒の厚さは、一般
に、基体材と、この触媒との熱膨張特性の違いから制限
される場合が多い。浄化材基体上に設ける触媒の厚さを
200μm以下とするのがよい。このような厚さとすれ
ば、使用中に熱衝撃等で浄化材が破損することを防ぐこ
とができる。浄化材基体の表面に触媒を形成する方法は
公知のウォシュコート法、ゾル−ゲル法等によって行わ
れる。
In the first preferred embodiment of the purification material, the thickness of the first catalyst provided on the purification material substrate is generally limited due to the difference in thermal expansion characteristics between the substrate material and this catalyst. In many cases. The thickness of the catalyst provided on the purification material substrate is preferably 200 μm or less. With such a thickness, it is possible to prevent the purification material from being damaged by thermal shock during use. The catalyst is formed on the surface of the purification material substrate by a known washcoat method, sol-gel method, or the like.

【0023】また、浄化材基体の表面上に設ける第一触
媒の量は、浄化材基体の5〜70重量%とするのが好ま
しい。触媒の量が5重量%未満では良好な窒素酸化物の
除去が行えない。一方、触媒の量が70重量%を超える
と除去特性はそれほど上がらず、圧力損失が大きくな
る。より好ましくは、浄化材基体の表面上に設ける第一
の触媒を浄化材基体の10〜70重量%とする。
Further, the amount of the first catalyst provided on the surface of the purification material substrate is preferably 5 to 70% by weight of the purification material substrate. If the amount of the catalyst is less than 5% by weight, the nitrogen oxide cannot be removed well. On the other hand, when the amount of the catalyst exceeds 70% by weight, the removal characteristics do not improve so much and the pressure loss increases. More preferably, the first catalyst provided on the surface of the purification material substrate is 10 to 70% by weight of the purification material substrate.

【0024】(2)第二の触媒 第二の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、浄化材の排ガス流出側に形成される。多孔質無
機酸化物としては、第一の触媒の場合と同様、γ−アル
ミナ、ジルコニア、チタニア、及びそれらの複合酸化物
などが挙げられるが、好ましくはγ−アルミナ、チタニ
ア、ジルコニア及びそれらを含む複合酸化物を用いる。
第一の触媒と同様に、多孔質の無機酸化物の比表面積は
20m2/g以上であることが好ましく、特に30m2
/g以上が好ましい。
(2) Second catalyst The second catalyst comprises a porous inorganic oxide carrying a catalytically active species, and is formed on the exhaust gas outflow side of the purifying material. As the porous inorganic oxide, similar to the case of the first catalyst, γ-alumina, zirconia, titania, and composite oxides thereof and the like can be mentioned, but preferably γ-alumina, titania, zirconia and them are included. A complex oxide is used.
As with the first catalyst, the specific surface area of the porous inorganic oxide is preferably 20 m 2 / g or more, and particularly 30 m 2
/ G or more is preferable.

【0025】上記の第二触媒の活性種としては、(a) 銀
又は銀酸化物と、(b) 銅又は銅酸化物とを混合して用
いる。多孔質無機酸化物を100重量%として、銀の担
持量は0.2〜15重量%(金属元素換算値)である。
担持量が0.2重量%未満又は15重量%を越えると、
窒素酸化物の除去率が低下する。銀の好ましい担持量は
0.5〜12重量%(金属元素換算値)とする。
As the active species of the second catalyst, (a) silver or silver oxide and (b) copper or copper oxide are mixed and used. The supported amount of silver is 0.2 to 15% by weight (metal element conversion value) with 100% by weight of the porous inorganic oxide.
If the supported amount is less than 0.2% by weight or exceeds 15% by weight,
The removal rate of nitrogen oxides decreases. The amount of silver supported is preferably 0.5 to 12% by weight (metal element conversion value).

【0026】多孔質無機酸化物を100重量%として、
銅又は銅酸化物の担持量は2重量%以下(金属元素換算
値)である。担持量が2重量%を越えると、窒素酸化物
の除去率が低下する。銅又は銅酸化物の好ましい担持量
は0.1〜1.5重量%(金属元素換算値)とする。
When the porous inorganic oxide is 100% by weight,
The amount of copper or copper oxide supported is 2% by weight or less (metal element conversion value). When the supported amount exceeds 2% by weight, the nitrogen oxide removal rate decreases. The preferable loading amount of copper or copper oxide is 0.1 to 1.5% by weight (metal element conversion value).

【0027】第二の触媒で無機酸化物に担持する活性種
の合計((a)+(b))は、上述の多孔質の無機酸化
物を基準(100重量%) として0.2〜17重量%(金属
元素換算値)とし、好ましくは0.5〜14重量%(金
属元素換算値)とする。触媒活性種の量が17重量%を
超す触媒担持量とすると炭化水素の酸化燃焼のみ進み、
窒素酸化物の低減特性は低下することになる。また担持
量が0.2重量%未満であれば、低温領域における窒素
酸化物の除去性能が低下する。
The total amount of active species supported on the inorganic oxide by the second catalyst ((a) + (b)) is 0.2 to 17 based on the above-mentioned porous inorganic oxide (100% by weight). The weight% (metal element conversion value), preferably 0.5 to 14 weight% (metal element conversion value). If the amount of catalytically active species exceeds 17% by weight, the amount of supported catalyst will increase only the oxidative combustion of hydrocarbons,
The reduction characteristics of nitrogen oxides will deteriorate. Further, if the supported amount is less than 0.2% by weight, the nitrogen oxide removing performance in the low temperature region is deteriorated.

【0028】第二の触媒に、さらにアルカリ金属と希土
類元素を担持し、耐熱性の向上を図ることができる。ア
ルカリ金属元素としては、特にセシウム、ナトリウム及
びカリウムを用いるのが好ましい。また、希土類元素と
しては、ランタン、セリウム、ネオジウムを用いるのが
好ましいが、希土類の混合物であるミッシュメタルを用
いることもできる。第二の触媒に、アルカリ金属元素と
希土類元素を併用する場合、アルカリ金属元素と希土類
元素との合計担持量は0.1重量%以下(元素換算値)
とする。
The second catalyst can further support an alkali metal and a rare earth element to improve heat resistance. As the alkali metal element, it is particularly preferable to use cesium, sodium and potassium. As the rare earth element, lanthanum, cerium or neodymium is preferably used, but a misch metal which is a mixture of rare earth elements can also be used. When an alkali metal element and a rare earth element are used together in the second catalyst, the total supported amount of the alkali metal element and the rare earth element is 0.1% by weight or less (element conversion value).
And

【0029】第二の触媒における活性種の担持は、公知
の含浸法、沈澱法、ゾル−ゲル法等を用いることができ
る。含浸法を用いる際、触媒活性種元素の炭酸塩、塩酸
塩、硝酸塩、酢酸塩、水酸化物等の水溶液に多孔質無機
酸化物を浸漬し、70℃で乾燥後、100〜600℃で
段階的に昇温して焼成することによって行われる。な
お、担持成分は金属元素として表示しているが、通常の
浄化材の使用温度条件では担持成分は金属と酸化物の状
態で存在すると思われる。
For supporting the active species on the second catalyst, a known impregnation method, precipitation method, sol-gel method or the like can be used. When the impregnation method is used, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, a hydrochloride, a nitrate, an acetate, a hydroxide or the like of a catalytically active species element, dried at 70 ° C, and then staged at 100 to 600 ° C. The temperature is increased and the firing is performed. Although the supported component is shown as a metal element, it is considered that the supported component exists in the state of a metal and an oxide under the normal use temperature condition of the purification material.

【0030】上記浄化材の第一の好ましい形態では、浄
化材基体上に設ける第二の触媒の厚さを200μm以下
とするのがよい。また、浄化材基体の表面上に設ける第
二の触媒の量は、浄化材基体の5〜70重量%とするの
が好ましい。
In the first preferred embodiment of the purification material, the thickness of the second catalyst provided on the purification material substrate is preferably 200 μm or less. Further, the amount of the second catalyst provided on the surface of the purification material substrate is preferably 5 to 70% by weight of the purification material substrate.

【0031】本発明においては、第一の触媒と、第二の
触媒との重量比は、5:1〜1:5とするのが好まし
い。比率が1:5未満である(第一の触媒が少ない)
と、250〜600℃の広い温度範囲で全体的に窒素酸
化物の除去率が低下する。一方、比率が5:1を超える
(第一の触媒が多い)と、400℃以下における窒素酸
化物の除去能が大きくならない。すなわち、比較的低温
での還元剤と窒素酸化物との反応が十分に進行しない。
より好ましい第一触媒と第二触媒との重量比は4:1〜
1:4である。
In the present invention, the weight ratio of the first catalyst to the second catalyst is preferably 5: 1 to 1: 5. The ratio is less than 1: 5 (less first catalyst)
Then, the removal rate of nitrogen oxides is generally lowered in a wide temperature range of 250 to 600 ° C. On the other hand, when the ratio exceeds 5: 1 (the amount of the first catalyst is large), the nitrogen oxide removing ability at 400 ° C or lower does not increase. That is, the reaction between the reducing agent and the nitrogen oxide does not proceed sufficiently at a relatively low temperature.
More preferable weight ratio of the first catalyst and the second catalyst is from 4: 1 to
It is 1: 4.

【0032】上述した構成の浄化材を用いれば、200
〜600℃の広い温度領域において、水分を10%程度
を含む排ガスでも、良好な窒素酸化物の除去を行うこと
ができる。
If the purifying material having the above-mentioned constitution is used,
In a wide temperature range of up to 600 ° C., good nitrogen oxides can be removed even with exhaust gas containing about 10% of water.

【0033】次に、本発明の方法について説明する。ま
ず、排ガス浄化材を、第一の触媒が排ガスの入口に面
し、第二の触媒が排ガスの出口に面するように、排ガス
導管の途中に設置する。
Next, the method of the present invention will be described. First, the exhaust gas purifying material is installed in the middle of the exhaust gas conduit so that the first catalyst faces the exhaust gas inlet and the second catalyst faces the exhaust gas outlet.

【0034】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれる。排ガス中のNO
x を還元するのに十分な量ではない場合では、外部から
炭化水素又は含酸素有機化合物からなる還元剤を排ガス
中に導入する。還元剤の導入位置は、浄化材を設置した
位置より上流側である。
The exhaust gas contains ethylene, propylene, etc. to some extent as residual hydrocarbons. NO in exhaust gas
If the amount is not sufficient to reduce x, a reducing agent composed of a hydrocarbon or an oxygen-containing organic compound is externally introduced into the exhaust gas. The introduction position of the reducing agent is upstream of the position where the purification material is installed.

【0035】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数3以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、アセチレン、軽
油、セタン、ヘプタン、灯油等の炭化水素が挙げられ
る。含酸素有機化合物として、エタノール等のアルコー
ル類を用いることができる。
As the hydrocarbon introduced from the outside, gaseous or liquid alkane, alkene and / or alkyne in a standard state can be used. Particularly in the case of alkane or alkene, the number of carbon atoms is preferably 3 or more. Specific examples of the liquid hydrocarbon in the standard state include hydrocarbons such as acetylene, light oil, cetane, heptane, and kerosene. As the oxygen-containing organic compound, alcohols such as ethanol can be used.

【0036】外部から導入する炭化水素又は含酸素有機
化合物の量は、重量比(添加する還元剤の重量/排ガス
中の窒素酸化物の重量)が0.1〜5となるようにする
のが好ましい。この重量比が0.1未満であると、窒素
酸化物の除去率が大きくならない。一方、5を超える
と、燃費悪化につながる。
The amount of the hydrocarbon or the oxygen-containing organic compound introduced from the outside should be such that the weight ratio (weight of reducing agent added / weight of nitrogen oxide in exhaust gas) is 0.1 to 5. preferable. If this weight ratio is less than 0.1, the nitrogen oxide removal rate does not increase. On the other hand, when it exceeds 5, fuel consumption is deteriorated.

【0037】本発明では、炭化水素又は含酸素有機化合
物を含む排ガスが上記した触媒と接触する時間を調節
し、窒素酸化物の還元反応を効率良く進行させるため
に、排ガスと触媒との接触時間は0.006 秒・g/ml以上
とするのが好ましい。接触時間が0.006 秒・g/ml未満
であると、除去効率が低くなる。好ましい接触時間は0.
007 秒・g/ml以上とする。
In the present invention, the contact time between the exhaust gas and the catalyst is adjusted in order to adjust the time during which the exhaust gas containing the hydrocarbon or the oxygen-containing organic compound is in contact with the above-mentioned catalyst, and to promote the reduction reaction of nitrogen oxides efficiently. Is preferably 0.006 seconds · g / ml or more. If the contact time is less than 0.006 seconds · g / ml, the removal efficiency will be low. The preferred contact time is 0.
007 seconds / g / ml or more.

【0038】また、本発明では、炭化水素又は含酸素有
機化合物と窒素酸化物とが反応する部位である浄化材設
置部位における排ガスの温度を200〜600℃に保
つ。排ガスの温度が200℃未満であると還元剤と窒素
酸化物との反応が進行せず、良好な窒素酸化物の除去を
行うことができない。一方、600℃を超す温度とする
と炭化水素又は含酸素有機化合物自身の燃焼が始まり、
窒素酸化物の還元除去が行えない。好ましい排ガス温度
は、300〜600℃である。
Further, in the present invention, the temperature of the exhaust gas is maintained at 200 to 600 ° C. at the purification material installation site where the hydrocarbon or oxygen-containing organic compound reacts with the nitrogen oxide. If the temperature of the exhaust gas is less than 200 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and the nitrogen oxide cannot be removed satisfactorily. On the other hand, when the temperature exceeds 600 ° C, the combustion of the hydrocarbon or oxygen-containing organic compound itself starts,
Nitrogen oxide cannot be reduced and removed. A preferable exhaust gas temperature is 300 to 600 ° C.

【0039】[0039]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 硝酸銀の水溶液を用いて、市販のペレット状γ−アルミ
ナ(比表面積200m2 /g)に銀2重量%を担持し、
乾燥後、空気中で段階的に600℃まで焼成し、銀系触
媒を調製した。また、同様に硝酸銅及び硝酸銀水溶液を
用いて、ペレット状γ−アルミナに銀2重量%及び銅
0.07重量%を担持し、乾燥後、空気中で段階的に6
00℃まで焼成し、銀、銅系触媒を調製した。
The present invention will be described in more detail by the following specific examples. Example 1 Using an aqueous solution of silver nitrate, 2% by weight of silver was supported on commercially available pelletized γ-alumina (specific surface area 200 m 2 / g),
After drying, it was calcined stepwise in air to 600 ° C. to prepare a silver-based catalyst. Similarly, using copper nitrate and silver nitrate aqueous solution, 2% by weight of silver and 0.07% by weight of copper were supported on pelletized γ-alumina, and after drying, stepwise in air 6
It was baked to 00 ° C. to prepare a silver-copper catalyst.

【0040】排ガスの流入側に銀系触媒3.75g、流
出側に銀、銅系触媒3.75gになるように組み合わせ
た浄化材を反応管内にセットした。次に、表1に示す組
成のガス(一酸化窒素、酸素、プロピレン、及び窒素)
を毎分4.4リットル(標準状態)の流量で流して(全
体の見かけ空間速度約15,000h-1、銀系触媒と銅
系触媒の接触時間はともに0.05秒・g/ml)、反応
管内の排ガス温度を200〜600℃の範囲に保ち、プ
ロピレンと窒素酸化物とを反応させた。
A purifying material was combined in the reaction tube so that the inflow side of the exhaust gas was 3.75 g and the outflow side was 3.75 g of silver and copper catalyst. Next, gases having the composition shown in Table 1 (nitric oxide, oxygen, propylene, and nitrogen)
At a flow rate of 4.4 liters per minute (standard state) (total apparent space velocity of about 15,000 h −1 , contact time between silver-based catalyst and copper-based catalyst is both 0.05 sec · g / ml) The exhaust gas temperature in the reaction tube was kept in the range of 200 to 600 ° C., and propylene and nitrogen oxide were reacted.

【0041】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を図1に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescence type nitrogen oxide analyzer to determine the nitrogen oxide removal rate. The results are shown in Fig. 1.

【0042】 表1成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% 水分 10 容量% プロピレン 1714 ppm 窒素 残部Table 1 Component Concentration Nitric oxide 800 ppm Oxygen 10% by volume Moisture 10% by volume Propylene 1714 ppm Nitrogen balance

【0043】実施例2 実施例1と同様の方法で、硝酸銀の水溶液を用いて、粉
末状γ−アルミナ(平均粒径40μm、比表面積200
2 /g)に銀3重量%を担持した触媒1.4gを、市
販のコージェライト製ハニカム成形体(直径30mm、
長さ12.5mm)にウォッシュコート法によりコート
したあと、乾燥し、600℃まで焼成して銀系浄化材を
調製した。同様に硝酸銅及び硝酸銀水溶液を用いて、粉
末状γ−アルミナに銀3重量%及び銅0.09重量%を
担持した触媒1.4gを、同様のハニカム成形体にコー
トしたあと、乾燥し、600℃まで焼成して銀、銅系浄
化材を調製した。
Example 2 In the same manner as in Example 1, powdery γ-alumina (average particle size 40 μm, specific surface area 200) was prepared using an aqueous solution of silver nitrate.
m 2 / g) and 1.4 g of a catalyst in which 3% by weight of silver is supported on a commercially available cordierite honeycomb molded body (diameter 30 mm,
A length of 12.5 mm) was coated by a wash coating method, dried, and baked to 600 ° C. to prepare a silver-based purification material. Similarly, using a copper nitrate and silver nitrate aqueous solution, 1.4 g of a catalyst in which 3% by weight of silver and 0.09% by weight of copper were supported on powdery γ-alumina was coated on the same honeycomb formed body, and then dried. A silver / copper purification material was prepared by firing to 600 ° C.

【0044】排ガスの流入側に銀系浄化材、流出側に
銀、銅系浄化材がくるように組み合わせた浄化材を反応
管内にセットした。実施例1と同様の反応条件(全体の
見かけ空間速度約15,000h-1)で、表1に示す組
成のガスを用いて評価を行った。結果を図1に示す。
A purifying material was set in the reaction tube so that a silver-based purifying material was placed on the inflow side of the exhaust gas and silver and a copper-based purifying material were placed on the outflow side. Evaluation was carried out under the same reaction conditions as in Example 1 (overall apparent space velocity: about 15,000 h −1 ) using a gas having the composition shown in Table 1. The results are shown in Fig. 1.

【0045】比較例1 実施例1と同様な方法でγ−アルミナペレットに銀2重
量%を担持した浄化材を調製した。その浄化材7.50
gを反応管にセットし、実施例1と同じ条件で表1に示
す組成のガスを用いて評価した。実験結果を図1に示
す。
Comparative Example 1 In the same manner as in Example 1, a purification material was prepared by loading 2% by weight of silver on γ-alumina pellets. The purification material 7.50
g was set in a reaction tube and evaluated using the gas having the composition shown in Table 1 under the same conditions as in Example 1. The experimental results are shown in FIG.

【0046】以上からわかるように、銀系触媒と銀、銅
系触媒とを組み合わせた実施例1、2においては、広い
排ガス温度で窒素酸化物の良好な除去がみられた。一
方、銀系触媒のみを用いた比較例1においては、窒素酸
化物除去の温度範囲が狭い。
As can be seen from the above, in Examples 1 and 2 in which the silver-based catalyst and the silver-copper-based catalyst were combined, good removal of nitrogen oxides was observed over a wide range of exhaust gas temperatures. On the other hand, in Comparative Example 1 using only the silver-based catalyst, the temperature range for removing nitrogen oxides is narrow.

【0047】[0047]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, by using the exhaust gas purifying material of the present invention, nitrogen oxides in exhaust gas containing excess oxygen can be efficiently removed in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purifying method of the present invention can be widely used for purifying exhaust gas of various combustors, automobiles and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2及び比較例1における排ガス温度
と窒素酸化物の除去率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between exhaust gas temperature and nitrogen oxide removal rate in Examples 1 and 2 and Comparative Example 1.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する排ガス浄化材において、浄化材の排
ガス流入側に第一の触媒を有し、排ガス流出側に第二の
触媒を有しており、前記第一の触媒が多孔質の無機酸化
物に活性種である銀又は銀酸化物0.2〜15重量%
(元素換算値)を担持してなり、前記第二の触媒が多孔
質の無機酸化物に活性種である(a) 銀又は銀酸化物0.
2〜15重量%(元素換算値)と、(b) 銅又は銅酸化物
2重量%以下(元素換算値)とを担持してなることを特
徴とする排ガス浄化材。
1. An exhaust gas purification material for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components, wherein a first catalyst is provided on the exhaust gas inflow side of the purification material. And has a second catalyst on the exhaust gas outflow side, and the first catalyst has 0.2 to 15% by weight of silver or silver oxide which is an active species in a porous inorganic oxide.
(Element-converted value), and the second catalyst is a porous inorganic oxide which is an active species (a) silver or silver oxide.
An exhaust gas purifying material, which carries 2 to 15% by weight (elemental conversion value) and (b) 2% by weight or less of copper or copper oxide (elemental conversion value).
【請求項2】 請求項1に記載の排ガス浄化材におい
て、前記浄化材は前記第一及び第二の触媒をセラミック
ス製又は金属製の基体の表面にコートしてなることを特
徴とする排ガス浄化材。
2. The exhaust gas purifying material according to claim 1, wherein the purifying material is obtained by coating the surface of a ceramic or metal base with the first and second catalysts. Material.
【請求項3】 請求項1に記載の排ガス浄化材におい
て、前記第一及び第二の触媒の多孔質無機酸化物はそれ
ぞれペレット状又は顆粒状であることを特徴とする排ガ
ス浄化材。
3. The exhaust gas purifying material according to claim 1, wherein the porous inorganic oxides of the first and second catalysts are in the form of pellets or granules, respectively.
【請求項4】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記多孔質無機酸化物が、アルミナ、
チタニア、ジルコニアのいずれか一種又はその内の二つ
以上からなる複合酸化物であることを特徴とする排ガス
浄化材。
4. The exhaust gas purifying material according to claim 1, wherein the porous inorganic oxide is alumina.
An exhaust gas purification material, which is a composite oxide composed of one or more of titania and zirconia.
【請求項5】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する排ガス浄化方法において、請求項1
〜4のいすれかに記載の排ガス浄化材を排ガス導管の途
中に設置し、前記浄化材の上流側で炭化水素又は含酸素
有機化合物を添加した排ガスを、200〜600℃にお
いて前記浄化材に接触させ、もって前記排ガス中の炭化
水素又は含酸素有機化合物との反応により前記窒素酸化
物を除去することを特徴とする排ガス浄化方法。
5. An exhaust gas purification method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount for coexisting unburned components.
The exhaust gas purifying material according to any one of to 4 is installed in the middle of an exhaust gas conduit, and the exhaust gas to which a hydrocarbon or an oxygen-containing organic compound is added on the upstream side of the purifying material is used as the purifying material at 200 to 600 ° C. A method for purifying an exhaust gas, which comprises contacting and then removing the nitrogen oxide by reacting with a hydrocarbon or an oxygen-containing organic compound in the exhaust gas.
【請求項6】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を除去する排ガス浄化方法において、請求項1
〜4のいすれかに記載の排ガス浄化材を排ガス導管の途
中に設置し、前記排ガスを200〜600℃において前
記浄化材に接触させ、もって前記排ガス中の残留炭化水
素との反応により前記窒素酸化物を除去することを特徴
とする排ガス浄化方法。
6. An exhaust gas purification method for removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in a larger amount than the theoretical reaction amount for coexisting unburned components.
The exhaust gas purifying material according to any one of 4 to 4 is installed in the middle of an exhaust gas conduit, and the exhaust gas is brought into contact with the purifying material at 200 to 600 ° C., whereby the nitrogen is produced by a reaction with residual hydrocarbons in the exhaust gas. An exhaust gas purification method characterized by removing oxides.
JP4360377A 1992-12-28 1992-12-28 Purifying material for exhaust gas and purifying method thereof Pending JPH06198195A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4360377A JPH06198195A (en) 1992-12-28 1992-12-28 Purifying material for exhaust gas and purifying method thereof
EP93310608A EP0605251A1 (en) 1992-12-28 1993-12-29 Exhaust gas cleaner
US08/434,915 US5589432A (en) 1992-12-28 1995-05-04 Exhaust gas cleaner and method for cleaning same
US08/532,260 US5658543A (en) 1992-12-28 1995-09-22 Exhaust gas cleaner and method for cleaning same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360377A JPH06198195A (en) 1992-12-28 1992-12-28 Purifying material for exhaust gas and purifying method thereof

Publications (1)

Publication Number Publication Date
JPH06198195A true JPH06198195A (en) 1994-07-19

Family

ID=18469152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360377A Pending JPH06198195A (en) 1992-12-28 1992-12-28 Purifying material for exhaust gas and purifying method thereof

Country Status (1)

Country Link
JP (1) JPH06198195A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714130A (en) * 1994-11-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
JP2012179513A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Catalyst for purifying exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780002A (en) * 1994-11-04 1998-07-14 Jiro Hiraishi, Director-General Of Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
US5882607A (en) * 1994-11-04 1999-03-16 Agency Of Industrial Science And Technology Exhaust gas cleaner and method for cleaning exhaust gas
US5714130A (en) * 1994-11-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
JP2012179513A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Catalyst for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JP3440290B2 (en) Exhaust gas purification method
JP3516471B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH0615175A (en) Purifying material for waste gas and purifying method of waste gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3508066B2 (en) Nitrogen oxide removing material and nitrogen oxide removing method
JPH06178937A (en) Catalyst for removing nitrogen oxides and method of removing the same
JPH06238166A (en) Cleaning material for exhaust gas and cleaning method for exhaust gas
JP3499272B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH07284664A (en) Waste gas purification material and method for purifying waste gas
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH06154607A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH09248459A (en) Material and method for exhaust gas-purifying
JPH06134311A (en) Nox removing material and nox removing method
JPH0788377A (en) Waste gas purifying material and method for purifying waste gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JPH06165918A (en) Method for purifying waste gas
JPH0985057A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH06126193A (en) Purifying material and method; for exhaust gas
JPH0780306A (en) Waste gas purifying material and waste gas purifying method
JPH06319998A (en) Material and method for decontaminating exhaust gas