JPH06154611A - Catalyst for decomposition of nitrous oxide - Google Patents

Catalyst for decomposition of nitrous oxide

Info

Publication number
JPH06154611A
JPH06154611A JP4215380A JP21538092A JPH06154611A JP H06154611 A JPH06154611 A JP H06154611A JP 4215380 A JP4215380 A JP 4215380A JP 21538092 A JP21538092 A JP 21538092A JP H06154611 A JPH06154611 A JP H06154611A
Authority
JP
Japan
Prior art keywords
catalyst
same manner
aqueous solution
kinds
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4215380A
Other languages
Japanese (ja)
Other versions
JP3254742B2 (en
Inventor
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
一彦 永野
Kenji Nakahira
健二 中平
Masafumi Yoshimoto
雅文 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP21538092A priority Critical patent/JP3254742B2/en
Publication of JPH06154611A publication Critical patent/JPH06154611A/en
Application granted granted Critical
Publication of JP3254742B2 publication Critical patent/JP3254742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To perform efficient catalytic decomposition of NOx in exhaust gas even at a relatively low temp. by carrying one or more kinds of specified metals or oxides of the metals as 1st components and one or more kinds of specified noble metals as 2nd components on an acidic carrier. CONSTITUTION:One or more kinds of metals selected among Cu, Fe, Co and Ni or oxides of the metals as 1st components and one or more kinds of noble metals selected among Ru, Rh, Pd, Re, Os, Ir and Pt as 2nd components are carried on an acidic carrier such as zeolite, alumina, titania, zirconia or silica- alumina to form the objective catalyst for decomposition of nitrous oxide. The optimum temp. at which this catalyst exhibits activity to N2O depends on the kinds of catalytic components but is usually 300-600 deg.C and exhaust gas is preferably allowed to flow at about 500-500,000 space velocity in the temp. range of 300-600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(NO)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing and removing nitrogen oxides in exhaust gas, particularly nitrous oxide (N 2 O), and more specifically, factories, automobiles, refuse incinerators, sewage sludge incinerators, etc. The present invention relates to a suitable catalyst for decomposing nitrogen oxides, which is used when decomposing and removing nitrous oxide contained in exhaust gas discharged from the waste treatment facility.

【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下でNOを含むガスと接触させる方法など
が提案されるている。ところが、こうした方法ではいず
れも、排ガス中のNOの処理は不可能ではないが十分
ではなく、従来これらは、前述した脱硝設備の後流に未
処理のまま排出されてきた。これは、これまでNOに
対する法的な規制値がなく、又、JISのような公的な
測定方法も定められてなかったことなどとも関連してお
り、実質的にはこれらの処理は、脱硝の対象としては黙
視されてきたというのが現実であった。ところが、前述
した脱硝方法においては、その運転条件によってN
が生成することが認められており、又、最近ではゴミ焼
却炉や下水汚泥焼却炉などからも比較的高濃度のN
が生成することも報告されている。加えて近年、N
は、CO、フロン、CH等とともに、成層圏でのオ
ゾ層の破壊、ないしは温室効果による温度上昇などもた
らす地球規模的汚染物質として特に注目されてきてい
る。こうした事情からNOの処理方法、とりわけその
分解触媒についての関心が高まっており、いくつかの方
法が提案されてきた。それらは例えば、ゼオライト系の
担体に各種の遷移金属を担持させたものあるいは又、酸
化マグネシウムや酸化亜鉛などの塩基性担体に各種の遷
移金属を担持させたものである。しかしながらこれらは
いずれも活性を示す温度が高く、低温では充分なる性能
が得られず、又処理ガス中に水分があるとその影響を強
く受けて失活するなどの弱点を有していた。本発明はこ
うした状況に鑑みてなされたものであり、その目的とす
るところは、排ガス中のNOを効率よく分解すること
が出来るNO分解用触媒を提供することにある。
2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain, so their emission Is severely limited, and the development of effective removal means is desired. By the way, the nitrogen oxides conventionally required to be emission regulated are mainly nitric oxide (NO) and nitrogen dioxide (NO 2 ). As methods for removing these NOx, some methods for reducing NOx in exhaust gas using a catalyst have already been put into practical use. For example, (a) a three-way catalyst method in a gasoline automobile, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility emission source such as a boiler. Recently, as a method for removing NOx in exhaust gas using (c) hydrocarbons, zeolite containing a metal such as copper, or a gas containing NO in the presence of hydrocarbons using a metal oxide such as alumina as a catalyst is used. Methods such as contacting have been proposed. However, none of these methods is not sufficient, but not sufficient, to treat N 2 O in the exhaust gas, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is related to the fact that there is no legal regulation value for N 2 O and no official measurement method such as JIS has been established so far. However, the reality is that they have been ignored as targets for denitration. However, in the above-described denitration method, N 2 O may be added depending on the operating conditions.
It has been confirmed that methane is generated, and recently, a relatively high concentration of N 2 O has been obtained from garbage incinerators and sewage sludge incinerators.
Are also reported to be generated. In addition, in recent years, N 2 O
Has attracted particular attention as a global pollutant that causes destruction of the Ozo layer in the stratosphere, or temperature rise due to the greenhouse effect, together with CO 2 , chlorofluorocarbon, CH 4, and the like. Under such circumstances, there has been increasing interest in N 2 O treatment methods, particularly decomposition catalysts thereof, and several methods have been proposed. They are, for example, a zeolite-based carrier on which various transition metals are supported, or a basic carrier such as magnesium oxide or zinc oxide on which various transition metals are supported. However, all of them have a high temperature at which they are active, and they do not provide sufficient performance at low temperatures, and have a weak point that they are strongly affected by the presence of water in the process gas and are deactivated. The present invention has been made in view of such circumstances, and an object thereof is to provide a catalyst for decomposing N 2 O that can efficiently decompose N 2 O in exhaust gas.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、ゼオライト、
アルミナ、チタニア、ジルコニア、シリカ−アルミナな
どの酸性担体に、第1成分として、銅(Cu)、鉄(F
e)、コバルト(Co)、ニツケル(Ni)から選ばれ
た少なくとも1種以上の金属又は金属酸化物、及び第2
成分として、ルテニウム(Ru)、ロジウム(Rh)、
パラジウム(Pd)、レニウム(Re)、オスミウム
(Os)、イリジウム(Ir)、白金(Pt)から選ば
れた少なくとも1種以上の貴金属を担持させてなる。本
発明に係る酸性担体は(I)ゼオライト、(II)酸化
物系に大別される。(I)ゼオライト系は、Na−モル
デナイト、Na−ZSM・5、Na−USYなど耐熱性
に優れたゼオライトを硫安などのアンモニウム塩水溶
液、あるいは硫酸などの酸で処理し、ゼオライト中のア
ルカリ金属の一部あるいは全部をNH あるいはH
でイオン交換処理し、NH イオン交換の場合更に焼
成処理することによって酸型ゼオライトが得られる。例
えば、SiO/Alのモル比が、13〜20ど
あって、かつSiO/NaOのモル比が10〜20
0であるものや、特願平3−164094として出願し
ているTi、Zr置換もしくは担体ゼオライトなどを挙
げることができる。(II)酸化物系は、本発明者らが
平成3年1月8日付に出願しているAl、TiO
、TiO/SO 、ZrO、ZrO/SO
などの単一金属酸化物や、SiO−Al、T
iO−Al、TiO−ZrOなどの複合酸
化物などである。本発明にかかる触媒粉は、種々の方法
により調製することが出来る。前述した酸性担体を、水
にリパルブし、これに第1成分から選択されるCu、F
e、Co、Niなどの硝酸塩水溶液、および第2成分か
ら選択される、Ru、Rh、Pd、Re、Os、Ir、
Ptなどの貴金属の塩化物を所定量加え、一定時間撹拌
した後、NHOH水を用いてpH7になるように中和
し、沈殿を形成させ、これらをろ別、水洗、乾燥した
後、5%ヒドラジン水溶液中に一定時間浸漬させ還元す
る。これらをろ別後、乾燥し、500℃〜600℃で3
〜5時間焼成する。触媒の調製は又、イオン交換法によ
っても可能である。すなわち、先ず第1に、第1成分の
硝酸塩等の水溶液中に、酸性担体をリパルブし、加熱し
ながら、一定時間撹拌し、イオン交換した後、ろ別、水
洗し、乾燥する。次に更にこのものを、第2成分の塩化
物水溶液中にリパルブし、同じく加熱しながら一定時間
撹拌し、イオン交換した後、ろ別、水洗、乾燥した後、
500℃〜600℃で3〜5時間焼成する。本発明にお
いて、イオン交換の方法は、特に限定されるものではな
く、従来より知られている通常の方法によって行うこと
ができる。例えば、前記酸性担体を水に分散させ、十分
な撹拌下に、イオン交換する遷移金属等の陽イオン又は
錯陽イオンを加えればよい。このように、イオン交換に
おいて、イオン交換する遷移金属の陽イオン又は錯陽イ
オンが沈殿を生じず、且つ、できるだけ高いpHに保こ
とによって、水酸基の有する水素イオンとイオン交換す
るイオンの交換容量を増加させることができる。かかる
イオン交換の進行に伴って、交換された水素イオンによ
って液のpHが低下するので、アンモニア等の中和剤を
加え、pHを前述したように高く維持しながら、イオン
交換するのがよい。また、交換する金属イオンが銅、ニ
ッケル等の場合のように、加熱によって加水分解しない
ときは、イオン交換速度を速めるために、温度を上昇さ
せた条件下にイオン交換を行ってもよい。以上のように
して、本発明に係る触媒粉が得られるが、これら金属の
好適な担持量は、第1成分の遷移金属としては、金属換
算で1〜10wt%であり、又、第2成分の貴金属とし
ては、金属換算で0.01〜1.0wt%である。第1
成分の担持量が上記範囲以上では、それに見合うだけの
活性の向上は見られなかった。又第2成分の担持量は、
上記範囲以下ではその効果は十分に発揮されないが、上
記範囲以上では、活性が発現する温度をより低くするこ
とは可能であるが、これら貴金属の使用量を増すことは
経済的に不利である。結局、本発明が提起している温度
領域においては、第2成分としてはその担持量が上記範
囲以上にある必要はない。これらの触媒粉のうちでより
好ましいのは、ゼオライト系担体に、銅およびルテニウ
ムあるいはロジウムを担持したものである。本発明に係
る亜酸化窒素分解用触媒は、従来公知の成形方法によ
り、ハニカム状球状等の種々の形状に成形することが出
来る。さらに又、前述した酸性担体のみを成形し、第1
成分および第2成分を成形後に含浸させてもよい。さら
に又、別に成形したセラミックス担体あるいはセラミッ
クファイバー製基材、コージエライト製ハニカム等の上
に前述した触媒粉をウォッシュコートしてもよい。又、
成形の際には、成形助剤、無機繊維、有機バインダー等
を適宜配合してもよい。本発明に係る亜酸化窒素分解用
触媒が、NOに対して活性を示す最適な温度は、触媒
種によって異なるが通常300℃〜600℃であり、こ
の温度領域においては、空間速度(SV)500〜50
0000程度で排ガスを通流させることが好ましい。な
お、より好適な使用温度領域は400℃〜500℃であ
る。
The catalyst for decomposing nitrous oxide according to the present invention for achieving the above object is zeolite,
Copper (Cu), iron (F) as the first component in an acidic carrier such as alumina, titania, zirconia, or silica-alumina.
e), at least one metal or metal oxide selected from cobalt (Co), nickel (Ni), and second
As components, ruthenium (Ru), rhodium (Rh),
It comprises at least one or more noble metals selected from palladium (Pd), rhenium (Re), osmium (Os), iridium (Ir), and platinum (Pt). The acidic carrier according to the present invention is roughly classified into (I) zeolite and (II) oxide type. (I) Zeolite is a zeolite having excellent heat resistance such as Na-mordenite, Na-ZSM.5, and Na-USY, which is treated with an ammonium salt solution such as ammonium sulfate or an acid such as sulfuric acid so that the alkali metal Part or all of NH 4 or H
In the case of NH 4 ion exchange, the acid-type zeolite is obtained by further performing the ion exchange treatment in (1). For example, the SiO 2 / Al 2 O 3 molar ratio is 13 to 20, and the SiO 2 / Na 2 O molar ratio is 10 to 20.
Examples thereof include those having a value of 0, and Ti, Zr-substituted or carrier zeolites filed as Japanese Patent Application No. 3-164094. The (II) oxide-based materials are Al 2 O 3 and TiO, which the present inventors applied for on January 8, 1991.
2 , TiO 2 / SO 4 , ZrO 2 , ZrO 4 / SO 4
Single metal oxide such as SiO 2 —Al 2 O 3 , T
Examples thereof include complex oxides such as iO 2 —Al 2 O 3 and TiO 2 —ZrO 2 . The catalyst powder according to the present invention can be prepared by various methods. The above-mentioned acidic carrier is repulsed in water, and Cu, F selected from the first component is added to this.
Ru, Rh, Pd, Re, Os, Ir, selected from aqueous nitrate solutions such as e, Co, Ni, and the second component.
After adding a predetermined amount of a noble metal chloride such as Pt and stirring for a certain period of time, the mixture is neutralized with NH 4 OH water to pH 7 to form a precipitate, which is filtered, washed with water and dried, It is dipped in a 5% aqueous solution of hydrazine for a certain period of time to be reduced. These are separated by filtration, dried, and dried at 500 ° C to 600 ° C for 3
Bake for ~ 5 hours. The preparation of the catalyst is also possible by the ion exchange method. That is, first, first, an acidic carrier is repulsed in an aqueous solution of a nitrate or the like of the first component, stirred for a certain period of time while heating, ion-exchanged, filtered, washed with water, and dried. Next, this product is further repulsed in an aqueous chloride solution of the second component, stirred for a certain period of time while being heated, ion-exchanged, filtered, washed with water and dried,
Baking is performed at 500 ° C. to 600 ° C. for 3 to 5 hours. In the present invention, the ion exchange method is not particularly limited, and it can be performed by a conventionally known conventional method. For example, the acidic carrier may be dispersed in water, and a cation or a complex cation such as a transition metal for ion exchange may be added under sufficient stirring. As described above, in ion exchange, the exchange metal cations or complex cations to be ion-exchanged do not cause precipitation, and the pH is kept as high as possible to increase the exchange capacity of the ions exchanged with the hydrogen ions of the hydroxyl groups. Can be increased. As the ion exchange proceeds, the pH of the liquid decreases due to the exchanged hydrogen ions. Therefore, it is preferable to add a neutralizing agent such as ammonia and perform the ion exchange while maintaining the pH high as described above. When the metal ion to be exchanged is not hydrolyzed by heating, as in the case of copper, nickel or the like, the ion exchange may be performed under the condition of increasing the temperature in order to increase the ion exchange rate. As described above, the catalyst powder according to the present invention is obtained, and the preferable loading amount of these metals is 1 to 10 wt% in terms of metal as the transition metal of the first component, and the second component The noble metal is 0.01 to 1.0 wt% in terms of metal. First
When the amount of the component carried was more than the above range, the activity corresponding to the above amount was not improved. The amount of the second component carried is
If the amount is less than the above range, the effect is not sufficiently exhibited, but if the amount is more than the above range, the temperature at which the activity is exhibited can be lowered, but increasing the amount of these precious metals used is economically disadvantageous. After all, in the temperature range proposed by the present invention, it is not necessary that the amount of the second component carried is above the above range. Among these catalyst powders, more preferred is a zeolite-based carrier carrying copper and ruthenium or rhodium. The catalyst for decomposing nitrous oxide according to the present invention can be molded into various shapes such as a spherical shape by a conventionally known molding method. Furthermore, by molding only the above-mentioned acidic carrier,
The component and the second component may be impregnated after molding. Further, the above-mentioned catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. or,
At the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately mixed. The optimum temperature at which the catalyst for decomposing nitrous oxide according to the present invention is active with respect to N 2 O varies depending on the catalyst species, but is usually 300 ° C to 600 ° C. In this temperature range, the space velocity (SV ) 500-50
It is preferable to let the exhaust gas flow at about 0000. A more suitable operating temperature range is 400 ° C to 500 ° C.

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製 実施例1 SiO/Alモル比が19.5、SiO/N
Oモル比が165の日本化学製H型モルデナイト
(HM−23)200gを2lの水に浸漬し、CuSO
水溶液をCuOとして10gとなるように、又RuC
水溶液をRuとして0.2gとなるように添加し、
30分間撹拌した。次いで、(1+1)NHOHを用
いてpHが7になるまで中和した。このスラリーをろ別
し、十分に水洗し、100℃で8時間乾燥した。得られ
た粉末を軽く粉砕し5%のヒドラジン溶液に10分間浸
漬し、還元した。このスラリーをろ別、水洗後100℃
で8時間乾燥し、さらに500℃で4時間焼成して、C
uOおよびRuをそれぞれ4.91%、0.095%含
有するモルデナイト粉末を得た。尚、これらの分析は原
子吸光法によった。次に、この粉末100gに水100
gを加え、ボールミルにて10分間粉砕し、さらに水に
て粘度調節し、ウォッシュコート用スラリーを得た。こ
のスラリーを用いて7mmピッチのコージェライト製ハ
ニカムに触媒粉を担持した。このときのコート量は0.
12g/ccであった。 実施例2 実施例1において、CuSO水溶液にかえて、Fe
(NO溶液とする以外は実施例1と同様にして、
FeおよびRuをそれぞれ4.93%、0.09
1%含有するモルデナイト粉末を得た。以下、実施例1
と同様にしてハニカム触媒を得たが、このときのコート
量は0.122g/ccであった。 実施例3 実施例1において、CuSO水溶液にかえて、Co
(NO溶液とする以外は実施例1と同様にして、
CoOおよびRuをそれぞれ4.92%、0.093%
含有するモルデナイト粉末を得た。以下、実施例1と同
様にしてハニカム触媒を得たが、このときのコート量は
0.131g/ccであった。 実施例4 実施例1において、CuSO水溶液にかえて、Ni
(NO溶液とする以外は実施例1と同様にして、
NiOおよびRuをそれぞれ4.91%、0.091%
含有するモルデナイト粉末を得た。以下、実施例1と同
様にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 実施例5 実施例1において、RuCl水溶液にかえて、RhC
水溶液とする以外は実施例1と同様にして、CuO
およびRuをそれぞれ4.92%、0.011%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
31g/ccであった。 実施例6 実施例1において、RuCl水溶液にかえて、RhC
水溶液とする以外は実施例1と同様にして、CuO
およびRuをそれぞれ4.95%、0.048%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
33g/ccであった。 実施例7 実施例1において、RuCl水溶液にかえて、PdC
水溶液とする以外は実施例1と同様にして、CuO
およびPdをそれぞれ4.95%、0.093%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
26g/ccであった。 実施例8 実施例1において、RuCl水溶液にかえて、ReC
水溶液とする以外は実施例1と同様にして、CuO
およびReをそれぞれ4.95%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
23g/ccであった。 実施例9 実施例1において、RuCl水溶液にかえて、OsC
水溶液とする以外は実施例1と同様にして、CuO
およびOsをそれぞれ4.96%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
21g/ccであった。 実施例10 実施例1において、RuCl水溶液にかえて、IrC
水溶液とする以外は実施例1と同様にして、CuO
およびIrをそれぞれ4.95%、0.089%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
33g/ccであった。 実施例11 実施例1において、RuCl水溶液にかえて、H
tCl水溶液とする以外は実施例1と同様にして、C
uOおよびPtをそれぞれ4.95%、0.095%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.133g/ccであった。 実施例12 実施例1において、HM23にかえて、比表面積110
/gのアナターゼ型TiOとする以外は実施例1
と同様にして、CuOおよびRuそれぞれ4.96%、
0.093%含有するTiO粉末を得た。実施例1と
同様にしてハニカム触媒を得たがこのときのコート量は
0.122g/ccであった。 実施例13 実施例1において、CuSO水溶液をCuOとして6
gとなるようにする以外は実施例1と同様にして、Cu
OおよびRuをそれぞれ2.95%、0.094%含有
するモルデナイト粉末を得た。以下、実施例1と同様に
してハニカム触媒を得たが、このときのコート量は0.
126g/ccであった。 実施例14 実施例1において、CuSO水溶液をCuOとして2
0gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ9.92%、0.095%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 実施例15 実施例1において、RuCl水溶液をRuとして0.
4gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.193%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.126g/ccであった。 実施例16 実施例1において、RuCl水溶液をRuとして0.
1gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.048%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。 比較例1 実施例1において、RuCl水溶液を添加せずして、
CuOを4.96%含有するモルデナイト粉末を得た。
以下実施例1と同様にしてハニカム触媒を得たが、この
ときのコート量は0.123g/ccであった。 比較例2 実施例13において、RuCl水溶液を添加せずし
て、CuOを2.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。 比較例3 実施例14において、RuCl水溶液を添加せずし
て、CuOを9.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。 比較例4 実施例12において、RuCl水溶液を添加せずし
て、CuOを4.95%含有するTiO粉末を得た。
以下実施例12と同様にしてハニカム触媒を得たが、こ
のときのコート量は0.133g/ccであった。 (II)、評価試験 実施例1〜16、比較例1〜4で得た触媒について、下
記の試験条件により、常圧流通式反応装置を用い、亜酸
化窒素含有ガスの接触分解を行い、亜酸化窒素のN
の転換率をガスクロマトグラフ法によりNを定量して
算出した。試験条件 、ガス組成 NO 50ppm O 5% HO 2% He 残部 、空間速度 5000Hr 、反応温度 300℃、400℃、500℃ 結果を表1に示す。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. (I), Preparation of Catalyst Example 1 SiO 2 / Al 2 O 3 molar ratio was 19.5, SiO 2 / N
200 g of H-type mordenite (HM-23, manufactured by Nippon Kagaku Co., Ltd.) having an a 2 O molar ratio of 165 was immersed in 2 l of water, and CuSO
4 Aqueous solution to make CuO 10g, RuC
The l 3 aqueous solution was added to a 0.2g as Ru,
Stir for 30 minutes. It was then neutralized with (1 + 1) NH 4 OH until pH = 7. This slurry was filtered off, washed thoroughly with water, and dried at 100 ° C. for 8 hours. The obtained powder was lightly crushed and immersed in a 5% hydrazine solution for 10 minutes to reduce the powder. This slurry is filtered, washed with water and then at 100 ° C.
At 8 ° C for 8 hours, then calcination at 500 ° C for 4 hours.
A mordenite powder containing 4.91% and 0.095% of uO and Ru was obtained. In addition, these analyzes were based on the atomic absorption method. Next, 100 g of this powder is added to 100 g of water.
g was added, the mixture was pulverized with a ball mill for 10 minutes, and the viscosity was adjusted with water to obtain a washcoat slurry. Using this slurry, a catalyst powder was supported on a 7 mm pitch cordierite honeycomb. The coat amount at this time is 0.
It was 12 g / cc. Example 2 In Example 1, instead of the CuSO 4 aqueous solution, Fe was used.
(NO 3 ) 3 solution was prepared in the same manner as in Example 1, except that
Fe 2 O 3 and Ru were 4.93% and 0.09, respectively.
A mordenite powder containing 1% was obtained. Hereinafter, Example 1
A honeycomb catalyst was obtained in the same manner as above, but the coating amount at this time was 0.122 g / cc. Example 3 In Example 1, instead of CuSO 4 aqueous solution, Co
In the same manner as in Example 1 except that a (NO 3 ) 2 solution was used,
CoO and Ru are 4.92% and 0.093%, respectively
A mordenite powder containing was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.131 g / cc. Example 4 In Example 1, the CuSO 4 aqueous solution was replaced with Ni.
In the same manner as in Example 1 except that a (NO 3 ) 2 solution was used,
NiO and Ru are 4.91% and 0.091%, respectively
A mordenite powder containing was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 5 In Example 1, instead of the RuCl 3 aqueous solution, RhC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.92% and Ru of 0.011% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 31 g / cc. Example 6 In Example 1, instead of the RuCl 3 aqueous solution, RhC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and Ru of 0.048% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 33 g / cc. Example 7 In Example 1, PdC was used instead of RuCl 3 aqueous solution.
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
Thus, a mordenite powder containing 4.95% and Pd of 0.093% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 26 g / cc. Example 8 In Example 1, instead of the RuCl 3 aqueous solution, the ReC
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and 0.095% Re was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 23 g / cc. Example 9 In Example 1, instead of the RuCl 3 aqueous solution, OsC was added.
except that the l 3 aqueous solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.96% and Os of 0.095% was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 21 g / cc. Example 10 In Example 1, instead of the RuCl 3 aqueous solution, IrC was used.
except that the l 4 solution in the same manner as in Example 1, CuO
A mordenite powder containing 4.95% and 0.089% of Ir was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount was 0.1
It was 33 g / cc. Example 11 In Example 1, H 2 P was used instead of the RuCl 3 aqueous solution.
C in the same manner as in Example 1 except that a tCl 6 aqueous solution was used.
A mordenite powder containing 4.95% uO and 0.095% Pt was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.133 g / cc. Example 12 In Example 1, instead of HM23, a specific surface area of 110
Example 1 except that m 2 / g of anatase type TiO 2 was used.
In the same manner as described above, CuO and Ru are each 4.96%,
A TiO 2 powder containing 0.093% was obtained. A honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 13 In Example 1, the CuSO 4 aqueous solution was used as CuO to obtain 6
Cu was prepared in the same manner as in Example 1 except that g was changed to g.
A mordenite powder containing O and Ru at 2.95% and 0.094% respectively was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.
It was 126 g / cc. Example 14 In Example 1, the CuSO 4 aqueous solution was used as CuO to obtain 2
C in the same manner as in Example 1 except that the amount is 0 g.
A mordenite powder containing 9.92% and 0.095% of uO and Ru was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Example 15 In Example 1, the RuCl 3 aqueous solution was used as Ru to give a value of 0.
C in the same manner as in Example 1 except that the weight is 4 g.
A mordenite powder containing 4.95% and 0.193% of uO and Ru was obtained. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.126 g / cc. Example 16 In Example 1, the RuCl 3 aqueous solution was used as Ru to give a value of 0.
C, in the same manner as in Example 1 except that the amount was 1 g.
A mordenite powder containing 4.95% uO and 0.048% Ru was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc. Comparative Example 1 In Example 1, the RuCl 3 aqueous solution was not added,
A mordenite powder containing 4.96% CuO was obtained.
A honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.123 g / cc. Comparative Example 2 A mordenite powder containing 2.95% CuO was obtained without adding the RuCl 3 aqueous solution in Example 13. A honeycomb catalyst was obtained in the same manner as in Example 1 below.
The coating amount at this time was 0.131 g / cc. Comparative Example 3 A mordenite powder containing 9.95% CuO was obtained without adding the RuCl 3 aqueous solution in Example 14. A honeycomb catalyst was obtained in the same manner as in Example 1 below.
The coating amount at this time was 0.131 g / cc. Comparative Example 4 In Example 12, a TiO 2 powder containing 4.95% CuO was obtained without adding the RuCl 3 aqueous solution.
A honeycomb catalyst was obtained in the same manner as in Example 12, but the coating amount at this time was 0.133 g / cc. (II), Evaluation test The catalysts obtained in Examples 1 to 16 and Comparative Examples 1 to 4 were catalytically decomposed with a nitrous oxide-containing gas by using a normal pressure flow reactor under the following test conditions. the conversion to N 2 of nitrogen oxide was calculated by quantifying the N 2 by gas chromatography. Test conditions , gas composition N 2 O 50 ppm O 2 5% H 2 O 2% He balance, space velocity 5000 Hr 1 , reaction temperature 300 ° C., 400 ° C., 500 ° C. Results are shown in Table 1.

【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を比
較的温度においても効率よく接触分解することが出来、
又、排ガスが存在してもその影響を受けにくいなど、優
れた特有を有する。
As described in detail above, the catalyst for decomposing nitrous oxide according to the present invention can efficiently catalytically decompose nitrous oxide in exhaust gas even at a relatively high temperature,
Further, it has an excellent peculiarity such that it is not easily affected by the presence of exhaust gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 雅文 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masafumi Yoshimoto 5-1, Ebishimacho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸性担体に、第1成分として、銅(C
u)、鉄(Fe)、コバルト(Co)、ニッケル(N
i)から選ばれた少なくとも1種以上の金属又は金属酸
化物、および第2成分として、ルテニウム(Ru)、ロ
ジウム(Rh)、パラジウム(Pd)レニウム(R
e)、オスミウム(Os)、イリジウム(Ir)、白金
(Pt)から選ばれた少なくとも1種以上の貴金属を担
持することを特徴とする亜酸化窒素分解用触媒。
1. Copper (C) as a first component in an acidic carrier
u), iron (Fe), cobalt (Co), nickel (N
at least one metal or metal oxide selected from i) and, as the second component, ruthenium (Ru), rhodium (Rh), palladium (Pd) rhenium (R
e), osmium (Os), iridium (Ir), platinum (Pt), at least one or more noble metals selected from the above, a catalyst for decomposing nitrous oxide.
JP21538092A 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide Expired - Fee Related JP3254742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21538092A JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21538092A JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Publications (2)

Publication Number Publication Date
JPH06154611A true JPH06154611A (en) 1994-06-03
JP3254742B2 JP3254742B2 (en) 2002-02-12

Family

ID=16671345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21538092A Expired - Fee Related JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Country Status (1)

Country Link
JP (1) JP3254742B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
NL1026207C2 (en) * 2004-05-17 2005-11-21 Stichting Energie Process for the decomposition of N2O, catalyst for it and preparation of this catalyst.
WO2006103754A1 (en) * 2005-03-30 2006-10-05 Sued-Chemie Catalysts Japan, Inc. Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
KR100847739B1 (en) * 2006-08-01 2008-07-23 고등기술연구원연구조합 Catalyzer for cleaning nitrous oxide, production method thereof, and cleaning method of nitrous oxide using it
JP2011056347A (en) * 2009-09-07 2011-03-24 Toshiba Corp Catalytic filter and catalytic device
KR20110041509A (en) * 2008-07-11 2011-04-21 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 Method for the decomposition of n2o, catalyst for it, and the preparation of this catalyst
JP2011106999A (en) * 2009-11-18 2011-06-02 Horiba Ltd Dilution air refining method and dilution air refining device
JP2014089216A (en) * 2014-02-17 2014-05-15 Sumitomo Metal Mining Engineering Co Ltd Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system
WO2017115767A1 (en) * 2015-12-28 2017-07-06 トヨタ自動車株式会社 Cluster supported catalyst and production method therefor
WO2023219074A1 (en) * 2022-05-12 2023-11-16 住友化学株式会社 Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
US7901648B2 (en) 2004-05-17 2011-03-08 Stichting Energieonderzoek Centrum Nederland Method for the decomposition of N2O, catalyst therefor and preparation of this catalyst
KR101171086B1 (en) * 2004-05-17 2012-08-06 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 Method for the decomposition of n2o, catalyst therefor and preparation of this catalyst
WO2005110582A1 (en) * 2004-05-17 2005-11-24 Stichting Energieonderzoek Centrum Nederland Method for the decomposition of n2o, catalyst therefor and preparation of this catalyst
JP2007537858A (en) * 2004-05-17 2007-12-27 スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド N2O decomposition method, catalyst therefor, and process for producing the catalyst
NL1026207C2 (en) * 2004-05-17 2005-11-21 Stichting Energie Process for the decomposition of N2O, catalyst for it and preparation of this catalyst.
EA011258B1 (en) * 2004-05-17 2009-02-27 Стихтинг Энергиондерзук Сентрум Недерланд Method for the decomposition of no, catalyst therefor and preparation of this catalyst
US7704474B2 (en) 2004-05-17 2010-04-27 Stichting Energieonderzoek Centrum Nederland Method for the decomposition of N2O, catalyst therefor and preparation of this catalyst
WO2006103754A1 (en) * 2005-03-30 2006-10-05 Sued-Chemie Catalysts Japan, Inc. Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
KR100847739B1 (en) * 2006-08-01 2008-07-23 고등기술연구원연구조합 Catalyzer for cleaning nitrous oxide, production method thereof, and cleaning method of nitrous oxide using it
JP2011527629A (en) * 2008-07-11 2011-11-04 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド N2O decomposition method, catalyst therefor and preparation of the catalyst
KR20110041509A (en) * 2008-07-11 2011-04-21 쉬티흐틴크 에네르지온데르조크 센트룸 네델란드 Method for the decomposition of n2o, catalyst for it, and the preparation of this catalyst
JP2011056347A (en) * 2009-09-07 2011-03-24 Toshiba Corp Catalytic filter and catalytic device
JP2011106999A (en) * 2009-11-18 2011-06-02 Horiba Ltd Dilution air refining method and dilution air refining device
CN102101016A (en) * 2009-11-18 2011-06-22 株式会社堀场制作所 Method for refining dilution air and dilution air refinery
JP2014089216A (en) * 2014-02-17 2014-05-15 Sumitomo Metal Mining Engineering Co Ltd Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system
WO2017115767A1 (en) * 2015-12-28 2017-07-06 トヨタ自動車株式会社 Cluster supported catalyst and production method therefor
JP6235764B1 (en) * 2015-12-28 2017-11-22 トヨタ自動車株式会社 Cluster-supported catalyst and method for producing the same
WO2023219074A1 (en) * 2022-05-12 2023-11-16 住友化学株式会社 Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide

Also Published As

Publication number Publication date
JP3254742B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
EP0544282B1 (en) Catalyst for purifying exhaust gas
EP1874441B1 (en) Ammonia oxidation catalyst for coal fired utilities
US5783515A (en) Catalyst for treating exhaust gases containing dioxines, production process for the catalyst and method of treating the exhaust gases
DE3120780A1 (en) DIESEL EXHAUST CATALYST
US5002920A (en) Catalyst for ozone decomposition
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
KR20010037883A (en) A process for preparing honeycomb type monolithic catalyst
DE2602286A1 (en) CATALYST WITH DUAL FUNCTION FOR EXHAUST GAS PURIFICATION
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP3091820B2 (en) Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JP3321423B2 (en) Exhaust gas purification method
EP0387044A1 (en) Catalyst and method for ozone decomposition
KR20010044002A (en) Honeycomb type monolithic catalyst for removing VOCs
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JPH0290923A (en) Deodorizing method
JPH08141398A (en) Catalyst for decomposing ammonia
JP3221071B2 (en) Catalyst for decomposition of nitrous oxide
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP3221110B2 (en) Catalyst for decomposition of nitrous oxide
JP2691750B2 (en) Nitrogen oxide decomposition catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees