JP3453172B2 - DeNOx method - Google Patents

DeNOx method

Info

Publication number
JP3453172B2
JP3453172B2 JP21855693A JP21855693A JP3453172B2 JP 3453172 B2 JP3453172 B2 JP 3453172B2 JP 21855693 A JP21855693 A JP 21855693A JP 21855693 A JP21855693 A JP 21855693A JP 3453172 B2 JP3453172 B2 JP 3453172B2
Authority
JP
Japan
Prior art keywords
catalyst
crystalline silicate
added
chloride
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21855693A
Other languages
Japanese (ja)
Other versions
JPH0768129A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21855693A priority Critical patent/JP3453172B2/en
Publication of JPH0768129A publication Critical patent/JPH0768129A/en
Application granted granted Critical
Publication of JP3453172B2 publication Critical patent/JP3453172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排ガス中の窒素酸化物
(以下、NOxと略称する)を高い効率にて除去するこ
とのできる脱硝処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration treatment method capable of removing nitrogen oxides (hereinafter abbreviated as NOx) in exhaust gas with high efficiency.

【0002】[0002]

【従来の技術】排ガス中の窒素酸化物(NOx)を除去
する方法として、NOxとアンモニア(NH3 )とを接
触的に反応させて窒素と水に分解する接触アンモニア還
元法が広く用いられている。この方法には反応を促進す
るための脱硝触媒が必要であり、これまで多くの面から
触媒開発の研究がなされてきた。
2. Description of the Related Art As a method for removing nitrogen oxides (NOx) in exhaust gas, a catalytic ammonia reduction method in which NOx and ammonia (NH 3 ) are catalytically reacted to decompose into nitrogen and water is widely used. There is. This method requires a denitration catalyst for accelerating the reaction, and many studies have been conducted on the catalyst development so far.

【0003】[0003]

【発明が解決しようとする課題】最近、NOx排出規制
が厳しくなっており、とりわけ、大都市部においては煙
突からのNOx排出濃度が大気相当の0.06ppm程
度まで低下させる要望が示されている。NH3 を用いた
接触還元による脱硝方法においては反応は次式に従って
進行し、NOxはN2 に分解される。 4NO+4NH3 +O2 → 4N2 +6H2 O 従来の方法では、上式のようにほゞ等量のNH3 を添加
して脱硝を行っていた。しかし、ボイラー排ガスではN
OとNH3 の混合度合やNH3 の分解等の影響のため、
上記反応式通りの100%脱硝はできず、反応率は80
〜90%程度であり、未反応のNOが数ppm〜10数
ppmそのまま排出されていた。一方、NH3 をNOの
当量以上に添加し、NOの分解率を向上させるのは可能
であるが、未反応のNH3 が大気中に排出されてしまう
不具合が生じるため、好ましいNOx排出濃度低減法は
存在しなかった。
Recently, NOx emission regulations have become strict, and in particular, there is a demand for reducing the NOx emission concentration from a chimney to about 0.06 ppm, which is equivalent to the atmosphere, in large cities. . In the denitration method by catalytic reduction using NH 3 , the reaction proceeds according to the following equation, and NOx is decomposed into N 2 . 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O In the conventional method, denitration was performed by adding approximately the same amount of NH 3 as in the above formula. However, in the exhaust gas from the boiler, N
Due to the effect of the degree of mixing of O and NH 3 and the decomposition of NH 3 ,
100% denitration according to the above reaction formula cannot be performed, and the reaction rate is 80
It was about 90%, and unreacted NO was discharged as it is from several ppm to 10 ppm. On the other hand, it is possible to add NH 3 in an amount equal to or more than the equivalent amount of NO to improve the decomposition rate of NO, but there is a problem that unreacted NH 3 is discharged into the atmosphere, and therefore a preferable NOx emission concentration reduction There was no law.

【0004】本発明は前記従来技術の問題点を解決し、
未反応のNH3 を大気中に放出することなく、高効率で
NOxを分解することができる脱硝処理方法を提供する
ことを目的とする。
The present invention solves the above problems of the prior art,
It is an object of the present invention to provide a denitration treatment method capable of decomposing NOx with high efficiency without releasing unreacted NH 3 to the atmosphere.

【0005】[0005]

【課題を解決するための手段】本発明は(1)窒素酸化
物含有ガスに、窒素酸化物に対して反応当量以上のアン
モニアを添加し、脱水された状態で(1±0.6)R2
O・〔aM2 3 ・bAl2 3 〕・cMeO・ySi
2 (式中、R:アルカリ金属イオン及び/又は水素イ
オン、M:周期律表のVIII族元素、希土類元素、チタ
ン、バナジウム、クロム、ニオブ、アンチモン及びガリ
ウムからなる群から選ばれる1種以上の元素、Me:ア
ルカリ土類元素、a+b=1.0、a>0、b≧0、
>0、y/c>12、y>12)の化学組成を有し、か
つ発明の詳細な説明の項に記載の表1に示されるX線回
折パターンを有する結晶性シリケートに、銅、コバル
ト、ニッケル、鉄、亜鉛、マンガン、クロム、アルカリ
土類元素及び希土類元素のうち少なくとも1種以上を含
有させてなる触媒と接触させることを特徴とする窒素酸
化物含有ガスの脱硝方法、及び(2)上記(1)の結晶
性シリケートが、その表面に同一結晶構造を有するSi
とOよりなる結晶性シリケートを成長させた層状複合結
晶性シリケートであることを特徴とする上記(1)記載
の窒素酸化物含有ガスの脱硝方法である。
According to the present invention, (1) a nitrogen oxide-containing gas is added with ammonia in a reaction equivalent amount or more with respect to nitrogen oxide, and (1 ± 0.6) R is added in a dehydrated state. 2
O ・ [aM 2 O 3・ bAl 2 O 3 ] ・ cMeO ・ ySi
O 2 (in the formula, R: alkali metal ion and / or hydrogen ion, M: one or more selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium Element, Me: alkaline earth element, a + b = 1.0, a> 0 , b ≧ 0, c
> 0 , y / c> 12, y> 12) and a crystalline silicate having the X-ray diffraction pattern shown in Table 1 in the detailed description of the invention, copper, cobalt. A method for denitrifying a nitrogen oxide-containing gas, which comprises contacting with a catalyst containing at least one of nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements , and (2) ) The crystalline silicate of (1) above has Si having the same crystal structure on its surface.
A denitration how the nitrogen oxide-containing gas of the above (1), wherein a and a layered composite crystalline silicate is grown from consisting crystalline silicate O.

【0006】本発明の方法においては、本発明で使用す
る触媒を用いることによりNH3 の存在下でNOxを分
解する選択的脱硝作用を有し、さらにアンモニアも無害
なN 2 とH2 Oに分解することができる。この反応は下
式にて表わされる。 4NO+4NH3 +O2 → 4N2 +6H2 O ・・・(1) 2NH3 + 3/2O2 → N2 +3H2 O ・・・(2)
In the method of the present invention,
NH by using a catalyst3NOx in the presence of
It has a selective denitration action, and ammonia is also harmless
N 2And H2It can be decomposed into O. This reaction is below
It is represented by a formula.     4NO + 4NH3+ O2  → 4N2+ 6H2O ... (1)     2 NH3+ 3 / 2O2    → N2+ 3H2O ... (2)

【0007】本発明で使用する触媒は(1)(2)式を
併発して起こすことが可能であるが、(1)式の方が反
応速度が速いため(1)式が完了後、リークNH3
(2)式にて分解除去することができる。すなわちNO
xと反応当量以上のNH3 を添加して高効率脱硝を行っ
た後も本発明で使用する触媒によりリークNH3 を同時
に分解除去できるのである。
The catalyst used in the present invention can be caused by simultaneous generation of the equations (1) and (2). However, since the reaction rate of the equation (1) is faster, the leakage occurs after the equation (1) is completed. NH 3 can be decomposed and removed by the formula (2). That is, NO
It is possible to decompose and remove leaked NH 3 at the same time by the catalyst used in the present invention even after performing high-efficiency denitration by adding x and a reaction equivalent or more of NH 3 .

【0008】本発明で使用する触媒は 脱水された状
態で(1.0±0.6)R2 O・〔aM2 3 ・bAl
2 3 〕・cMeO・ySiO2 (式中、R:アルカリ
金属イオン及び/又は水素イオン、M:周期律表のVIII
族元素、希土類元素、チタン、バナジウム、クロム、ニ
オブ、アンチモン及びガリウムからなる群から選ばれる
1種以上の元素、Me:アルカリ土類元素、a+b=
1.0、a>0、b≧0、c>0、y/c>12、y>
12)の化学組成を有し、かつ下記表1に示されるX線
回折パターンを有する結晶性シリケートに、銅、コバル
ト、ニッケル、鉄、亜鉛、マンガン、クロム、アルカリ
土類元素及び希土類元素のうち少なくとも1種以上を含
有させてなる触媒又は 上記の結晶性シリケートが、
その表面に同一結晶構造を有するSiとOよりなる結晶
性シリケートを成長させた層状複合結晶性シリケートで
ある上記の触媒である。
The catalyst used in the present invention is (1.0 ± 0.6) R 2 O. [aM 2 O 3 .bAl in a dehydrated state.
2 O 3 ] .cMeO.ySiO 2 (wherein R: alkali metal ion and / or hydrogen ion, M: VIII of the periodic table)
One or more elements selected from the group consisting of group elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium, Me: alkaline earth element, a + b =
1.0, a> 0 , b ≧ 0, c> 0 , y / c> 12, y>
In the crystalline silicate having the chemical composition of 12) and having the X-ray diffraction pattern shown in Table 1 below, copper, cobalt, nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements A catalyst containing at least one or more of the above-mentioned crystalline silicates,
The catalyst is a layered composite crystalline silicate obtained by growing a crystalline silicate of Si and O having the same crystal structure on its surface.

【0009】[0009]

【表1】 VS:非常に強い (X線源:Cu) S:強い M:中級 W:弱い[Table 1] VS: Very strong (X-ray source: Cu) S: Strong M: Intermediate W: Weak

【0010】この触媒は200〜550℃の温度範囲
で、長時間にわたって劣化することなく、上記(1)
式、(2)式の併発反応を起こさせることが可能であ
り、NOx等の副生成物は全く生じず、分解物は全てN
2 であることを確認している。
This catalyst does not deteriorate over a long period of time in the temperature range of 200 to 550 ° C., and the above (1)
It is possible to cause a simultaneous reaction of the formulas (2), no by-products such as NOx are generated, and all decomposition products are N
It has been confirmed that it is 2.

【0011】本発明の方法で使用する触媒の結晶性シリ
ケートは該シリケートを構成する元素を含む化合物を原
料として、水熱合成法により合成することができる。ま
た、この結晶性シリケートとして予め合成した結晶性シ
リケートを母結晶とし、母結晶の表面にその母結晶と同
一の結晶構造を有するSiとOよりなる結晶性シリケー
トを成長させた層状複合結晶性シリケートを使用しても
よい。この層状複合結晶性シリケートは外表面に成長し
たSiとOよりなる結晶性シリケート(シリカライトと
呼ぶ)の疎水性作用により、H2 Oだけが該結晶性シリ
ケート内部まで浸透しにくくなる。そのためH2 Oの作
用による結晶性シリケート格子中の金属(アルミニウム
等)の脱離が抑制されて、触媒の劣化が抑制される。
The crystalline silicate of the catalyst used in the method of the present invention can be synthesized by a hydrothermal synthesis method using a compound containing an element constituting the silicate as a raw material. Further, a layered composite crystalline silicate in which a crystalline silicate synthesized in advance as the crystalline silicate is used as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the surface of the mother crystal. May be used. This layered composite crystalline silicate has a hydrophobic action of a crystalline silicate (referred to as silicalite) composed of Si and O grown on the outer surface, so that only H 2 O hardly penetrates into the crystalline silicate. Therefore, desorption of metal (aluminum or the like) in the crystalline silicate lattice due to the action of H 2 O is suppressed, and deterioration of the catalyst is suppressed.

【0012】前記結晶性シリケートに含有させる銅、コ
バルト、ニッケル、鉄、亜鉛、マンガン、クロム、アル
カリ土類元素及び希土類元素のうちの金属はイオン交換
法により、これらの金属イオンを含有させるか、または
塩化物、硝酸塩、硫酸塩等の金属塩水溶液を含浸させる
含浸法により含有させることができる。
The metal of copper, cobalt, nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements contained in the crystalline silicate is allowed to contain these metal ions by an ion exchange method, or Alternatively, it can be contained by an impregnation method in which an aqueous solution of a metal salt such as chloride, nitrate or sulfate is impregnated.

【0013】この触媒はウォッシュコート法又はソリッ
ド法にてハニカム化して設置するのが好ましい。特に好
ましい形態としてはハニカム状に成型されたコージェラ
イト等の基材上にコートした形で使用することである。
以下、実施例にて本発明の方法をさらに具体的に説明す
る。
It is preferable that the catalyst is formed into a honeycomb by a wash coat method or a solid method and then installed. As a particularly preferred form, it is used in the form of being coated on a base material such as cordierite formed into a honeycomb shape.
Hereinafter, the method of the present invention will be described more specifically with reference to Examples.

【0014】[0014]

【実施例】【Example】

(実施例1) (触媒の調製1)水ガラス1号(SiO2 :30%)5
616gを水5429gに溶解し、この溶液を溶液Aと
した。一方、水4175gに硫酸アルミニウム718.
9g、塩化第二鉄110g、酢酸カルシウム47.2
g、塩化ナトリウム262g及び濃塩酸2020gを混
合して溶解し、この溶液を溶液Bとした。溶液Aと溶液
Bを一定割合で供給し、沈殿を生成させ、十分攪拌して
pH=8.0のスラリを得た。このスラリを20リット
ルのオートクレーブに仕込み、さらにテトラプロピルア
ンモニウムブロマイドを500g添加し、160℃にて
72時間水熱合成を行い、合成後水洗して乾燥させ、さ
らに500℃、3時間焼成させ結晶性シリケート1を得
た。この結晶性シリケート1は酸化物のモル比で(結晶
水を省く)下記の組成式で表され、結晶構造はX線回折
で前記表1にて表示されるものであった。0.5NaO
2 ・0.5H2 O・〔0.8Al2 3 ・0.2Fe2
3 ・0.25CaO〕・25SiO2
(Example 1) (Preparation of catalyst 1) Water glass No. 1 (SiO 2 : 30%) 5
616 g was dissolved in 5429 g of water, and this solution was designated as solution A. On the other hand, aluminum 718.
9 g, ferric chloride 110 g, calcium acetate 47.2
g, 262 g of sodium chloride and 2020 g of concentrated hydrochloric acid were mixed and dissolved, and this solution was designated as solution B. Solution A and solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20 liter autoclave, 500 g of tetrapropylammonium bromide was further added, and hydrothermal synthesis was performed at 160 ° C for 72 hours, followed by washing with water and drying, and further firing at 500 ° C for 3 hours to crystallize. Obtained silicate 1. This crystalline silicate 1 was represented by the following composition formula in terms of the molar ratio of oxide (excluding the water of crystallization), and the crystal structure was as shown in Table 1 above by X-ray diffraction. 0.5 NaO
2・ 0.5H 2 O ・ [0.8Al 2 O 3・ 0.2Fe 2
O 3 · 0.25CaO] · 25SiO 2

【0015】この結晶性シリケート1を0.04Mの酢
酸銅水溶液(30℃)に浸漬し、24時間攪拌し、水洗
後乾燥し、さらにくり返し、このCuイオン交換を2回
(合計3回)実施し、水洗、乾燥を行い粉末触媒1を得
た。この触媒の組成は1.2CuO・〔0.8Al2
3 ・0.2Fe2 3 ・0.25CaO〕・25SiO
2 であった。
This crystalline silicate 1 was immersed in a 0.04 M aqueous solution of copper acetate (30 ° C.), stirred for 24 hours, washed with water, dried, and then repeated, and this Cu ion exchange was carried out twice (total three times). Then, it was washed with water and dried to obtain a powder catalyst 1. The composition of this catalyst is 1.2CuO. [0.8Al 2 O
3・ 0.2Fe 2 O 3・ 0.25CaO] ・ 25SiO
Was 2 .

【0016】次に、100部の前記粉末触媒1に対し
て、バインダとしてアルミナゾル3部、シリカゾル55
部(SiO2 :20%)及び水200部を加え、充分攪
拌を行いウォッシュコート用スラリとした。次にコージ
ェライト用モノリス基材(400セルの格子目)を上記
スラリに浸漬し、取り出した後余分なスラリを吹きはら
い200℃で乾燥させた。コート量は基材1リットルあ
たり200gを担持させた。このコート物をハニカム触
媒1とする。
Next, with respect to 100 parts of the powder catalyst 1, 3 parts of alumina sol as a binder and 55 parts of silica sol.
Part: The (SiO 2 20%) and 200 parts of water was added, to thereby prepare a slurry for wash-coating performs stirred thoroughly. Next, the monolith substrate for cordierite (lattice of 400 cells) was immersed in the slurry, taken out, and then excess slurry was blown off and dried at 200 ° C. The coating amount was 200 g per liter of the substrate. This coated material is used as a honeycomb catalyst 1.

【0017】(触媒の調製2)触媒の調製1の結晶性シ
リケート1の合成法において、塩化第二鉄の代わりに塩
化コバルト、塩化ルテニウム、塩化ロジウム、塩化ラン
タン、塩化セリウム、塩化チタン、塩化バナジウム、塩
化クロム、塩化アンチモン、塩化ガリウム及び塩化ニオ
ブを各々酸化物換算でFe2 3 と同じモル数だけ添加
した以外は結晶性シリケート1と同様の操作を繰り返し
て結晶性シリケート2〜12を調製した。これらの結晶
性シリケートの結晶構造はX線回折で前記表1に表示さ
れるものであり、その組成は酸化物のモル比(脱水され
た形態)で表わして0.5NaO 2 ・0.5H2
(0.2M2 3 ・0.8Al2 3 ・0.25Ca
O)・25SiO2 であった。ここでMはCo,Ru,
Rh,La,Ce,Ti,V,Cr,Sb,Ga,Nb
である。
(Preparation of catalyst 2) Crystalline catalyst of preparation 1 of catalyst
In the method of synthesizing replicate 1, salt is used instead of ferric chloride.
Cobaltide, ruthenium chloride, rhodium chloride, lanthanum chloride
Tan, cerium chloride, titanium chloride, vanadium chloride, salt
Chromium chloride, antimony chloride, gallium chloride and niobium chloride
Fe in terms of oxide2O3Add the same number of moles as
Repeat the same operation as crystalline silicate 1 except that
To prepare crystalline silicates 2-12. These crystals
The crystalline structure of the crystalline silicate is shown in Table 1 above by X-ray diffraction.
The composition is based on the molar ratio of oxides (dehydrated
0.5NaO 2・ 0.5H2O
(0.2M2O3・ 0.8Al2O3・ 0.25Ca
O) ・ 25SiO2Met. Where M is Co, Ru,
Rh, La, Ce, Ti, V, Cr, Sb, Ga, Nb
Is.

【0018】また、塩化第二鉄または酢酸カルシウムの
代わりに何も添加せず結晶性シリケート1と同様の方法
により、結晶性シリケート13、14を得た。これらの
結晶性シリケート2〜14を触媒の調製1と同様にCu
イオン交換し、粉末触媒2〜14を得た。さらにこの粉
末触媒を触媒の調製1と同様にモノリス基材にコート
し、ハニカム触媒2〜14を得た。なお、ハニカム触媒
13、14は参考例である。
Further, crystalline silicates 13 and 14 were obtained in the same manner as in crystalline silicate 1 without adding anything in place of ferric chloride or calcium acetate. These crystalline silicates 2 to 14 were added to Cu in the same manner as in Catalyst Preparation 1.
Ion exchange was performed to obtain powder catalysts 2 to 14. Further, this powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to obtain honeycomb catalysts 2-14. Note that the honeycomb catalyst
Reference numerals 13 and 14 are reference examples.

【0019】(触媒の調製3)触媒の調製1の結晶性シ
リケート1の合成法において酢酸カルシウムの代わりに
酢酸マグネシウム、酢酸ストロンチウム、酢酸バリウム
を各々酸化物換算でCaOと同じモル数だけ添加した以
外は結晶性シリケート1と同様の操作を繰り返して結晶
性シリケート15〜17を調製した。これらの結晶性シ
リケートの結晶構造はX線回折で前記表1に表示される
ものであり、その組成は酸化物のモル比(脱水された形
態)で表わして0.5Na2 O・0.5H2 O・(0.
2Fe23 ・0.8Al2 3 ・0.25MeO)・
25SiO2 である。ここでMeはMg,Sr,Baで
ある。これらの結晶性シリケート15〜17を触媒の調
製1と同様にCuイオン交換し粉末触媒15〜17を
得、さらにこの粉末触媒を触媒の調製1と同様にモノリ
ス基材にコートしてハニカム触媒15〜17を得た。
(Catalyst Preparation 3) In the method of synthesizing the crystalline silicate 1 of Catalyst Preparation 1, magnesium acetate, strontium acetate, and barium acetate were added instead of calcium acetate in the same mole number as CaO in terms of oxide. The same operation as in crystalline silicate 1 was repeated to prepare crystalline silicates 15 to 17. The crystal structure of these crystalline silicates is shown in Table 1 by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H. 2 O ・ (0.
2Fe 2 O 3 · 0.8Al 2 O 3 · 0.25MeO) ·
25 SiO 2 . Here, Me is Mg, Sr, or Ba. The crystalline silicates 15 to 17 were subjected to Cu ion exchange in the same manner as in Catalyst Preparation 1 to obtain powder catalysts 15 to 17, and the powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to prepare a honeycomb catalyst 15. ~ 17 were obtained.

【0020】(触媒の調製4)触媒の調製1で得られた
結晶性シリケート1を微粉砕し、この結晶性シリケート
1を母結晶として1000gを水2160gに添加し、
さらにコロイダルシリカ(SiO2 :20%)4590
gを添加し、十分攪拌を行い、この溶液を溶液aとし
た。一方、水2008gに水酸化ナトリウム105.8
gを溶解させ溶液bを得た。溶液aを攪拌しながら溶液
bを徐々に滴下し、沈殿を生成させてスラリを得た。こ
のスラリをオートクレーブに入れ、テトラプロピルアン
モニウムブロマイド568gを水2106gに溶解させ
た溶液を添加し、160℃、72時間加熱して水熱合成
を行い(200rpmにて攪拌)、反応後、液を分離し
洗浄して乾燥後、500℃、3時間焼成を行い、シリカ
ライトを表層にコートした層状複合結晶性シリケート1
を得た。
(Catalyst Preparation 4) The crystalline silicate 1 obtained in Catalyst Preparation 1 was finely pulverized, and 1000 g of this crystalline silicate 1 as a mother crystal was added to 2160 g of water,
Further colloidal silica (SiO 2 : 20%) 4590
g was added and sufficiently stirred, and this solution was designated as solution a. Meanwhile, 105.8 sodium hydroxide was added to 2008 g of water.
g was dissolved to obtain a solution b. While stirring the solution a, the solution b was gradually added dropwise to form a precipitate to obtain a slurry. This slurry was placed in an autoclave, a solution of 568 g of tetrapropylammonium bromide dissolved in 2106 g of water was added, and the mixture was heated at 160 ° C. for 72 hours to perform hydrothermal synthesis (stirring at 200 rpm). After the reaction, the liquid was separated. After washing, drying, and baking at 500 ° C. for 3 hours, a layered composite crystalline silicate 1 having silicalite coated on the surface layer 1
Got

【0021】この層状複合結晶性シリケート1を触媒の
調製1と同様にしてCuイオン交換し、粉末触媒18を
得、さらに、この粉末触媒を触媒の調製1と同様にモノ
リス基材にコートしてハニカム触媒18を得た。以上の
ようにして調製したハニカム触媒1〜18を表2にまと
めて示す。
This layered composite crystalline silicate 1 was subjected to Cu ion exchange in the same manner as in catalyst preparation 1 to obtain a powder catalyst 18, and this powder catalyst was coated on a monolith substrate in the same manner as in catalyst preparation 1. A honeycomb catalyst 18 was obtained. Table 2 collectively shows the honeycomb catalysts 1 to 18 prepared as described above.

【0022】[0022]

【表2】 [Table 2]

【0023】(触媒の調製5)触媒の調製1で得た結晶
性シリケート1をそれぞれ0.04Mの濃度に調製した
塩化コバルト水溶液、塩化ニッケル水溶液、塩化第二鉄
水溶液、塩化亜鉛水溶液、塩化マンガン水溶液、硝酸ク
ロム水溶液、塩化カルシウム水溶液、塩化バリウム水溶
液、塩化マグネシウム水溶液、塩化ランタン水溶液、塩
化セリウム水溶液に各々70℃にて浸漬し、触媒の調製
1と同様に金属イオン交換を行い、粉末触媒19〜29
を得た。さらに、この粉末触媒を触媒の調製1と同様に
モノリス基材にコートしてハニカム触媒19〜29を得
た。以上のようにして調製したハニカム触媒19〜29
を表3にまとめて示した。
(Catalyst Preparation 5) The crystalline silicate 1 obtained in Catalyst Preparation 1 was prepared to a concentration of 0.04 M, respectively, and an aqueous solution of cobalt chloride, an aqueous solution of nickel chloride, an aqueous solution of ferric chloride, an aqueous solution of zinc chloride, and manganese chloride were prepared. The catalyst was immersed in an aqueous solution, an aqueous solution of chromium nitrate, an aqueous solution of calcium chloride, an aqueous solution of barium chloride, an aqueous solution of magnesium chloride, an aqueous solution of lanthanum chloride and an aqueous solution of cerium chloride at 70 ° C., and metal ion exchange was performed in the same manner as in Preparation 1 of the catalyst. ~ 29
Got Further, this powder catalyst was coated on a monolith substrate in the same manner as in Catalyst Preparation 1 to obtain honeycomb catalysts 19 to 29. Honeycomb catalysts 19 to 29 prepared as described above
Are summarized in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】(実験例1)ハニカム触媒1〜29を用い
て脱硝試験を実施した。反応管は15mm×15mm×
60mmの大きさで144セルからなるハニカム触媒1
〜29を入れ、次に下記組成を有する窒素酸化物含有ガ
スをSV=16,300h-1、流量554Nm3 /m2
の条件で流し、反応温度300℃及び400℃で脱硝試
験を行った。 〇(ガス組成) NH3 : 120ppm NO : 100ppm CO2 : 7% H2 O : 6% O2 : 14.7% N2 : 残 性能評価は反応初期状態における触媒層後流側のNOx
(・NO+NO2 )及びNH3 の濃度を調べた。
(Experimental Example 1) A denitration test was conducted using honeycomb catalysts 1-29. 15 mm x 15 mm x reaction tube
Honeycomb catalyst 1 consisting of 144 cells with a size of 60 mm
˜29, and then a nitrogen oxide-containing gas having the following composition was added with SV = 16,300 h −1 and a flow rate of 554 Nm 3 / m 2.
Then, a denitration test was conducted at reaction temperatures of 300 ° C and 400 ° C. 〇 (gas composition) NH 3: 120ppm NO: 100ppm CO 2: 7% H 2 O: 6% O 2: 14.7% N 2: the remaining performance evaluation of the catalyst layer downstream side in the initial stage of the reaction state NOx
Examine its concentration of (· NO + NO 2) and NH 3.

【0026】表4の結果から、本発明の方法によりNO
xに対して過剰のNH3 を添加してこれら触媒により9
9%以上の脱硝率が得られ、さらに、リークNH3 はこ
れら触媒によりほとんど完全に分解され高効率脱硝を簡
単に行うことができることを確認した。
From the results in Table 4, NO by the method of the present invention
9 with these catalysts by adding excess NH 3 to x
It was confirmed that a denitration rate of 9% or more was obtained, and that leak NH 3 was almost completely decomposed by these catalysts, and high-efficiency denitration could be easily performed.

【0027】[0027]

【表4】 [Table 4]

【0028】(実験例2) ハニカム触媒1〜29を使用し実験例1と同一の条件に
て長時間通ガスすることにより耐久性評価試験を実施し
た。その結果、前記ガス条件にて300℃で1000時
間供給後においても表4と同様の出口NOx量、出口N
3 量を維持しており、耐久性に優れた触媒であること
が確認された。
(Experimental Example 2) A durability evaluation test was carried out by using honeycomb catalysts 1 to 29 and passing gas under the same conditions as in Experimental Example 1 for a long time. As a result, even after the gas condition was supplied at 300 ° C. for 1000 hours, the same amount of outlet NOx and outlet N as in Table 4 was obtained.
It was confirmed that the amount of H 3 was maintained and the catalyst had excellent durability.

【0029】[0029]

【発明の効果】本発明の方法によれば、NOxを含有す
る排ガスからリークNH3 の恐れがなく、高い効率でN
Oxを分解除去することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, there is no fear of leaking NH 3 from the exhaust gas containing NOx, and the efficiency of N
Ox can be decomposed and removed.

フロントページの続き (56)参考文献 特開 昭59−230642(JP,A) 特開 平5−168941(JP,A) 特開 平5−31369(JP,A)Continued front page       (56) References JP-A-59-230642 (JP, A)                 JP-A-5-168941 (JP, A)                 JP-A-5-31369 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素酸化物含有ガスに、窒素酸化物に対
して反応当量以上のアンモニアを添加し、脱水された状
態で(1±0.6)R2 O・〔aM2 3・bAl2
3 〕・cMeO・ySiO2 (式中、R:アルカリ金属
イオン及び/又は水素イオン、M:周期律表のVIII族元
素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン及びガリウムからなる群から選ばれる1
種以上の元素、Me:アルカリ土類元素、a+b=1.
0、a>0、b≧0、c>0、y/c>12、y>1
2)の化学組成を有し、かつ発明の詳細な説明の項に記
載の表1に示されるX線回折パターンを有する結晶性シ
リケートに、銅、コバルト、ニッケル、鉄、亜鉛、マン
ガン、クロム、アルカリ土類元素及び希土類元素のうち
少なくとも1種以上を含有させてなる触媒と接触させる
ことを特徴とする窒素酸化物含有ガスの脱硝方法。
1. A nitrogen oxide-containing gas to which a reaction equivalent amount or more of ammonia with respect to nitrogen oxides is added, and (1 ± 0.6) R 2 O. [aM 2 O 3 .bAl in a dehydrated state is added. 2 O
3 ] .cMeO.ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is a group VIII element of the periodic table, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium. 1 chosen
More than one element, Me: alkaline earth element, a + b = 1.
0, a> 0 , b ≧ 0, c> 0 , y / c> 12, y> 1
The crystalline silicate having the chemical composition of 2) and the X-ray diffraction pattern shown in Table 1 described in the detailed description of the invention is added to copper, cobalt, nickel, iron, zinc, manganese, chromium, A method for denitrifying a nitrogen oxide-containing gas, which comprises bringing the catalyst into contact with a catalyst containing at least one or more of an alkaline earth element and a rare earth element.
【請求項2】 請求項1の結晶性シリケートが、その表
面に同一結晶構造を有するSiとOよりなる結晶性シリ
ケートを成長させた層状複合結晶性シリケートであるこ
とを特徴とする請求項1記載の窒素酸化物含有ガスの脱
硝方法。
2. The crystalline silicate of claim 1 is a layered composite crystalline silicate obtained by growing a crystalline silicate of Si and O having the same crystal structure on the surface thereof. Method for denitrifying nitrogen oxide-containing gas of 1.
JP21855693A 1993-09-02 1993-09-02 DeNOx method Expired - Lifetime JP3453172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21855693A JP3453172B2 (en) 1993-09-02 1993-09-02 DeNOx method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21855693A JP3453172B2 (en) 1993-09-02 1993-09-02 DeNOx method

Publications (2)

Publication Number Publication Date
JPH0768129A JPH0768129A (en) 1995-03-14
JP3453172B2 true JP3453172B2 (en) 2003-10-06

Family

ID=16721797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21855693A Expired - Lifetime JP3453172B2 (en) 1993-09-02 1993-09-02 DeNOx method

Country Status (1)

Country Link
JP (1) JP3453172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870828B (en) * 2022-05-20 2023-04-25 安徽中环环保科技股份有限公司 Honeycomb stone cerium-loaded composite denitration agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0768129A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US5679313A (en) Ammonia decomposition catalysts
EP0522490B1 (en) Catalyst and method for exhaust gas purification
US5728356A (en) Methods of denitrating exhaust gases
JP2000093749A (en) Gas denitration process
JP3132959B2 (en) Ammonia decomposition catalyst
JP3132960B2 (en) Ammonia decomposition catalyst
JP3229136B2 (en) Ammonia decomposition method
JP3453172B2 (en) DeNOx method
JP3332652B2 (en) Ammonia decomposition removal method
JP3241166B2 (en) Ammonia decomposition method
JP3229117B2 (en) Ammonia decomposition method
JPH08266870A (en) Denitrifying method
JP3129346B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3462580B2 (en) Exhaust gas denitration method
JP3241216B2 (en) Exhaust gas denitration treatment method
JP3254040B2 (en) DeNOx treatment method
JPH07275658A (en) Ammonia adsorbing and decomposing method
JP3388941B2 (en) Exhaust gas purification method
JP3015568B2 (en) Exhaust gas treatment catalyst
JP3300721B2 (en) Exhaust gas purification catalyst
JP3495542B2 (en) Sulfur trioxide reduction method
JP3015524B2 (en) Exhaust gas treatment catalyst
JP2999039B2 (en) Exhaust gas purification catalyst
JP3322520B2 (en) Exhaust gas denitration catalyst
JP3129350B2 (en) Exhaust gas purification catalyst, production method thereof and exhaust gas purification method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10