JPH08309152A - Purification method for exhaust gas - Google Patents

Purification method for exhaust gas

Info

Publication number
JPH08309152A
JPH08309152A JP7120998A JP12099895A JPH08309152A JP H08309152 A JPH08309152 A JP H08309152A JP 7120998 A JP7120998 A JP 7120998A JP 12099895 A JP12099895 A JP 12099895A JP H08309152 A JPH08309152 A JP H08309152A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst layer
catalyst
exhaust gas
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7120998A
Other languages
Japanese (ja)
Other versions
JP3388941B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12099895A priority Critical patent/JP3388941B2/en
Publication of JPH08309152A publication Critical patent/JPH08309152A/en
Application granted granted Critical
Publication of JP3388941B2 publication Critical patent/JP3388941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To perform denitration at high efficiency while minimizing the discharge of unreacted ammonia by placing a carbon monoxide removal catalyst layer on the upper step side of an ammonia addition apparatus and the first denitration catalyst layer, an ammonia decomposition catalyst layer, and the second denitration catalyst layer in sequence from above on the lower step side and adding an equivalent or more amount of ammonia to nitrogen oxides in exhaust gas. CONSTITUTION: A carbon monoxide removal catalyst layer 1 is placed on the upper step side of an ammonia addition apparatus 2, and carbon monoxide is removed by catalytic combustion. The first denitration catalyst layer 3 is placed downstream from the apparatus 2, an ammonia decomposition catalyst layer 4 is placed downstream from the layer 3, and the second denitration catalyst layer 5 is placed downstream from the layer 4. An equivalent or more amount of ammonia to NOX is added from an ammonia addition apparatus to the upstream side of the first denitration catalyst layer 3, and about 80% or more of the denitration is conducted in the first denitration catalyst layer 3. Unreacted ammonia flowing out is decomposed in a ammonia decomposition apparatus 4 and is led downstream into the second denitration catalyst layer 5. An ammonia decomposition catalyst is used in which Pd and/or Pt as active metals and metal oxide are supported on crystalline silicate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
(NOx)、一酸化炭素(CO)を高い効率にて除去す
ることのできる排ガスの浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying exhaust gas capable of removing nitrogen oxides (NOx) and carbon monoxide (CO) in exhaust gas with high efficiency.

【0002】[0002]

【従来の技術】燃焼排ガスに含まれるNOxを除去する
方法としては、NH3 を還元剤とした選択的接触還元法
が火力発電所を中心に広く実用化されている。触媒とし
ては、バナジウム、タングステン、モリブデンを活性成
分とした酸化チタン系の触媒が主に用いられている。
2. Description of the Related Art As a method for removing NOx contained in combustion exhaust gas, a selective catalytic reduction method using NH 3 as a reducing agent has been widely put to practical use mainly in thermal power plants. As the catalyst, a titanium oxide-based catalyst containing vanadium, tungsten, and molybdenum as active components is mainly used.

【0003】[0003]

【発明が解決しようとする課題】NOx排出規制は近年
益々厳しくなる傾向にあり、とくに大都市部では排出総
量規制が実施されており、都市部に隣接した発電所では
電力需要の増大に伴う発電設備の増設にあたって、より
高効率な脱硝が要求されている。さらに、発電所から排
出される一酸化炭素の排出規制も厳しくなっている。従
来の脱硝法はNH 3 を還元剤とした接触還元法であり、
4NO+4NH3 +O2 →4N2 +6H2Oの反応式に
よってNOxが触媒上でN2 に分解される。この反応式
から考えると、理論的にはNOxと等モルのNH3 を添
加すればNOxが100%除去できることになる。しか
し、実際には、排ガス中でNH3 とNOxを完全に均一
混合することは不可能であり、高効率な脱硝を行うため
にはNH3 をNOxより過剰に添加する必要がある。そ
のため未反応NH3 がかなりな割合で排出される欠点が
あった。
In recent years, NOx emission regulations have been adopted.
It tends to become more and more severe, especially in large cities.
The amount of electricity is regulated, and at power plants adjacent to urban areas
More expansion of power generation equipment as power demand increases
Highly efficient denitration is required. In addition, the
The emission control of carbon monoxide emitted is also becoming strict. Obedience
The traditional denitration method is NH 3Is a catalytic reduction method using
4NO + 4NH3+ O2→ 4N2+ 6H2O reaction formula
Therefore, NOx is N on the catalyst.2Is decomposed into. This reaction formula
From a theoretical point of view, theoretically, NH is equimolar to NOx.3With
If added, 100% of NOx can be removed. Only
However, in reality, NH in the exhaust gas3And NOx are completely uniform
It is impossible to mix, and to perform highly efficient denitration
NH3Needs to be added in excess of NOx. So
Unreacted due to NH3Is discharged in a considerable proportion
there were.

【0004】これまで、本発明者らは未反応NH3 の排
出を防ぐため、アンモニア分解触媒を開発し(特願平5
−127126、特願平6−70486等)、さらに、
後方に仕上げ脱硝触媒を設置し、高効率脱硝を行うプロ
セスを提案した(特願平6−176494)。しかし、
排ガス中に一酸化炭素が共存する場合にアンモニア分解
触媒のNH3 分解率、窒素選択率に変化が生じる不具合
が生じた。
To date, the present inventors have developed an ammonia decomposition catalyst to prevent the emission of unreacted NH 3 (Japanese Patent Application No.
-127126, Japanese Patent Application No. 6-70486, etc.)
We proposed a process to install high-efficiency denitration by installing a finishing denitration catalyst in the rear (Japanese Patent Application No. 6-176494). But,
When carbon monoxide coexists in the exhaust gas, the NH 3 decomposition rate and the nitrogen selectivity of the ammonia decomposition catalyst change.

【0005】本発明は上記技術水準に鑑み、従来技術の
欠点を解消し、未反応NH3 の大気への排出を極力抑制
して高効率な脱硝を行うことができ、さらに、一酸化炭
素も除去できる排ガスの浄化方法を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention solves the drawbacks of the prior art and enables highly efficient denitration by suppressing the discharge of unreacted NH 3 to the atmosphere as much as possible, and further carbon monoxide It is intended to provide a method of purifying exhaust gas that can be removed.

【0006】[0006]

【課題を解決するための手段】本発明は、(1)窒素酸
化物、一酸化炭素を含有する排ガスを触媒を充填した反
応器に導いて、アンモニアを還元剤として接触的に窒素
酸化物を除去する方法において、アンモニア添加装置の
上段側に一酸化炭素除去触媒層を、アンモニア添加装置
の下段側には上流側から第1脱硝触媒層を、その後流に
アンモニアを窒素及び窒素酸化物に酸化分解する機能を
有するアンモニア分解触媒層を、さらにその後流に第2
脱硝触媒層を設置し、アンモニア添加装置から添加され
るアンモニアを入口排ガス中の窒素酸化物の反応当量以
上に添加することを特徴とする排ガスの浄化方法、
(2)アンモニア分解触媒が脱水された状態で、(1.
0±0.6)R2 O・〔aM2 3 ・bAl2 3 〕・
cMeO・ySiO2 (R:アルカリ金属イオン及び/
又は水素イオン、M:周期律表のVIII族元素、希土類元
素、チタン、バナジウム、クロム、ニオブ、アンチモン
及びガリウムからなる群から選ばれる1種以上の元素、
Me:アルカリ土類金属元素、a+b=1、a≧0、b
≧0、c≧0、y/c>12、y>12)の化学式を有
し、かつ下記表1に示されるX線回折パターンを有する
結晶性シリケートを担体とし、活性金属として白金及び
/又はパラジウムを含有する触媒であることを特徴とす
る上記(1)記載の排ガスの浄化方法、及び(3)一酸
化炭素除去触媒が多孔質耐熱性担体に、活性金属として
Pt及び/又はPdを0.001〜10wt%担持した
触媒であることを特徴とする上記(1)又は(2)記載
の排ガスの浄化方法である。
According to the present invention, (1) an exhaust gas containing nitrogen oxides and carbon monoxide is introduced into a reactor filled with a catalyst to catalytically remove nitrogen oxides using ammonia as a reducing agent. In the removal method, the carbon monoxide removal catalyst layer is on the upper side of the ammonia addition device, the first denitration catalyst layer is on the lower side of the ammonia addition device from the upstream side, and ammonia is oxidized to nitrogen and nitrogen oxides in the subsequent flow. An ammonia decomposing catalyst layer having a function of decomposing is further provided in the subsequent stream to the second
A denitration catalyst layer is installed, and ammonia added from an ammonia addition device is added to the exhaust gas at a reaction equivalent amount or more of nitrogen oxides in the exhaust gas at the inlet, a method for purifying exhaust gas,
(2) When the ammonia decomposition catalyst is dehydrated, (1.
0 ± 0.6) R 2 O ・ [aM 2 O 3・ bAl 2 O 3 ] ・
cMeO.ySiO 2 (R: alkali metal ion and /
Or hydrogen ion, M: at least one element selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium,
Me: alkaline earth metal element, a + b = 1, a ≧ 0, b
≧ 0, c ≧ 0, y / c> 12, y> 12) and a crystalline silicate having an X-ray diffraction pattern shown in Table 1 below as a carrier, and platinum and / or an active metal. The method for purifying exhaust gas according to the above (1), which is a catalyst containing palladium, and (3) the carbon monoxide removing catalyst has Pt and / or Pd as an active metal of 0 in the porous heat-resistant carrier. The exhaust gas purifying method as described in (1) or (2) above, wherein the catalyst is supported by 0.001 to 10 wt%.

【0007】[0007]

【表1】 VS:非常に強い S:強い M:中級 W:弱い (X線源:Cu)[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak (X-ray source: Cu)

【0008】[0008]

【作用】以下、本発明の一態様を図1によって説明し、
その作用を明らかにする。NH 3 添加装置2の上段側に
一酸化炭素除去触媒層1を設置し、触媒燃焼により一酸
化炭素を燃焼除去する。NH3 添加装置2の下段側には
第1脱硝触媒層3を、その後流にNH3 分解触媒層4
を、さらに、その後流に第2脱硝触媒層5を設置し、第
1脱硝触媒層3の上流にNOxに対して反応等量以上の
NH3 をNH3 添加装置2より添加して、第1脱硝触媒
層3で80%以上の脱硝を行い、第1脱硝触媒層3から
流出する未反応NH3 をNH3 分解触媒層4によって分
解させて下流の第2脱硝触媒層入口のNOx、NH3
度を調整して、第2脱硝触媒層5出口でのNOxを0.
1ppm以下、NH3 を5ppm以下レベルにする。上
流及び下流の第1及び第2脱硝触媒層3,5にはV,
W,Moなどを活性成分としたTiO2 系の従来実用化
されている触媒を用いることができる。
Hereinafter, one embodiment of the present invention will be described with reference to FIG.
The action is clarified. NH 3On the upper side of the addition device 2
A carbon monoxide removal catalyst layer 1 is installed, and monoacid is generated by catalytic combustion
Combustion and removal of carbon dioxide. NH3On the lower side of the adding device 2,
The first denitration catalyst layer 3 is fed with NH3Decomposition catalyst layer 4
Further, the second denitration catalyst layer 5 is installed in the subsequent flow,
1 upstream of the denitration catalyst layer 3 the reaction equivalent amount or more for NOx
NH3To NH3The first denitration catalyst added by the addition device 2
80% or more of denitration is performed in layer 3 and the first denitration catalyst layer 3
Unreacted NH flowing out3To NH3By the decomposition catalyst layer 4
NOx, NH at the downstream second NOx removal catalyst layer inlet3Dark
The NOx at the outlet of the second denitration catalyst layer 5 is adjusted to 0.
1ppm or less, NH3To a level of 5 ppm or less. Up
V and V are applied to the first and second denitration catalyst layers 3 and 5 in the flow and the downstream.
TiO with W and Mo as active ingredients2Conventional application of system
Any known catalyst can be used.

【0009】本発明方法では一酸化炭素を触媒により燃
焼除去するため、NH3 分解触媒の性能に変化をもたら
すことはなく、さらに、有害な一酸化炭素の排出も抑制
できることになる。
In the method of the present invention, since carbon monoxide is burned and removed by a catalyst, the performance of the NH 3 decomposition catalyst is not changed, and furthermore, harmful carbon monoxide emission can be suppressed.

【0010】上記本発明の態様において、NH3 分解触
媒層に使用される触媒としては下記に定義する窒素選択
率%が60%以上のものであることが好ましい。
In the above embodiment of the present invention, the catalyst used in the NH 3 decomposition catalyst layer preferably has a nitrogen selectivity% as defined below of 60% or more.

【0011】[0011]

【数1】 窒素選択率(%)=〔1−{アンモニア分解触媒出口NOx(ppm) −アンモニア分解触媒入口NOx(ppm)}/ {アンモニア分解触媒入口NH3 (ppm) −アンモニア分解触媒出口NH3 (ppm)}〕 すなわち、上記で定義するアンモニア分解触媒の窒素選
択率が小さいと、NH 3 分解触媒層出口でNH3 >NO
xにコントロールしうるプラントの運転範囲が狭くな
り、幅広い処理ガス量、温度条件でコントロールするこ
とが必要となるため、窒素選択率は少なくとも60%以
上であることが好ましい。
## EQU1 ## Nitrogen selectivity (%) = [1- {ammonia decomposition catalyst outlet NOx (ppm) -ammonia decomposition catalyst inlet NOx (ppm)} / {ammonia decomposition catalyst inlet NH3(Ppm) -Ammonia decomposition catalyst outlet NH3(Ppm)} That is, the nitrogen selection of the ammonia decomposition catalyst defined above.
If the selection rate is small, NH 3NH at the outlet of the decomposition catalyst layer3> NO
The operating range of the plant that can be controlled to x is narrow
Control over a wide range of processing gas amounts and temperature conditions.
Therefore, the nitrogen selectivity should be at least 60% or less.
The above is preferable.

【0012】上記の窒素選択率を有するNH3 分解触媒
としては、脱水された状態で、(1.0±0.6)R2
O・〔aM2 3 ・bAl2 3 〕・cMeO・ySi
2(R:アルカリ金属イオン及び/又は水素イオン、
M:周期律表のVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン及びガリウムから
なる群から選ばれる1種以上の元素、Me:アルカリ土
類金属元素、a+b=1、a≧0、b≧0、c≧0、y
/c>12、y>12)の化学式を有し、かつ前記表1
に示されるX線回折パターンを有する結晶性シリケート
を担体とし、活性金属として白金及び/又はパラジウム
を含有する触媒が好ましい。
The NH 3 decomposition catalyst having the above-mentioned nitrogen selectivity is (1.0 ± 0.6) R 2 in the dehydrated state.
O ・ [aM 2 O 3・ bAl 2 O 3 ] ・ cMeO ・ ySi
O 2 (R: alkali metal ion and / or hydrogen ion,
M: one or more elements selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium, Me: alkaline earth metal element, a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y
/ C> 12, y> 12), and the above Table 1
A catalyst having a crystalline silicate having an X-ray diffraction pattern shown in (3) as a carrier and containing platinum and / or palladium as an active metal is preferable.

【0013】またアンモニア添加装置に上段に設置する
一酸化炭素除去触媒は、アルミナ等の多孔質耐熱性担体
に活性金属として白金又はパラジウムを1種含有した触
媒が好ましい。多孔質耐熱性担体としてはγ−Al2
3 、TiO2 、SiO2 、ZrO2 、Fe2 3 、Si
2 ・Al2 3 などを使用することができ、担持され
るPt及び/又はPdの量は0.001〜10wt%の
範囲が好ましい。
The carbon monoxide removal catalyst installed in the upper stage of the ammonia addition device is preferably a catalyst containing one kind of platinum or palladium as an active metal in a porous heat-resistant carrier such as alumina. Γ-Al 2 O as a porous heat-resistant carrier
3 , TiO 2 , SiO 2 , ZrO 2 , Fe 2 O 3 , Si
O 2 · Al 2 O 3 or the like can be used, and the amount of Pt and / or Pd supported is preferably in the range of 0.001 to 10 wt%.

【0014】一酸化炭素除去触媒層で一酸化炭素を燃焼
除去した窒素酸化物を含んだ排ガスは過剰のNH3 をN
3 添加装置で供給され、第1脱硝触媒層で脱硝されて
NOx:0〜10ppm、NH3 :10〜30ppmと
なり、この排ガスはNH3 分解触媒層でNH3 が低減さ
れてNOx、NH3 濃度が調整され、第2脱硝触媒層に
て排ガス中のNOx濃度:0.1ppm以下、NH3
度:5ppm以下にすることができる。
Exhaust gas containing nitrogen oxides, in which carbon monoxide has been burned and removed in the carbon monoxide removal catalyst layer, contains excess NH 3
It is supplied by the H 3 addition device and is denitrated in the first denitration catalyst layer to NOx: 0 to 10 ppm and NH 3 : 10 to 30 ppm. This exhaust gas is reduced in NH 3 in the NH 3 decomposition catalyst layer and NOx, NH 3 The concentration is adjusted so that the NOx concentration in the exhaust gas is 0.1 ppm or less and the NH 3 concentration is 5 ppm or less in the second denitration catalyst layer.

【0015】[0015]

【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。
EXAMPLES The method of the present invention will be described in more detail below with reference to examples.

【0016】(例1) (脱硝触媒の調製):チタニア(TiO2 )担体に五酸
化バナジウム(V2 5 )を4wt%、三酸化タングス
テン(WO3 )を8wt%担持させた粉末触媒を、3.
3mmピッチ、壁厚0.5mmの格子状ハニカム形状に
成型し、この触媒を脱硝触媒1とした。
Example 1 (Preparation of denitration catalyst): A powder catalyst in which 4 wt% of vanadium pentoxide (V 2 O 5 ) and 8 wt% of tungsten trioxide (WO 3 ) were carried on a titania (TiO 2 ) carrier. 3.
This catalyst was formed into a lattice honeycomb shape having a pitch of 3 mm and a wall thickness of 0.5 mm, and this catalyst was used as a denitration catalyst 1.

【0017】(NH3 分解触媒の調製):水ガラス1号
(SiO2 :30%):5616gを水:5429gに
溶解し、この溶液を溶液Aとした。一方、水:4175
gに硫酸アルミニウム:718.9g、塩化第二鉄:1
10g、酢酸カルシウム:47.2g、塩化ナトリウ
ム:262g及び濃塩酸:2020gを混合して溶解
し、この溶液を溶液Bとした。溶液Aと溶液Bを一定割
合で供給し、沈殿を生成させ、十分攪拌してpH=8.
0のスラリを得た。このスラリを20リットルのオート
クレーブに仕込み、さらにテトラプロピルアンモニウム
ブロマイドを500g添加し、160℃にて72時間水
熱合成を行い、合成後水洗して乾燥させ、さらに500
℃、3時間焼成させ結晶性シリケート1を得た。この結
晶性シリケート1は酸化物のモル比で(結晶水を省く)
0.5Na2 O・0.5H2 O・〔0.8Al2 3
0.2Fe 2 3 ・0.25CaO〕・25SiO2
組成式で表され、結晶構造はX線回折で前記表1にて表
示されるものであった。上記結晶性シリケート1を4N
のNH4 Cl水溶液40℃に3時間攪拌してNH4 イオ
ン交換を実施した。イオン交換後洗浄して100℃、2
4時間乾燥させた後、400℃、3時間焼成してH型の
結晶性シリケート1を得た。
(NH3Preparation of decomposition catalyst): Water glass No. 1
(SiO2: 30%): 5616 g to water: 5429 g
It was dissolved and this solution was designated as solution A. On the other hand, water: 4175
Aluminum sulfate: 718.9 g, ferric chloride: 1
10 g, calcium acetate: 47.2 g, sodium chloride
Mu: 262g and concentrated hydrochloric acid: 2020g are mixed and dissolved
This solution was designated as solution B. Solution A and solution B are split
Are supplied together to form a precipitate, and the mixture is sufficiently stirred to pH = 8.
I got a zero slurry. 20 liter auto of this slurry
Charge into the clave, and then tetrapropylammonium
Add 500 g of bromide and water at 160 ° C for 72 hours
Thermal synthesis is performed, and after synthesis, it is washed with water and dried, and further 500
The crystalline silicate 1 was obtained by firing at ℃ for 3 hours. This result
Crystalline silicate 1 is the molar ratio of oxides (excluding water of crystallization)
0.5Na2O ・ 0.5H2O ・ [0.8Al2O3
0.2Fe 2O3・ 0.25CaO] ・ 25SiO2of
It is represented by the composition formula, and the crystal structure is shown in Table 1 by X-ray diffraction.
It was what was shown. 4N of the above crystalline silicate 1
NHFourCl aqueous solution was stirred at 40 ° C. for 3 hours and NHFourIo
Exchange was performed. Washing after ion exchange at 100 ℃, 2
After drying for 4 hours, the H-type
A crystalline silicate 1 was obtained.

【0018】このH型結晶性シリケート1に、塩化白金
酸水溶液又は硝酸パラジウム水溶液を含浸し、蒸発乾固
後、500℃×3時間焼成し、粉末触媒を得た。得られ
た粉末:100gに対してバインダとしてアルミナゾ
ル:3g、シリカゾル:55g(SiO2 :20wt
%)及び水:200gを加え、スラリとし、コージェラ
イト用モノリス基材(30セル平方インチ当りの格子
状)にウォッシュコートして、基材表面積当り200g
/m2 のコート量に担持した。得られた触媒をNH3
解触媒1〜4とした。その性状を下記表2に示す。
The H-type crystalline silicate 1 was impregnated with an aqueous solution of chloroplatinic acid or an aqueous solution of palladium nitrate, evaporated to dryness, and then calcined at 500 ° C. for 3 hours to obtain a powder catalyst. Alumina sol as a binder: 3 g, silica sol: 55 g (SiO 2 : 20 wt) with respect to the obtained powder: 100 g
%) And water: 200 g to make a slurry, and wash-coat on a monolith substrate for cordierite (lattice shape per 30 cells square inch) to obtain 200 g per substrate surface area.
The coating amount was / m 2 . The obtained catalysts were designated as NH 3 decomposition catalysts 1 to 4. The properties are shown in Table 2 below.

【0019】[0019]

【表2】 [Table 2]

【0020】上記NH3 分解触媒の調製法において、塩
化第二鉄の代りに塩化コバルト:112g、塩化チタ
ン:105g、塩化バナジウム:10g、塩化クロム:
107g、塩化ニオブ:135g、塩化アンチモン:1
55g、塩化ガリウム:119gを用いる以外には上記
と同様な方法でH型結晶性シリケート2,3,4,5,
6,7及び8を調製し、これら各H型結晶性シリケート
に塩化白金酸水溶液を用いて、上記調製法と同様な操作
で各H型結晶性シリケートに白金を担持し、上記調製法
と同様に操作してコージェライト用モノリス基材にウォ
ッシュコートして基材表面積当り200g/m2 のコー
ト量に担持した。得られた触媒をNH3 分解触媒5〜1
1とした。その性状を下記表3に示す。
In the above method for preparing the NH 3 decomposition catalyst, cobalt chloride: 112 g, titanium chloride: 105 g, vanadium chloride: 10 g, chromium chloride: instead of ferric chloride.
107 g, niobium chloride: 135 g, antimony chloride: 1
H-type crystalline silicate 2,3,4,5, by the same method as above except that 55 g and gallium chloride: 119 g are used.
6, 7, and 8 were prepared, and platinum was loaded on each H-type crystalline silicate by the same operation as the above-mentioned preparation method using an aqueous chloroplatinic acid solution for each of these H-type crystalline silicates. The monolith substrate for cordierite was wash-coated in the same manner as above to carry a coat amount of 200 g / m 2 per substrate surface area. The obtained catalyst is used as an NH 3 decomposition catalyst 5-1.
It was set to 1. The properties are shown in Table 3 below.

【0021】[0021]

【表3】 [Table 3]

【0022】(一酸化炭素除去触媒の調製)γ−アルミ
ナ(γ−Al2 3 )担体に塩化白金酸水溶液をPtに
して3wt%含浸法にて担持させ、100℃で乾燥し、
500℃で5時間焼成した粉末触媒:100gに対し
て、バインダとしてシリカゾル:55g(SiO2 :2
0wt%)及び水:200gを加えてスラリとし、コー
ジェライト用モノリス基材(30セル平方インチ当りの
格子状)にウォッシュコートして、基材表面積あたり1
50g/m2 のコート量を担持した。この触媒を一酸化
炭素除去触媒1とした。
(Preparation of carbon monoxide removal catalyst) A γ-alumina (γ-Al 2 O 3 ) carrier was supported by a 3 wt% impregnation method using chloroplatinic acid aqueous solution as Pt, and dried at 100 ° C.
To 100 g of powder catalyst calcined at 500 ° C. for 5 hours, 55 g of silica sol (SiO 2 : 2) as a binder
0 wt%) and water: 200 g to make a slurry, and wash coat it on a monolith substrate for cordierite (lattice shape per 30 cell square inch) to give 1 per substrate surface area.
A coated amount of 50 g / m 2 was carried. This catalyst was designated as carbon monoxide removal catalyst 1.

【0023】(脱硝反応試験)40mm×50mm×5
0mmLの前記一酸化炭素除去触媒1を1本、40mm
×50mm×400mmLの前記脱硝触媒1本、40m
m×50mm×150mmLの前記NH3 分解触媒1
本、及び前記脱硝触媒3本を直列に配置し、下記表4に
示す条件にてテストした。Run1〜11のテスト結果
を後記表5に示す。
(Denitration reaction test) 40 mm × 50 mm × 5
One 0 mmL of the carbon monoxide removing catalyst 1, 40 mm
X 50 mm x 400 mmL of the above denitration catalyst, 40 m
m × 50 mm × 150 mmL of the NH 3 decomposition catalyst 1
And three denitration catalysts were placed in series and tested under the conditions shown in Table 4 below. The test results of Runs 1 to 11 are shown in Table 5 below.

【0024】[0024]

【表4】 [Table 4]

【0025】(比較例1)例1のRun1のシステムに
おいて一酸化炭素除去触媒を省略したシステム(=Ru
n12)の評価結果を表5に併せて示す。
Comparative Example 1 A system (= Ru) in which the carbon monoxide removing catalyst was omitted from the Run 1 system of Example 1.
The evaluation results of n12) are also shown in Table 5.

【0026】表5に示す結果より、一酸化炭素除去触媒
を設置したRun1〜11での第2段脱硝触媒出口で
は、全てNOx<0.1ppm、NH3 <5ppmであ
るのに対して、一酸化炭素除去触媒を省略したRun1
2では、NH3 分解触媒の出口NH3 濃度は低減しNH
3 濃度がNOx濃度より低いため、第2段脱硝触媒出口
にてNOx>0.1ppmとなり目標を満たすことがで
きなかった。
[0026] From the results shown in Table 5, in the second stage denitration catalyst outlet at Run1~11 which established the carbon monoxide removal catalyst, any NOx <0.1 ppm, whereas a NH 3 <5 ppm, one Run1 without carbon oxide removal catalyst
At 2, the NH 3 concentration at the outlet of the NH 3 decomposition catalyst decreases and NH 3
Since the 3 concentration was lower than the NOx concentration, NOx> 0.1 ppm at the outlet of the second stage denitration catalyst, and the target could not be satisfied.

【0027】[0027]

【表5】 [Table 5]

【0028】なお、一酸化炭素除去触媒の担体として、
γ−Al2 3 に代えTiO2 、SiO2 、ZrO2
Fe2 3 、SiO2 ・Al2 3 を使用しても同様の
効果が得られた。
As a carrier for the carbon monoxide removing catalyst,
Instead of γ-Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 ,
The same effect was obtained by using Fe 2 O 3 and SiO 2 .Al 2 O 3 .

【0029】[0029]

【発明の効果】本発明の排ガスの浄化方法によれば、還
元剤であるNH3 の排出を低いレベルに維持して、極め
て高い効率で窒素酸化物、一酸化窒素を除去できる。
According to the method for purifying exhaust gas of the present invention, the emission of NH 3 as a reducing agent can be maintained at a low level, and nitrogen oxides and nitric oxide can be removed with extremely high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排ガスの浄化方法の説明図。FIG. 1 is an explanatory view of an exhaust gas purification method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/068 ZAB B01D 53/36 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 29/068 ZAB B01D 53/36 ZAB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物、一酸化炭素を含有する排ガ
スを触媒を充填した反応器に導いて、アンモニアを還元
剤として接触的に窒素酸化物を除去する方法において、
アンモニア添加装置の上段側に一酸化炭素除去触媒層
を、アンモニア添加装置の下段側には上流側から第1脱
硝触媒層を、その後流にアンモニアを窒素及び窒素酸化
物に酸化分解する機能を有するアンモニア分解触媒層
を、さらにその後流に第2脱硝触媒層を設置し、アンモ
ニア添加装置から添加されるアンモニアを入口排ガス中
の窒素酸化物の反応当量以上に添加することを特徴とす
る排ガスの浄化方法。
1. A method for catalytically removing nitrogen oxides by introducing an exhaust gas containing nitrogen oxides and carbon monoxide into a reactor filled with a catalyst and using ammonia as a reducing agent.
It has a function of decomposing a carbon monoxide removal catalyst layer on the upper side of the ammonia addition device, a first denitration catalyst layer on the lower side of the ammonia addition device from the upstream side, and oxidatively decomposing ammonia into nitrogen and nitrogen oxides in the subsequent flow. Purification of exhaust gas, characterized in that an ammonia decomposition catalyst layer and a second denitration catalyst layer are installed in the subsequent flow, and ammonia added from the ammonia addition device is added at a reaction equivalent amount or more of nitrogen oxides in the exhaust gas at the inlet. Method.
【請求項2】 アンモニア分解触媒が脱水された状態
で、(1.0±0.6)R2 O・〔aM2 3 ・bAl
2 3 〕・cMeO・ySiO2 (R:アルカリ金属イ
オン及び/又は水素イオン、M:周期律表のVIII族元
素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン及びガリウムからなる群から選ばれる1
種以上の元素、Me:アルカリ土類金属元素、a+b=
1、a≧0、b≧0、c≧0、y/c>12、y>1
2)の化学式を有し、かつ発明の詳細な説明の項に記載
の表1に示されるX線回折パターンを有する結晶性シリ
ケートを担体とし、活性金属として白金及び/又はパラ
ジウムを含有する触媒であることを特徴とする請求項1
記載の排ガスの浄化方法。
2. The (1.0 ± 0.6) R 2 O. [aM 2 O 3 .bAl in the dehydrated state of the ammonia decomposition catalyst.
2 O 3 ] .cMeO.ySiO 2 (R: alkali metal ion and / or hydrogen ion, M: selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium 1
More than one element, Me: alkaline earth metal element, a + b =
1, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12, y> 1
A catalyst containing, as a carrier, a crystalline silicate having the chemical formula of 2) and having the X-ray diffraction pattern shown in Table 1 described in the detailed description of the invention and containing platinum and / or palladium as an active metal. Claim 1 characterized by the above.
Exhaust gas purification method described.
【請求項3】 一酸化炭素除去触媒が多孔質耐熱性担体
に、活性金属としてPt及び/又はPdを0.001〜
10wt%担持した触媒であることを特徴とする請求項
1又は2記載の排ガスの浄化方法。
3. A carbon monoxide-removing catalyst containing Pt and / or Pd as an active metal in an amount of 0.001 to 0.001 on a porous heat-resistant carrier.
The exhaust gas purification method according to claim 1 or 2, wherein the catalyst is 10 wt% supported.
JP12099895A 1995-05-19 1995-05-19 Exhaust gas purification method Expired - Lifetime JP3388941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12099895A JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12099895A JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH08309152A true JPH08309152A (en) 1996-11-26
JP3388941B2 JP3388941B2 (en) 2003-03-24

Family

ID=14800256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12099895A Expired - Lifetime JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3388941B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006702A1 (en) * 2004-07-15 2006-01-19 Nikki-Universal Co., Ltd. Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas
JP2010179296A (en) * 2009-02-04 2010-08-19 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, method for treating exhaust gas, and exhaust gas treatment apparatus
JP2013173147A (en) * 2005-02-16 2013-09-05 Basf Catalysts Llc Ammonia oxidation catalyst for the coal fired utilities

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006702A1 (en) * 2004-07-15 2006-01-19 Nikki-Universal Co., Ltd. Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas
JP5069467B2 (en) * 2004-07-15 2012-11-07 日揮ユニバーサル株式会社 Catalyst for purification of exhaust gas containing organic nitrogen compound, and purification method of the exhaust gas
JP2013173147A (en) * 2005-02-16 2013-09-05 Basf Catalysts Llc Ammonia oxidation catalyst for the coal fired utilities
JP2010179296A (en) * 2009-02-04 2010-08-19 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, method for treating exhaust gas, and exhaust gas treatment apparatus
US8910468B2 (en) 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JP3388941B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
EP0694329B1 (en) Method of denitrating exhaust gases
JP3276191B2 (en) Nitrogen oxide purification method
US6479026B1 (en) Method of denitrating exhaust gas
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JP3132959B2 (en) Ammonia decomposition catalyst
JP3132960B2 (en) Ammonia decomposition catalyst
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP3229136B2 (en) Ammonia decomposition method
JP3462580B2 (en) Exhaust gas denitration method
JPH08309152A (en) Purification method for exhaust gas
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3332652B2 (en) Ammonia decomposition removal method
JP3241216B2 (en) Exhaust gas denitration treatment method
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JP3495542B2 (en) Sulfur trioxide reduction method
JP3229117B2 (en) Ammonia decomposition method
JPH11267458A (en) Reduction treatment of so3 in waste gas
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3254040B2 (en) DeNOx treatment method
JPH08266870A (en) Denitrifying method
JP3322520B2 (en) Exhaust gas denitration catalyst
JP3453172B2 (en) DeNOx method
JPH10128064A (en) Reducing method of sulfur trioxide

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term