JP4118077B2 - Exhaust gas purification method - Google Patents

Exhaust gas purification method Download PDF

Info

Publication number
JP4118077B2
JP4118077B2 JP2002111890A JP2002111890A JP4118077B2 JP 4118077 B2 JP4118077 B2 JP 4118077B2 JP 2002111890 A JP2002111890 A JP 2002111890A JP 2002111890 A JP2002111890 A JP 2002111890A JP 4118077 B2 JP4118077 B2 JP 4118077B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
component
noble metal
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002111890A
Other languages
Japanese (ja)
Other versions
JP2003305338A (en
Inventor
泰良 加藤
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002111890A priority Critical patent/JP4118077B2/en
Publication of JP2003305338A publication Critical patent/JP2003305338A/en
Application granted granted Critical
Publication of JP4118077B2 publication Critical patent/JP4118077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排ガス浄化用触媒を用いた排ガス浄化方法に係り、特に高温排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)またはアンモニア(NH3 )を高効率で除去するのに好適な排ガス浄化用触媒およびこれを用いた排ガスの浄化方法に関する。
【0002】
【従来の技術】
ガスタービンを動力とする発電は効率が高いだけでなく、廃熱回収蒸気発生器(HRSG)との組み合わせが容易であり、高効率発電や電熱併給システムに多数用いられている。これらの設備は、人口密集地の近郊に建設される場合が多く、排ガスに含まれるNOxおよびCOの排出を低レベルに抑える必要がある。
図5は、従来技術による排ガス浄化装置の説明図である。この装置は、ガスタービン1と、該ガスタービン1から排出された排ガス中のCOを除去するためのCO酸化触媒8と、その後流に設けられたNOxを除去するための脱硝触媒10とを有し、前記CO酸化触媒8は排ガス温度が550℃近辺の部位に設けられ、脱硝触媒10は350℃付近のHRSG伝熱管9の中間部位に設けられる。このような装置では、ガスタービン1から排出された排ガスは、該排ガス中のCOがCO酸化触媒8により酸化されて除去され、その後、脱硝触媒10とNH3 の存在下で接触し、排ガス中のNOxが除去され、無害化される。
【0003】
図6は、他の従来技術による排ガス浄化装置の説明図である。この装置は、ガスタービン1と、CO酸化機能を有する脱硝触媒11とを有し、該脱硝触媒11は350℃付近のHRSG伝熱管9の中間部位に設けられる。このような装置では、脱硝機能とCO酸化機能を有する単一の脱硝触媒11によりガスタービン1から排出された排ガスに含有するNOxのNH3 還元とCO酸化が行われる(特開平4−59054号公報、特開平5−329334号公報、特開平5−49934号公報)。
一方、近年、夏場の電力需要のピークに対応するため、また電力不足に伴う停電を防止するため、起動時間が早いガスタービン発電設備を建設し、ガスタービンを単独で運転するケースが増大している。また、都市近郊に建設する発電設備から排出される排ガスの規制も強化される方向にあり、排ガス中のNOxおよびCOに加えてNH3 の排出も低レベルに抑えることが必要になっている。
【0004】
しかしながら、ガスタービン単独で運転する場合に、CO酸化触媒8と脱硝触媒10を別々に設置した図5の排ガス浄化装置を用いると、(i) 高温に耐えるCO酸化反応器と脱硝反応器が必要となり、装置費用が増大する、(ii)CO酸化触媒8には、貴金属などの酸化性能に優れた活性成分を担持した触媒が用いられているが、該CO酸化触媒8を約550℃という高温で使用すると、活性成分が蒸気化または粉化して後流の脱硝触媒10に付着し、還元剤として添加したNH3 を酸化してNOxを生成するため、脱硝性能が低下する、(iii) 高温で高い脱硝活性を有する触媒がなく、還元剤として注入したNH3 とNOを定量的に反応させることができず、未反応NH3 のリーク量が多くなるなどの問題があった。
また、図6の排ガス浄化装置では、CO酸化機能を有する脱硝触媒11が450℃以上の温度で脱硝性能が急激に低下するため、ガスタービン単独で運転する設備のように排ガス温度が500℃を超える場合には採用できない。
このように、ガスタービンを単独で運転する場合、ガスタービンから排出される排ガス温度が450〜600℃と高いため、上記した従来の排ガス浄化装置を採用することができず、これに代わる技術が望まれている。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記した従来技術の問題を解決し、単一の反応器で高温排ガス中のNOxとCOとを同時に無害化でき、かつ、未反応NH3 が下流にリークするのを防止することができる排ガス浄化方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題について鋭意検討した結果、第一成分として鉄(Fe)置換型ゼオライト、第二成分として貴金属担持ゼオライトまたは貴金属担持多孔質シリカを用い、両者の粒子を物理的な混合を状態を保ちながら成形した触媒を用い、該触媒の上流部に還元剤としてのNH3 または尿素を添加し、400〜600℃の高温排ガスを通過させることにより、上記課題を達成できることを見いだし、本発明に到達したものである。
上記課題達成のために本願で特許請求される発明は以下の通りである。
【0007】
(1)窒素酸化物と一酸化炭素を含む450〜600℃の排ガス中に還元剤としてアンモニアまたは尿素を添加した後、鉄置換型ゼオライトを第一成分、貴金属担持ゼオライトまたは貴金属担持多孔質シリカを第二成分として含み、両成分が混合された状態で存在し、かつ前記貴金属の含有量が第一成分と第二成分の総重量に対して0を越えて100ppm以下の範囲にある排ガス浄化用触媒に接触させ、前記窒素酸化物と一酸化炭素を除去することを特徴とする排ガスの浄化方法。
(2)前記排ガスがガスタービン排ガスであることを特徴とする(1)に記載の排ガスの浄化方法。
(3) ガスタービンの排ガス中にアンモニアまたは尿素を添加した後、450〜600℃の温度下で脱硝反応活性を有する触媒に接触させ、該排ガスに含有する窒素酸化物を除去し、次いで、鉄置換型ゼオライトを第一成分、貴金属担持ゼオライトまたは貴金属担持多孔質シリカを第二成分として含み、両成分が混合された状態で存在し、かつ前記貴金属の含有量が第一成分と第二成分の総重量に対して0を越えて100ppm以下の範囲にある排ガス浄化用触媒に接触させて該排ガスに含有する一酸化炭素および未反応アンモニアを除去することを特徴とするガスタービン排ガスの浄化方法。
【0008】
【作用】
本発明における排ガス浄化用触媒には、第一成分であるFeゼオライトと、第二成分である貴金属担持ゼオライトまたは貴金属担持多孔質シリカとが物理的に混合された状態で存在し、かつ該貴金属成分が第一成分と第二成分の総重量に対して0を超え100ppm以下の範囲で含有されているため、この排ガス浄化用触媒を用いることにより、排ガス中にNOxが大量の存在する場合には、通常の脱硝触媒として作用させ、脱硝反応が進行してNOxが消費され、相対的にNH3 濃度の高くなった排ガスや、NH3 だけを含む排ガスに対しては、NOxを副生しない優れたNH3 分解触媒として作用させることができる。このような本発明の排ガス浄化用触媒の上記メカニズムをガスタービン排ガスの浄化を例にとって説明すれば、以下の通りである。
【0009】
本発明の触媒が充填された触媒層には、還元剤としてのNH3 (NH3 またはNH3 源としての尿素)が添加された、ガスタービンなどから排出されるNOxおよびCOを含む450〜600℃の高温排ガスが供給される。この高温排ガスは該触媒と接触し、まず排ガス中のNOxが、下記(1)〜(3)の反応に従い、Feモルデナイト上でNH3 により無害なN2 に還元される。
NO+NH3 +1/4O2 → N2 +3/2H2 O (1)
NO+NO2 +2NH3 → 2N2 +3H2 O (2)
2 O+NH3 +1/4O2 →3/2N2 +3/2H2 O (3)
一方、排ガス中のCOは、第二成分の貴金属表面で、下記(4)の反応により無害なCO2 に酸化される。
CO+1/2O2 → CO2 (4)
【0010】
一般に、貴金属担持触媒とNH3 が接触すると、NH3 が酸素により酸化されて、NOxに変化し、脱硝性能を悪化させることが知られている。
しかし、本発明の触媒では、貴金属がゼオライトや多孔質シリカに低濃度(触媒成分に対して0を越えて100ppm以下)で担持され、貴金属量に比べてFeゼオライトが大量に存在するため、触媒層入り口部のNOx濃度が高い領域では、NH3 はFeゼオライトに接触する頻度が高く、上記(1)〜(3)の脱硝反応に優先的に使用される。従って、NH3 が貴金属成分と接触してNOxに酸化されるのを防止することができる。
また、脱硝反応が進行してNOx濃度の低い触媒層の後流部の領域では、上記(1)〜(3)の反応頻度が低下し、排ガス中のNH3 と貴金属成分との衝突確率が相対的に増大する。その結果、脱硝反応に使用されなかった未反応NH3 の一部が、下記(5)の反応によりNOに酸化される。
NH3 +5/4O2 →NO+3/2H2 O (5)
ところが、(5)の反応で生成したNOは、周囲に大量に存在するFeゼオライト表面上でNH3 により直ちに上記(1)の還元反応によりN2 に変換されるため、触媒からNOが放出されることがない。
【0011】
このようなメカニズムにより、本発明の触媒は、NOxが大量に存在する領域には、通常の脱硝触媒として作用し、相対的にNH3 濃度が高くなった領域では、NOxを副生しない優れたNH3 分解触媒として作用することができる。この触媒の作用機構は400〜600℃という高温で特に発揮される。
このため、本発明の排ガス浄化用触媒は、ガスタービンを単独で運転する設備の高温排ガス処理に有利であり、単一の触媒層で、NOxとCOの無害化および未反応NH3 のリークの低減を実現でき、極めて簡単な設備で高度な排ガス浄化を実現することが可能となる。
【0012】
【発明の実施の形態】
本発明に用いられる第一成分としてのFe置換型ゼオライトは、結晶性アルミノ珪酸塩化合物の総称であるゼオライトのイオン交換サイトを鉄イオン(Feイオン)で置換したものであり、通常、水素置換型ゼオライトの水素の一部または全部をFeイオンで交換することにより得られる。ゼオライトとしては、モルデナイト、クリノプチロライト、フェリエナイトなどのほか、ZSM−5などのペンタシル型ゼオライトなどを用いることができる。ゼオライトのSiO2 /Al2 3 原子比には特に限定はないが、一般にハイシリカゼオライトと称されるSiO2 /Al2 3 比が15以上のものが耐熱性に優れるので好ましい。またFeのイオン交換量は、SiO2 /Al2 3 比により異なるが、ゼオライトの1〜5重量%の範囲とするのが好ましい。
【0013】
本発明に用いられる第二成分としての貴金属担持ゼオライトは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などから選ばれた貴金属イオンを前記したゼオライトにイオン交換して得られる組成物である。また第二成分としての貴金属担持多孔質シリカは、貴金属塩類を微粒シリカに担持し、焼成して得られる多孔質状シリカ塊状物を粉砕して得られる組成物である。第二成分中の貴金属担持量には特に限定はないが、第一成分との混合を容易にする点から0.1〜0.01重量%の範囲とするのが好ましい。
【0014】
第一成分と第二成分は、貴金属の含有量が第一成分と第二成分の総重量に対し、0を越えて100ppm以下、好ましくは50ppm以下、より好ましくは5〜20ppmの範囲となるように混合される。貴金属の含有量が100ppmを超えるとNOx濃度の高い領域においてNH3 が脱硝反応に優先的に使用されなくなり、NH3 の酸化反応が生じてNOxが生成する。また第一成分と第二成分は、CO酸化機能を同時に得られるようにするために両成分が物理的に混合された状態で存在させる必要がある。
本発明の排ガス浄化用触媒は、第一成分と第二成分を、例えば重量比(第一成分/第二成分)で9/1〜99.9/0.1の範囲で混合し、両成分が物理的に混合された状態で存在するように、公知の触媒調製方法により成形して得ることができる。具体的には、所定の混合比の第一成分と第二成分を、水および結合材としてのシリカの存在下で混練後、金属やセラミック製網状基材に塗布して板状に成形する方法、第一成分と第二成分を、水を分散媒としたスラリとし、これを多孔質セラミックハニカム担体にコーティングする方法などが挙げられる。この場合、必要に応じて結合材や無機繊維などの補強材などを添加してもよい。
【0015】
図1は、本発明の排ガス浄化用触媒を用いた一実施例を示す排ガス浄化装置の説明図である。図1において、この装置は、ガスタービン1と、該ガスタービン1の後流であって排ガス温度が550〜600℃の位置に設置された本発明の排ガス浄化用触媒2とを備え、該排ガス浄化用触媒2の前流の排ガス中には還元剤としてNH3 が供給される。このような装置において、ガスタービン1から発生したNOxおよびCOを含む高温排ガスは、NH3 とともに排ガス浄化用触媒2に供給され、該触媒2の脱硝機能および酸化機能によりNOxおよびCOが無害化され、さらに該触媒2のNH3 分解機能により未反応NH3 がN2 に酸化分解され、NH3 が後流にリークするのが防止される。
排ガス浄化用触媒2の前流に供給される還元剤(通常はNH3 )は、必要な脱硝性能を満たすことができる最適な量に選定されて供給される。なお、還元剤として尿素を用いる場合には、気相または触媒上で下記(6)の加水分解反応により1モルの尿素から2モルのNH3 が生成されるため、NH3 を供給する場合の半分の注入モル数で供給する。
(NH2)2 CO+H2 O→ 2NH3 +CO2 (6)
【0016】
図2は、本発明の排ガス浄化用触媒を用いた他の実施例を示す排ガス浄化装置の説明図である。図2において、図1と異なる点は、排ガス浄化用触媒2の前流側に隣接させて通常の高温脱硝触媒3を設けた点である。高温脱硝触媒3には、酸化チタンと酸化タングステンなどからなるNH3 によるNOx還元機能を有する触媒が用いられる。このような装置では、ガスタービン1から発生した高温排ガスは、まず前流の高温脱硝触媒3により脱硝反応のみが行われてNOxが除去され、後流の排ガス浄化用触媒2で未反応NH3 の酸化分解とCOの酸化が行われる。
この装置は、高温脱硝触媒層3のみで構成された既存の排ガス浄化装置に、本発明の排ガス浄化用触媒2を追加して未反応NH3 とCOの放出を低減する場合に有効である。
【0017】
図3は、本発明の排ガス浄化用触媒を用いたさらに他の実施例を示すNH3 含有排水浄化装置の説明図である。図3において、この浄化装置は、NH3 含有排水からNH3 を気相に移行させるストリッピング装置6と、該気相に移行させたNH3 を分解する本発明の排ガス浄化用触媒2とを備える。このような浄化装置において、NH3 含有排水は、NaOHなどのアルカリ成分の添加によりpHが上昇された後、ポンプ4および加熱装置5を経てストリッピング装置6に導かれ、排水に含まれるNH3 が気相に追い出される。気相に追い出されたNH3 は、必要に応じて空気が添加されて加熱装置7により350℃〜450℃に加熱された後、排ガス浄化用触媒2に導かれ、NH3 が無害な窒素と水に分解される。
【0018】
高濃度のNH3 を排ガス浄化装置で処理する場合、従来の酸化チタン系触媒を用いると、NH3 の酸化反応熱により触媒層の温度が100℃以上高温にさらされるため、触媒の特性が悪化し、高濃度NH3 含有排水の処理ができないという問題があったが、本発明の排ガス浄化用触媒を用いれば、触媒層の温度が550℃を超える条件でも高い分解性能を維持できるため、高濃度NH3 の処理が可能になる。
またNH3 の分解過程で、地球温暖化ガスであるN2 Oが大量に副生することが知られているが、本発明の排ガス浄化用触媒2を用いることにより、NOxの副生、特にN2 Oの副生を抑制でき、地球温暖化防止効果が期待できる。
【0019】
【実施例】
以下、本発明を実施例により具体例に説明する。
実施例1
SiO2 /Al2 3 原子比が23であるH型モルデナイト(東ソー社製)100gを、硝酸鉄(Fe(NO3 3 ・9H2 O)21.7gを水150gに溶解した溶液に加え、砂浴上でよく攪拌しながら蒸発乾固した。得られた粉末を大気中600℃で2時間焼成後、粉砕して第一成分であるFe置換型モルデナイトを得た。
一方、塩化白金酸(H2 〔PtCl6 〕・6H2 O)0.665gを水1リットルに溶解したものに、SiO2 /Al2 3 原子比が約23、平均粒径約10μmのH型モルデナイト500gを加え、砂浴上で蒸発乾固してPtを担持した。これを180℃で2時間乾燥後、空気中で600℃で2時間焼成し、0.05重量%のPtが担持されたPtモルデナイトを調製し、第2成分とした。
【0020】
得られた第一成分粉末103g、第二成分粉末2.1g、水70g、シリカゾル(日産化学工業社製、SiO2 含有率20%)70gを混合後よく攪拌して均一なゼオライトスラリを得た。本スラリ中に、三角形流路を有するアルミノシリケート(SiO2 ・Al2 3 )系セラミック繊維製コルゲートハニカム(流路形状:高さ2.2mm×底辺3.7mm−0.15t、ニチアス社製)を浸漬後、液切り、1 50℃による乾燥を行った後、600℃で2時間焼成して触媒を得た。この場合の第一成分/第二成分比は98/2であり、触媒成分中の貴金属量は10ppmである。
【0021】
実施例2
実施例1のH型モルデナイトに替えて、SiO2 /Al2 3 原子比が30の水素置換ペンタシル型ゼオライト(Zeolyst社製、ZSM−5構造、CBV3020)を用い、他は実施例1と同様にしてFe置換型ZSM−5触媒を得た。これを第一成分として用い、他は同様にして触媒を得た。
実施例3
実施例1のH型モルデナイトに替えて、SiO2 /Al2 3 原子比が20のアンモニウム置換型フェリエライト(Zeolyst社製、CP914c)を用い、他は実施例1と同様にしてFe置換型フェリエライト触媒を得て第一成分とした。一方、実施例1の第二成分の調製に用いたH型モルデナイトに替えて、高比表面積シリカ粉末(富田製薬社製、マイコンF)を用い、同様の方法でPt担持シリカを得て第二成分とした。
得られた第一および第二成分を実施例1と同様の方法でハニカム担体に担持して触媒を得た。
【0022】
実施例4、5
実施例1の触媒調製に用いた第二成分の調製法において、用いた塩化白金酸を、硝酸パラジウム(Pd(NO3)3 、硝酸ロジウム(Rh(NO3)3 の硝酸溶液に替え、各々ゼオライトに対し、貴金属として0.05重量%になるようにして第二成分を調製した。得られた第二成分を用い、他は実施例1と同様にして触媒を得た。
実施例6〜9
実施例1の第一成分と第二成分比98/2を、9/1、96/4、99.8/0.2に替えた以外は、実施例1と同様にして触媒を得た。
【0023】
比較例1
特開平5−329334号公報の実施例1に記載された触媒調製法に準じ、従来の酸化チタン系触媒を以下のように調製した。
メタチタン酸スラリ(TiO2 含有量:30重量%、SO4 含有量:8重量%)67kgにパラタングテン酸アンモニウム((NH4 1010・W1246・6H2 O)を3.59kgおよびメタバナジン酸アンモン1.29kgとを加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36重量%のペーストを得た。これを直径3mmの柱状に押し出し造粒後、流動層乾燥機で乾燥し、次に大気中550℃で2時間焼成した。得られた顆粒をハンマーミルで1μmの粒径が60%以上となるように粉砕し、第一成分である脱硝触媒粉末を得た。このときの組成はV/W/Ti=4/5/91(原子比) である。
一方、塩化白金酸(H2 [PtC16]・6H2 O)0.665gを水1リットルに溶解したものに、SiO2 /Al2 3 比が23、平均粒径約10μmのH型モルデナイト500gを加え、砂浴上で蒸発乾固してPtを担持した。これを180℃で2時間乾燥後、空気中で500℃で2時間焼成し、0.05重量%Pt−モルデナイトを調製し、第2成分にした。
得られた第一成分粉末103g、第二成分粉末2.1g、水200gを混合後、よく攪拌して均一な触媒スラリを得た。本スラリ中に、三角形流路を有するアルミノシリケート(SiO2 ・Al2 3 )系セラミック繊維製コルゲートハニカム(流路形状:高さ2.2mm×底辺3.73mm−0.15t 、ニチアス社製)を浸漬後、液切り、1 50℃による乾燥を行った後、600℃で2時間焼成して触媒を得た。この場合の触媒成分中の貴金属量は5ppmである。
【0024】
比較例2
実施例1における第一成分だけを用い、他は同様にして触媒を得た。
比較例3
実施例2における第一成分だけを用い、他は同様にして触媒を調製した。
比較例4
比較例2の第一成分100gに塩化白金酸溶液(0.665g/L)を0.42ml添加してFeを3重量%、Ptを10ppm含有するゼオライトを調製した。これを比較例2と同様の方法により触媒を調製した。
【0025】
<試験例1>
実施例1および比較例1〜4で得られた触媒について、図1に示す排ガス浄化装置を用いて表1の条件で排ガス温度を200〜600℃に変化させて排ガス浄化を行い、それぞれにおける脱硝率、CO酸化率およびリークNH3 の濃度を測定した。得られた結果を図4に示した。
【表1】

Figure 0004118077
【0026】
図4から、実施例1で得られた触媒は、350℃〜600℃の範囲で高い脱硝率とCO酸化率を示すことがわかる。これに対し、比較例1の従来の触媒では、500℃以上では脱硝率の低下が著しく、500℃以上の温度では使用できない。またFeゼオライト単独を用いた比較例2の触媒では、脱硝率は高いが、CO酸化率に劣り、またPtゼオライトを単独で用いた比較例3の触媒では、脱硝性能が負の値を示し、NH3 の酸化によるNOxの生成が顕著に認められた。
さらにゼオライトにFeとPtとを担持させた比較例4の触媒では、脱硝率は高い値を示すものの、CO酸化率は比較例2と大差なく、Ptの添加効果は全く認められないことがわかった。この結果から、Fe置換ゼオライトを第一成分に、貴金属担持ゼオライトまたは貴金属担持多孔質シリカを第二成分に用い、両者が物理的な混合状態を維持して担持された触媒とすることにより、高温での脱硝およびCO酸化性能に優れた触媒が得られることが明らかとなった。
【0027】
<試験例2>
実施例1〜9および比較例1〜4で得られた各触媒に対し、上記表1の条件で550℃の脱硝率とCO酸化率を測定すると共に、表2の条件でNH3 の分解率およびNH3 分解時に発生するNOxの生成濃度を測定し、得られた結果を表3にまとめた。
【表2】
Figure 0004118077
【0028】
【表3】
Figure 0004118077
【0029】
表3から、実施例1〜9で得られた本発明の触媒は、比較例1〜4で得られたの触媒に比べ、いずれも脱硝率、CO酸化率およびNH3 分解率に優れ、かつNOおよびN2 Oの副生量が少ないことがわかる。
また実施例1〜3の結果からは第一成分であるFeゼオライトを得るためのゼオライトにはモルデナイト、ペンタシル型ゼオライト、フェリエライトなど各種のゼオライトが使用できること、また第二成分である貴金属の担持にはゼオライト以外に多孔質シリカを用いることができることが示される。さらに実施例6〜9の結果から、貴金属の含有量が0を超えれば、CO酸化やNH3 分解に効果が現れるが、含有量が多くなると、CO酸化率およびNH3 分解率は上昇するもののNH3 分解に伴うNOxの生成によって脱硝性能が低下する傾向にあることが示される。
【0030】
【発明の効果】
本発明の排ガス浄化方法によれば、HRSGを持たないガスタービン排ガスなどの高温排ガス中のNOxとCOを単一の触媒層で浄化することができ、耐熱性の高い高価な反応器の使用が不要であり、また単一の反応器で済むため、経済的な効果が大きい。また、従来技術では脱硝反応器の前流に設置したCO酸化触媒成分が飛散して脱硝性能を低下させるという問題があり、高温では数ppm程度のわずかなCO酸化成分が脱硝触媒に付着しても脱硝性能が大きく低下する傾向があるが、本発明の排ガス浄化用触媒では、このような問題を生じることはない。さらに、未反応NH3 のリークが少なく、NOxの副生を防止できるため、環境改善に大きく貢献することができる。
【図面の簡単な説明】
【図1】本発明の排ガス浄化用触媒を用いた一実施例を示す排ガス浄化装置の説明図。
【図2】本発明の排ガス浄化用触媒を用いた他の実施例を示す排ガス浄化装置の説明図。
【図3】本発明の排ガス浄化用触媒を用いたさらに他の実施例を示す排ガス浄化装置の説明図。
【図4】排ガス温度と脱硝率およびCO酸化率の関係を示す図。
【図5】従来技術による排ガス浄化装置の説明図。
【図6】他の従来技術による排ガス浄化装置の説明図。
【符号の説明】
1…ガスタービン、2…排ガス浄化用触媒、3…高温脱硝触媒、4…ポンプ、5…加熱手段、6…ストリッピング装置、7…加熱手段、8…CO酸化触媒、9…HRSG伝熱管、10…脱硝触媒、11…CO酸化機能を有する脱硝触媒。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification method using an exhaust gas purification catalyst, and is particularly suitable for removing nitrogen oxide (NOx), carbon monoxide (CO) or ammonia (NH 3 ) in high-temperature exhaust gas with high efficiency. The present invention relates to an exhaust gas purification catalyst and an exhaust gas purification method using the same.
[0002]
[Prior art]
Power generation using a gas turbine as a power source is not only highly efficient, but can be easily combined with a waste heat recovery steam generator (HRSG), and is used in many high-efficiency power generation and cogeneration systems. These facilities are often built in the suburbs of densely populated areas, and it is necessary to suppress NOx and CO emissions contained in the exhaust gas to a low level.
FIG. 5 is an explanatory view of an exhaust gas purifying apparatus according to the prior art. This apparatus has a gas turbine 1, a CO oxidation catalyst 8 for removing CO in exhaust gas discharged from the gas turbine 1, and a denitration catalyst 10 for removing NOx provided downstream thereof. The CO oxidation catalyst 8 is provided at a portion where the exhaust gas temperature is around 550 ° C., and the denitration catalyst 10 is provided at an intermediate portion of the HRSG heat transfer tube 9 near 350 ° C. In such an apparatus, the exhaust gas discharged from the gas turbine 1 is removed by oxidizing the CO in the exhaust gas by the CO oxidation catalyst 8 and then contacting with the denitration catalyst 10 in the presence of NH 3. NOx is removed and detoxified.
[0003]
FIG. 6 is an explanatory view of an exhaust gas purifying apparatus according to another prior art. This apparatus includes a gas turbine 1 and a denitration catalyst 11 having a CO oxidation function, and the denitration catalyst 11 is provided at an intermediate portion of the HRSG heat transfer tube 9 near 350 ° C. In such an apparatus, NH 3 reduction and CO oxidation of NOx contained in the exhaust gas discharged from the gas turbine 1 are performed by a single denitration catalyst 11 having a denitration function and a CO oxidation function (Japanese Patent Laid-Open No. 4-59054). Publication, JP-A-5-329334, JP-A-5-49934).
On the other hand, in recent years, in order to respond to the peak of power demand in summer and to prevent power outages due to power shortage, the number of cases where gas turbine power generation equipment with a fast start-up time is constructed and the gas turbine is operated independently has increased. Yes. In addition, regulations on exhaust gas discharged from power generation facilities constructed in the suburbs of the city are also being strengthened, and it is necessary to suppress the emission of NH 3 in addition to NOx and CO in the exhaust gas to a low level.
[0004]
However, when the gas turbine is operated alone, if the exhaust gas purification apparatus of FIG. 5 in which the CO oxidation catalyst 8 and the denitration catalyst 10 are separately installed is used, (i) a CO oxidation reactor and a denitration reactor that can withstand high temperatures are required. (Ii) As the CO oxidation catalyst 8, a catalyst carrying an active component excellent in oxidation performance such as a noble metal is used, but the CO oxidation catalyst 8 is heated to a high temperature of about 550 ° C. In this case, the active component is vaporized or pulverized and adheres to the downstream denitration catalyst 10 to oxidize NH 3 added as a reducing agent to generate NOx, so that the denitration performance is reduced. (Iii) High temperature However, there is no catalyst having high denitration activity, NH 3 and NO injected as a reducing agent cannot be reacted quantitatively, and there is a problem that the leak amount of unreacted NH 3 increases.
Further, in the exhaust gas purifying apparatus of FIG. 6, the denitration catalyst 11 having the CO oxidation function has a sudden decrease in denitration performance at a temperature of 450 ° C. or higher, so that the exhaust gas temperature is 500 ° C. as in a facility operated by a gas turbine alone. If it exceeds, it cannot be adopted.
As described above, when the gas turbine is operated alone, the exhaust gas temperature discharged from the gas turbine is as high as 450 to 600 ° C., so the above-described conventional exhaust gas purification device cannot be employed, and a technology that replaces this is not possible. It is desired.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art, and simultaneously detoxify NOx and CO in high-temperature exhaust gas with a single reactor, and prevent unreacted NH 3 from leaking downstream. it is to provide an exhaust gas purification of how that can be.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have used iron (Fe) -substituted zeolite as the first component, noble metal-supported zeolite or noble metal-supported porous silica as the second component, and physically mixed both particles. The above-mentioned problem can be achieved by adding a NH 3 or urea as a reducing agent to the upstream portion of the catalyst while passing the high-temperature exhaust gas at 400 to 600 ° C. The present invention has been achieved.
The invention claimed in the present application in order to achieve the above object is as follows.
[0007]
(1) After adding ammonia or urea as a reducing agent to 450 to 600 ° C. exhaust gas containing nitrogen oxides and carbon monoxide, iron-substituted zeolite is the first component, noble metal-supported zeolite or noble metal-supported porous silica For exhaust gas purification containing as a second component, present in a state where both components are mixed, and the content of the noble metal is in the range of more than 0 to 100 ppm or less with respect to the total weight of the first component and the second component A method for purifying exhaust gas, comprising contacting a catalyst to remove the nitrogen oxides and carbon monoxide.
(2) The exhaust gas purification method according to (1), wherein the exhaust gas is a gas turbine exhaust gas.
(3) After adding ammonia or urea to the exhaust gas of the gas turbine, it is brought into contact with a catalyst having a denitration reaction activity at a temperature of 450 to 600 ° C. to remove nitrogen oxides contained in the exhaust gas, and then iron The substitution type zeolite contains the first component, the noble metal-supported zeolite or the noble metal-supported porous silica as the second component, both components exist in a mixed state, and the content of the noble metal is the first component and the second component. A method for purifying gas turbine exhaust gas, comprising removing the carbon monoxide and unreacted ammonia contained in the exhaust gas by contacting with an exhaust gas purifying catalyst in the range of more than 0 to 100 ppm or less with respect to the total weight.
[0008]
[Action]
In the exhaust gas purifying catalyst of the present invention, the first component Fe zeolite and the second component noble metal-supported zeolite or noble metal-supported porous silica are present in a physically mixed state, and the noble metal component Is contained in the range of more than 0 and not more than 100 ppm with respect to the total weight of the first component and the second component. Therefore, when a large amount of NOx is present in the exhaust gas by using this exhaust gas purification catalyst, It works as a normal denitration catalyst, NOx is consumed as the denitration reaction proceeds, and it does not produce NOx as a by-product for exhaust gas with relatively high NH 3 concentration or exhaust gas containing only NH 3 It can act as an NH 3 decomposition catalyst. The above-described mechanism of the exhaust gas purifying catalyst of the present invention will be described with reference to gas turbine exhaust gas purification as an example.
[0009]
450 to 600 containing NOx and CO discharged from a gas turbine or the like to which NH 3 (NH 3 or urea as an NH 3 source) is added to the catalyst layer filled with the catalyst of the present invention is added. High-temperature exhaust gas at ℃ is supplied. This high temperature exhaust gas comes into contact with the catalyst. First, NOx in the exhaust gas is reduced to harmless N 2 by NH 3 on Fe mordenite according to the following reactions (1) to (3).
NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
N 2 O + NH 3 + 1 / 4O 2 → 3 / 2N 2 + 3 / 2H 2 O (3)
On the other hand, CO in the exhaust gas is oxidized to harmless CO 2 by the reaction (4) below on the surface of the second component noble metal.
CO + 1 / 2O 2 → CO 2 (4)
[0010]
In general, it is known that when a noble metal-supported catalyst and NH 3 come into contact with each other, NH 3 is oxidized by oxygen and changed to NOx, thereby deteriorating the denitration performance.
However, in the catalyst of the present invention, noble metal is supported on zeolite or porous silica at a low concentration (over 0 to 100 ppm or less with respect to the catalyst component), and a large amount of Fe zeolite is present compared to the amount of noble metal. In the region where the NOx concentration at the layer entrance is high, NH 3 has a high frequency of contact with Fe zeolite and is preferentially used in the denitration reactions (1) to (3) above. Accordingly, it is possible to prevent NH 3 from coming into contact with the noble metal component and being oxidized to NOx.
In addition, in the region of the downstream portion of the catalyst layer where the NOx concentration is low and the NOx concentration is low, the reaction frequency of the above (1) to (3) decreases, and the collision probability between NH 3 in the exhaust gas and the noble metal component increases. Increases relatively. As a result, a part of the unreacted NH 3 that has not been used for the denitration reaction is oxidized to NO by the reaction (5) below.
NH 3 + 5 / 4O 2 → NO + 3 / 2H 2 O (5)
However, since the NO produced in the reaction (5) is immediately converted to N 2 by NH 3 on the surface of the Fe zeolite existing in a large amount around the surface, the NO is released from the catalyst. There is nothing to do.
[0011]
By such a mechanism, the catalyst of the present invention acts as a normal denitration catalyst in a region where a large amount of NOx exists, and is excellent in that NOx is not by-produced in a region where the NH 3 concentration is relatively high. It can act as an NH 3 decomposition catalyst. The action mechanism of this catalyst is particularly exhibited at a high temperature of 400 to 600 ° C.
For this reason, the exhaust gas purifying catalyst of the present invention is advantageous for high-temperature exhaust gas treatment of equipment that operates a gas turbine alone. With a single catalyst layer, NOx and CO are rendered harmless and unreacted NH 3 leaks. Reduction can be realized, and it becomes possible to realize advanced exhaust gas purification with extremely simple equipment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The Fe-substituted zeolite as the first component used in the present invention is obtained by substituting the ion exchange sites of zeolite, which is a general term for crystalline aluminosilicate compounds, with iron ions (Fe ions), and is usually hydrogen-substituted. It can be obtained by exchanging part or all of hydrogen of zeolite with Fe ions. As zeolite, in addition to mordenite, clinoptilolite, ferrierite, etc., pentasil type zeolite such as ZSM-5 can be used. There is no particular limitation on the SiO 2 / Al 2 O 3 atomic ratio of the zeolite, but those having a SiO 2 / Al 2 O 3 ratio of 15 or more, generally referred to as high silica zeolite, are preferred because of their excellent heat resistance. Further, the ion exchange amount of Fe varies depending on the SiO 2 / Al 2 O 3 ratio, but is preferably in the range of 1 to 5% by weight of the zeolite.
[0013]
The noble metal-supported zeolite as the second component used in the present invention is a composition obtained by ion exchange of a noble metal ion selected from platinum (Pt), palladium (Pd), rhodium (Rh), etc. with the above-mentioned zeolite. is there. The noble metal-supporting porous silica as the second component is a composition obtained by pulverizing a porous silica lump obtained by supporting noble metal salts on fine silica and firing. The amount of the noble metal supported in the second component is not particularly limited, but is preferably in the range of 0.1 to 0.01% by weight from the viewpoint of facilitating mixing with the first component.
[0014]
The first component and the second component have a precious metal content in the range of more than 0 and 100 ppm or less, preferably 50 ppm or less, more preferably 5 to 20 ppm, based on the total weight of the first component and the second component. To be mixed. When the noble metal content exceeds 100 ppm, NH 3 is not preferentially used for the denitration reaction in a region where the NOx concentration is high, and an oxidation reaction of NH 3 occurs to generate NOx. Further, the first component and the second component need to be present in a state where both components are physically mixed in order to obtain a CO oxidation function at the same time.
In the exhaust gas purifying catalyst of the present invention, the first component and the second component are mixed in a weight ratio (first component / second component) in the range of 9/1 to 99.9 / 0.1, for example. Can be obtained by molding by a known catalyst preparation method so that the is present in a physically mixed state. Specifically, a method in which a first component and a second component having a predetermined mixing ratio are kneaded in the presence of water and silica as a binder, and then applied to a metal or ceramic network substrate to form a plate. The first component and the second component may be a slurry using water as a dispersion medium, and this may be coated on a porous ceramic honeycomb carrier. In this case, a reinforcing material such as a binder or inorganic fiber may be added as necessary.
[0015]
FIG. 1 is an explanatory view of an exhaust gas purification apparatus showing an embodiment using the exhaust gas purification catalyst of the present invention. In FIG. 1, this apparatus includes a gas turbine 1 and an exhaust gas purifying catalyst 2 according to the present invention installed at a position downstream of the gas turbine 1 and having an exhaust gas temperature of 550 to 600 ° C. NH 3 is supplied as a reducing agent into the exhaust gas upstream of the purification catalyst 2. In such an apparatus, the high-temperature exhaust gas containing NOx and CO generated from the gas turbine 1 is supplied to the exhaust gas purification catalyst 2 together with NH 3 , and NOx and CO are rendered harmless by the denitration function and the oxidation function of the catalyst 2. Furthermore, the NH 3 decomposition function of the catalyst 2 prevents oxidative decomposition of unreacted NH 3 to N 2 and prevents NH 3 from leaking to the downstream.
The reducing agent (usually NH 3 ) supplied to the upstream of the exhaust gas purification catalyst 2 is selected and supplied in an optimum amount that can satisfy the required denitration performance. In the case of using urea as a reducing agent, since the two moles of NH 3 from 1 mole of urea by the hydrolysis reaction described below (6) over the gas or the catalyst is produced, in the case of supplying NH 3 Feed at half the number of moles injected.
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 (6)
[0016]
FIG. 2 is an explanatory view of an exhaust gas purifying apparatus showing another embodiment using the exhaust gas purifying catalyst of the present invention. 2 differs from FIG. 1 in that a normal high-temperature denitration catalyst 3 is provided adjacent to the upstream side of the exhaust gas purification catalyst 2. As the high temperature denitration catalyst 3, a catalyst having a NOx reduction function by NH 3 made of titanium oxide, tungsten oxide or the like is used. In such an apparatus, the high-temperature exhaust gas generated from the gas turbine 1 is first subjected only to the denitration reaction by the upstream high-temperature denitration catalyst 3 to remove NOx, and the unreacted NH 3 is removed from the exhaust gas purification catalyst 2 downstream. Oxidative decomposition and CO oxidation are performed.
This apparatus is effective in the case where the exhaust gas purification catalyst 2 of the present invention is added to an existing exhaust gas purification apparatus composed of only the high temperature denitration catalyst layer 3 to reduce the release of unreacted NH 3 and CO.
[0017]
Figure 3 is an explanatory diagram of the NH 3 containing waste water purifying apparatus according to still another embodiment using the exhaust gas purifying catalyst of the present invention. In FIG. 3, this purification apparatus includes a stripping device 6 for transferring NH 3 from NH 3 -containing wastewater to the gas phase, and an exhaust gas purification catalyst 2 of the present invention for decomposing NH 3 transferred to the gas phase. Prepare. In such a purifier, NH 3 containing effluent, NH 3 after the pH was raised by addition of an alkali component such as NaOH, which is led to the stripping apparatus 6 via pump 4 and heater 5 is included in the waste water Is expelled into the gas phase. NH 3 expelled to the gas phase is heated to 350 ° C. to 450 ° C. by the heating device 7 as necessary, and then led to the exhaust gas purification catalyst 2, where NH 3 is harmless nitrogen and Breaks down into water.
[0018]
When treating high concentrations of NH 3 with an exhaust gas purification device, using a conventional titanium oxide catalyst will cause the catalyst layer to be exposed to a high temperature of 100 ° C or higher due to the heat of oxidation reaction of NH 3 , resulting in deterioration of the catalyst characteristics. However, there is a problem that wastewater containing high concentration NH 3 cannot be treated. However, if the exhaust gas purifying catalyst of the present invention is used, high decomposition performance can be maintained even under conditions where the temperature of the catalyst layer exceeds 550 ° C. Processing with a concentration of NH 3 becomes possible.
Further, it is known that a large amount of N 2 O, which is a global warming gas, is by-produced during the decomposition process of NH 3. By using the exhaust gas purifying catalyst 2 of the present invention, NO x by-product, particularly By-product of N 2 O can be suppressed, and an effect of preventing global warming can be expected.
[0019]
【Example】
Hereinafter, the present invention will be described by way of specific examples.
Example 1
100 g of H-type mordenite (manufactured by Tosoh Corporation) having an SiO 2 / Al 2 O 3 atomic ratio of 23 is added to a solution obtained by dissolving 21.7 g of iron nitrate (Fe (NO 3 ) 3 .9H 2 O) in 150 g of water. The mixture was evaporated to dryness with good stirring on a sand bath. The obtained powder was calcined in the atmosphere at 600 ° C. for 2 hours and then pulverized to obtain Fe-substituted mordenite as the first component.
On the other hand, 0.665 g of chloroplatinic acid (H 2 [PtCl 6 ] · 6H 2 O) dissolved in 1 liter of water was dissolved in H having an SiO 2 / Al 2 O 3 atomic ratio of about 23 and an average particle size of about 10 μm. 500 g of mold mordenite was added and evaporated to dryness on a sand bath to carry Pt. This was dried at 180 ° C. for 2 hours and then calcined in air at 600 ° C. for 2 hours to prepare Pt mordenite carrying 0.05% by weight of Pt as a second component.
[0020]
103 g of the obtained first component powder, 2.1 g of the second component powder, 70 g of water, and 70 g of silica sol (Nissan Chemical Industry Co., Ltd., SiO 2 content 20%) were mixed and stirred well to obtain a uniform zeolite slurry. . In this slurry, aluminosilicate having a triangular channel (SiO 2 · Al 2 O 3 ) ceramic fibers made corrugated honeycomb (distributary: height 2.2 mm × bottom 3.7 mm-0.15 t, Nichias Corporation ) Was drained, drained, dried at 150 ° C., and calcined at 600 ° C. for 2 hours to obtain a catalyst. In this case, the ratio of the first component / second component is 98/2, and the amount of noble metal in the catalyst component is 10 ppm.
[0021]
Example 2
A hydrogen-substituted pentasil-type zeolite (Zeolyst, ZSM-5 structure, CBV3020) having a SiO 2 / Al 2 O 3 atomic ratio of 30 was used in place of the H-type mordenite of Example 1, and the others were the same as in Example 1. Thus, an Fe-substituted ZSM-5 catalyst was obtained. This was used as the first component, and a catalyst was obtained in the same manner.
Example 3
Instead of the H-type mordenite of Example 1, an ammonium-substituted ferrierite (Zeolyst, CP914c) having an SiO 2 / Al 2 O 3 atomic ratio of 20 was used, and the Fe-substituted type was the same as in Example 1 except for that. A ferrierite catalyst was obtained and used as the first component. On the other hand, in place of the H-type mordenite used for the preparation of the second component of Example 1, Pt-supported silica was obtained in the same manner using a high specific surface area silica powder (Tomita Pharmaceutical Co., Ltd., microcomputer F). Ingredients.
The obtained first and second components were supported on a honeycomb carrier in the same manner as in Example 1 to obtain a catalyst.
[0022]
Examples 4 and 5
In the method for preparing the second component used for preparing the catalyst of Example 1, the chloroplatinic acid used was replaced with a nitric acid solution of palladium nitrate (Pd (NO 3 ) 3 , rhodium nitrate (Rh (NO 3 ) 3 ), A second component was prepared in such a manner that the precious metal was 0.05% by weight based on the zeolite, and a catalyst was obtained in the same manner as in Example 1 except that the obtained second component was used.
Examples 6-9
A catalyst was obtained in the same manner as in Example 1 except that the ratio of the first component to the second component 98/2 in Example 1 was changed to 9/1, 96/4, and 99.8 / 0.2.
[0023]
Comparative Example 1
In accordance with the catalyst preparation method described in Example 1 of JP-A-5-329334, a conventional titanium oxide-based catalyst was prepared as follows.
67 kg of metatitanate slurry (TiO 2 content: 30 wt%, SO 4 content: 8 wt%) and 3.59 kg of ammonium paratungstate ((NH 4 ) 10 H 10 · W 12 O 46 · 6H 2 O) and 1.29 kg of ammonium metavanadate was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36% by weight. This was extruded and granulated into a column having a diameter of 3 mm, dried by a fluidized bed dryer, and then baked at 550 ° C. for 2 hours in the atmosphere. The obtained granule was pulverized with a hammer mill so that the particle size of 1 μm was 60% or more to obtain a denitration catalyst powder as a first component. The composition at this time is V / W / Ti = 4/5/91 (atomic ratio).
On the other hand, 0.665 g of chloroplatinic acid (H 2 [PtC 16 ] · 6H 2 O) dissolved in 1 liter of water is H-type mordenite having a SiO 2 / Al 2 O 3 ratio of 23 and an average particle size of about 10 μm. 500 g was added and evaporated to dryness on a sand bath to carry Pt. This was dried at 180 ° C. for 2 hours and then calcined in air at 500 ° C. for 2 hours to prepare 0.05 wt% Pt-mordenite as a second component.
After mixing 103 g of the obtained first component powder, 2.1 g of the second component powder, and 200 g of water, the mixture was stirred well to obtain a uniform catalyst slurry. In this slurry, corrugated honeycomb made of aluminosilicate (SiO 2 · Al 2 O 3 ) ceramic fiber having a triangular flow path (flow path shape: height 2.2 mm × bottom side 3.73 mm−0.15 t, manufactured by Nichias) ) Was drained, drained, dried at 150 ° C., and calcined at 600 ° C. for 2 hours to obtain a catalyst. In this case, the amount of noble metal in the catalyst component is 5 ppm.
[0024]
Comparative Example 2
A catalyst was obtained in the same manner except that only the first component in Example 1 was used.
Comparative Example 3
A catalyst was prepared in the same manner except that only the first component in Example 2 was used.
Comparative Example 4
0.42 ml of chloroplatinic acid solution (0.665 g / L) was added to 100 g of the first component of Comparative Example 2 to prepare a zeolite containing 3 wt% Fe and 10 ppm Pt. A catalyst was prepared by the same method as in Comparative Example 2.
[0025]
<Test Example 1>
The catalysts obtained in Example 1 and Comparative Examples 1 to 4 were subjected to exhaust gas purification by changing the exhaust gas temperature to 200 to 600 ° C. under the conditions shown in Table 1 using the exhaust gas purification apparatus shown in FIG. Rate, CO oxidation rate and leak NH 3 concentration were measured. The obtained results are shown in FIG.
[Table 1]
Figure 0004118077
[0026]
FIG. 4 shows that the catalyst obtained in Example 1 exhibits a high denitration rate and CO oxidation rate in the range of 350 ° C. to 600 ° C. On the other hand, with the conventional catalyst of Comparative Example 1, the denitration rate is remarkably reduced at 500 ° C. or higher and cannot be used at temperatures of 500 ° C. or higher. The catalyst of Comparative Example 2 using Fe zeolite alone has a high denitration rate, but is inferior in the CO oxidation rate, and the catalyst of Comparative Example 3 using Pt zeolite alone shows a negative denitration performance, The formation of NOx due to the oxidation of NH 3 was noticeable.
Further, in the catalyst of Comparative Example 4 in which Fe and Pt are supported on zeolite, the denitration rate is high, but the CO oxidation rate is not much different from that of Comparative Example 2, and it is understood that the effect of adding Pt is not recognized at all. It was. From this result, by using the Fe-substituted zeolite as the first component and the noble metal-supported zeolite or the noble metal-supported porous silica as the second component, and maintaining both in a physically mixed state, the catalyst is supported at a high temperature. It was revealed that a catalyst excellent in NOx removal performance and CO oxidation performance was obtained.
[0027]
<Test Example 2>
For each catalyst obtained in Examples 1-9 and Comparative Examples 1-4, as well as measuring the NOx removal efficiency and CO oxidation rate of 550 ° C. under conditions of Table 1, the decomposition rate of NH 3 under the conditions of Table 2 Further, the production concentration of NOx generated during NH 3 decomposition was measured, and the results obtained are summarized in Table 3.
[Table 2]
Figure 0004118077
[0028]
[Table 3]
Figure 0004118077
[0029]
From Table 3, the catalysts of the present invention obtained in Examples 1 to 9 are all superior in the NOx removal rate, CO oxidation rate and NH 3 decomposition rate, compared with the catalysts obtained in Comparative Examples 1 to 4, and It turns out that the amount of by-products of NO and N 2 O is small.
In addition, from the results of Examples 1 to 3, various zeolites such as mordenite, pentasil-type zeolite, and ferrierite can be used as the zeolite for obtaining the first component Fe zeolite, and also for supporting the noble metal as the second component. Indicates that porous silica can be used in addition to zeolite. Further, from the results of Examples 6 to 9, if the noble metal content exceeds 0, an effect appears in CO oxidation and NH 3 decomposition, but as the content increases, the CO oxidation rate and the NH 3 decomposition rate increase. It is shown that the denitration performance tends to decrease due to the generation of NOx accompanying NH 3 decomposition.
[0030]
【The invention's effect】
According to the exhaust gas purification method of the present invention, it is possible to purify the NOx and CO in the high temperature exhaust gas such as gas turbine exhaust gas having no HRSG with a single catalyst layer, high heat resistance expensive reactor Therefore, it is not necessary to use a single reactor, and a single reactor is required. In addition, the conventional technology has a problem in that the CO oxidation catalyst component installed in the upstream of the denitration reactor is scattered to reduce the denitration performance, and a slight CO oxidation component of about several ppm adheres to the denitration catalyst at high temperatures. However, the exhaust gas purification catalyst of the present invention does not cause such a problem. Furthermore, since there is little leakage of unreacted NH 3 and NOx by-product can be prevented, it can greatly contribute to environmental improvement.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an exhaust gas purifying apparatus showing an embodiment using an exhaust gas purifying catalyst of the present invention.
FIG. 2 is an explanatory view of an exhaust gas purification apparatus showing another embodiment using the exhaust gas purification catalyst of the present invention.
FIG. 3 is an explanatory view of an exhaust gas purifying apparatus showing still another embodiment using the exhaust gas purifying catalyst of the present invention.
FIG. 4 is a graph showing the relationship between exhaust gas temperature, denitration rate, and CO oxidation rate.
FIG. 5 is an explanatory diagram of an exhaust gas purifying apparatus according to a conventional technique.
FIG. 6 is an explanatory view of an exhaust gas purifying apparatus according to another prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Exhaust gas purification catalyst, 3 ... High temperature denitration catalyst, 4 ... Pump, 5 ... Heating means, 6 ... Stripping device, 7 ... Heating means, 8 ... CO oxidation catalyst, 9 ... HRSG heat transfer tube, 10 ... Denitration catalyst, 11 ... Denitration catalyst having CO oxidation function.

Claims (3)

窒素酸化物と一酸化炭素を含む450〜600℃の排ガス中に還元剤としてアンモニアまたは尿素を添加した後、鉄置換型ゼオライトを第一成分、貴金属担持ゼオライトまたは貴金属担持多孔質シリカを第二成分として含み、両成分が混合された状態で存在し、かつ前記貴金属の含有量が第一成分と第二成分の総重量に対して0を越えて100ppm以下の範囲にある排ガス浄化用触媒に接触させ、前記窒素酸化物と一酸化炭素を除去することを特徴とする排ガスの浄化方法。After adding ammonia or urea as a reducing agent to 450 to 600 ° C exhaust gas containing nitrogen oxides and carbon monoxide, iron-substituted zeolite is the first component, noble metal-supported zeolite or noble metal-supported porous silica is the second component In contact with an exhaust gas purification catalyst that is present in a state where both components are mixed and the content of the noble metal is in the range of more than 0 to 100 ppm or less with respect to the total weight of the first component and the second component And removing the nitrogen oxides and carbon monoxide. 前記排ガスがガスタービン排ガスであることを特徴とする請求項1に記載の排ガスの浄化方法。The exhaust gas purification method according to claim 1, wherein the exhaust gas is a gas turbine exhaust gas. ガスタービンの排ガス中にアンモニアまたは尿素を添加した後、450〜600℃の温度下で脱硝反応活性を有する触媒に接触させ、該排ガスに含有する窒素酸化物を除去し、次いで、鉄置換型ゼオライトを第一成分、貴金属担持ゼオライトまたは貴金属担持多孔質シリカを第二成分として含み、両成分が混合された状態で存在し、かつ前記貴金属の含有量が第一成分と第二成分の総重量に対して0を越えて100ppm以下の範囲にある排ガス浄化用触媒に接触させて該排ガスに含有する一酸化炭素および未反応アンモニアを除去することを特徴とするガスタービン排ガスの浄化方法。After adding ammonia or urea to the exhaust gas of the gas turbine, it is brought into contact with a catalyst having a denitration reaction activity at a temperature of 450 to 600 ° C., nitrogen oxides contained in the exhaust gas are removed, and then iron-substituted zeolite The first component, noble metal-supported zeolite or noble metal-supported porous silica as the second component, both components are present in a mixed state, and the content of the noble metal is in the total weight of the first component and the second component. On the other hand, a method for purifying gas turbine exhaust gas, wherein carbon monoxide and unreacted ammonia contained in the exhaust gas are removed by contacting with an exhaust gas purifying catalyst in the range of more than 0 and not more than 100 ppm.
JP2002111890A 2002-04-15 2002-04-15 Exhaust gas purification method Expired - Lifetime JP4118077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111890A JP4118077B2 (en) 2002-04-15 2002-04-15 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111890A JP4118077B2 (en) 2002-04-15 2002-04-15 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2003305338A JP2003305338A (en) 2003-10-28
JP4118077B2 true JP4118077B2 (en) 2008-07-16

Family

ID=29394559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111890A Expired - Lifetime JP4118077B2 (en) 2002-04-15 2002-04-15 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4118077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024776U (en) * 1995-11-17 1996-05-31 瑞恵 金子 Scented pillow

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897669B2 (en) * 2005-03-30 2012-03-14 ズードケミー触媒株式会社 Ammonia decomposition method
JP4695962B2 (en) * 2005-10-20 2011-06-08 エヌ・イーケムキャット株式会社 Oxidation catalyst for exhaust gas purification, monolithic oxidation catalyst using the same, and exhaust gas purification method
JP2007330866A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Adsorbent for treating exhaust
KR20090114480A (en) * 2007-02-27 2009-11-03 바스프 카탈리스트 엘엘씨 Bifunctional catalysts for selective ammonia oxidation
JP5004084B2 (en) * 2007-09-06 2012-08-22 独立行政法人産業技術総合研究所 Method for catalytic reduction and removal of nitrogen oxides in exhaust gas
KR100889445B1 (en) * 2007-10-26 2009-03-24 즈도케미 쇼쿠바이 가부시키가이샤 Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
JP5319934B2 (en) * 2008-02-28 2013-10-16 三菱重工業株式会社 Exhaust gas treatment method and apparatus
GB0808200D0 (en) * 2008-05-06 2008-06-11 Invista Technologies Srl Power recovery
DE202009019007U1 (en) * 2008-05-07 2015-04-22 Umicore Ag & Co. Kg SCR catalyst for the reduction of nitrogen oxides in hydrocarbon-containing exhaust gases
US8741239B2 (en) * 2009-02-25 2014-06-03 General Electric Company Method and apparatus for operation of CO/VOC oxidation catalyst to reduce NO2 formation for gas turbine
US9003761B2 (en) * 2010-05-28 2015-04-14 General Electric Company System and method for exhaust gas use in gas turbine engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024776U (en) * 1995-11-17 1996-05-31 瑞恵 金子 Scented pillow

Also Published As

Publication number Publication date
JP2003305338A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
JP2732614B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4118077B2 (en) Exhaust gas purification method
JP2004237244A (en) Method and system for removing mercury in exhaust gas
CA2282174C (en) Method of denitrating exhaust gas
JPH09884A (en) Method and device for removing nitrous oxide or the like in exhaust gas and catalyst
JPH06319950A (en) Method and apparatus for exhaust gas denitration using solid reducing agent
JP2010142688A (en) Catalyst for selective catalytic reduction of nitrogen oxide
JP4216945B2 (en) Exhaust gas purification method
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JPH09234340A (en) Purification of exhaust gas containing oxidizable nitrogen compound
JP3285206B2 (en) Exhaust gas purification catalyst and method for producing the same
KR101142239B1 (en) Method and apparatus for treating ammonia-containing gas
JP2006068663A (en) Treatment method for exhaust gas containing nitrogen oxide and odor component
JP3337498B2 (en) Method for producing catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH11226360A (en) Waste gas cleaning method
JP3252669B2 (en) Exhaust gas treatment equipment
JP2003117352A (en) Method and device for cleaning exhaust gas
JP3388941B2 (en) Exhaust gas purification method
JPH07213908A (en) Catalyst for purifying exhaust gas and method therefor
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP3241216B2 (en) Exhaust gas denitration treatment method
JP3920612B2 (en) Exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Ref document number: 4118077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term