JPH09884A - Method and device for removing nitrous oxide or the like in exhaust gas and catalyst - Google Patents
Method and device for removing nitrous oxide or the like in exhaust gas and catalystInfo
- Publication number
- JPH09884A JPH09884A JP7150431A JP15043195A JPH09884A JP H09884 A JPH09884 A JP H09884A JP 7150431 A JP7150431 A JP 7150431A JP 15043195 A JP15043195 A JP 15043195A JP H09884 A JPH09884 A JP H09884A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- nitrous oxide
- reducing agent
- alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は排ガス中の亜酸化窒素な
どの除去法に係り、特に低温で排ガス中の亜酸化窒素お
よび一酸化窒素などを除去する方法と装置およびそのた
めの触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrous oxide in exhaust gas, and more particularly to a method and apparatus for removing nitrous oxide and nitric oxide in exhaust gas at low temperature and a catalyst therefor.
【0002】[0002]
【従来の技術】近年、大気中の二酸化炭素(CO2)の
増加に伴う地球温暖化現象、窒素酸化物(NOx)や硫
黄酸化物(SO2)による酸性雨に基づく森林の被害な
ど、地球レベルでの環境破壊が顕在化し、その対策が人
類の緊急課題となりつつある。これら地球レベルでの環
境破壊の一つとして、オゾン層の破壊があり、フロン、
メタンなどのほかに、亜酸化窒素(N2O)がその原因
物質の一つに挙げられている。特に近年は、各種燃焼器
から排出される酸性雨の原因物質であるNOxを低レベ
ルに抑えるため、低温燃焼が行われることが多くなって
おり、その場合にN2Oの排出量が増加することが知ら
れている。N2Oと同様に酸化窒素(NO)も環境破壊
物質の一つであり、NOの除去対策も種々検討されてい
る。2. Description of the Related Art In recent years, the global warming phenomenon caused by the increase of carbon dioxide (CO 2 ) in the atmosphere, the damage of forests due to acid rain caused by nitrogen oxides (NOx) and sulfur oxides (SO 2 ), etc. Environmental damage is becoming apparent at the level, and countermeasures against it are becoming an urgent issue for humankind. One of these environmental destructions at the global level is the destruction of the ozone layer.
In addition to methane, nitrous oxide (N 2 O) is listed as one of the causative substances. Particularly in recent years, low temperature combustion is often performed in order to suppress NOx, which is a causative substance of acid rain discharged from various combustors, to a low level, and in that case, the emission amount of N 2 O increases. It is known. Similar to N 2 O, nitric oxide (NO) is one of the environmentally destructive substances, and various measures for removing NO have been studied.
【0003】N2Oの除去方法としては、高温下で触媒
を用いて熱分解する方法が一般に知られており、亜鉛を
はじめとする各種元素の酸化物を触媒にしたものが研究
されている。As a method of removing N 2 O, a method of thermally decomposing using a catalyst at a high temperature is generally known, and a method using an oxide of various elements such as zinc as a catalyst has been studied. .
【0004】これとは別に本発明者らは、モルデナイ
ト、クリノプチライト、ホージャサイト、ゼオライト
Y、ペンタシル型ゼオライト、またはβ型ゼオライトに
Feまたは水素を置換した触媒でアンモニアによりN2
Oを還元する触媒とそのプロセスを発明し、特許出願
(特公平4−17084号、特願平5−213088
号)している。この除去プロセスは、図2に示すよう
に、燃焼器1から排出されたN2O、NOを含有する各
種排ガスの流路に設けられた反応器5中にN2O、NO
除去触媒が充填され、その上排ガス中にアンモニア6を
注入し、450℃以上の温度域でN2O、NOをアンモ
ニア6で還元するものである。Separately from this, the present inventors used N 2 with ammonia as a catalyst in which mordenite, clinoptilolite, faujasite, zeolite Y, pentasil-type zeolite, or β-type zeolite was replaced with Fe or hydrogen.
Invented a catalyst for reducing O and its process, and applied for a patent (Japanese Patent Publication No. 4-17084, Japanese Patent Application No. 5-213088).
No.) As shown in FIG. 2, this removal process is carried out in the reactor 5 provided in the flow path of various exhaust gases containing N 2 O and NO discharged from the combustor 1 and N 2 O and NO.
A removal catalyst is filled, and ammonia 6 is further injected into the exhaust gas to reduce N 2 O and NO with ammonia 6 in a temperature range of 450 ° C. or higher.
【0005】[0005]
【発明が解決しようとする課題】上記N2O、NOの除
去に関する従来技術のうち、Fe置換ゼオライトを使用
してアンモニアにより還元する方法は、十分な除去性能
を得るために少なくとも500℃以上を必要とするた
め,触媒の熱劣化等の問題を引き起こす。Among the conventional techniques for removing N 2 O and NO, the method of reducing with ammonia using Fe-substituted zeolite is at least 500 ° C. in order to obtain sufficient removal performance. Since it is necessary, it causes problems such as thermal deterioration of the catalyst.
【0006】そこで、本発明の目的は、上記した従来技
術に比較して、より低温で排ガス中のN2O、NOを除
去する方法と装置および触媒を提供することである。Therefore, an object of the present invention is to provide a method, an apparatus and a catalyst for removing N 2 O and NO in exhaust gas at a lower temperature as compared with the above-mentioned prior art.
【0007】また、本発明の目的は、還元剤を用いて排
ガス中のN2O、NOを除去する場合に、COやアンモ
ニアの流出が少ない排ガス中のN2O、NO除去方法と
装置および触媒を提供することにある。Further, an object of the present invention is to remove N 2 O and NO in exhaust gas by using a reducing agent, and a method and apparatus for removing N 2 O and NO in exhaust gas with less outflow of CO and ammonia. It is to provide a catalyst.
【0008】[0008]
【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、N2Oを含む排
ガス流路にモルデナイトおよびペンタシル型ゼオライト
の少なくともいずれかの担体に鉄を担持させた触媒(第
一触媒)を設置し、アルコールおよび炭化水素の少なく
ともいずれかの還元剤を注入して当該触媒上でN2Oと
反応させN2OをN2に還元することを特徴とする排ガス
中のN2Oの除去方法、または、N2OおよびNOを含む
排ガス中にモルデナイトおよびペンタシル型ゼオライト
の少なくともいずれかの担体に鉄を担持させた触媒を設
置し、アルコールおよび炭化水素の少なくともいずれか
の還元剤およびアンモニアを注入し、当該触媒上でN2
OおよびNOを窒素に還元することを特徴とする排ガス
中のN2OおよびNOの除去方法である。The above object of the present invention can be achieved by the following constitutions. That is, a catalyst (first catalyst) in which iron is supported on at least one carrier of mordenite and pentasil-type zeolite is installed in an exhaust gas flow path containing N 2 O, and a reducing agent for at least one of alcohol and hydrocarbon is installed. A method for removing N 2 O from exhaust gas, characterized by injecting and reacting with N 2 O on the catalyst to reduce N 2 O to N 2 , or mordenite in exhaust gas containing N 2 O and NO. A catalyst in which iron is supported on at least one of a carrier and a pentasil-type zeolite is installed, a reducing agent of at least one of alcohol and hydrocarbon and ammonia are injected, and N 2 is added on the catalyst.
A method for removing N 2 O and NO in exhaust gas, which is characterized by reducing O and NO to nitrogen.
【0009】本発明において、排ガス中にアンモニアを
注入するときは、その注入量を排ガス中のNO濃度の測
定値に比例させ、かつアルコールおよび炭化水素の少な
くともいずれかの還元剤の注入量を排ガス中のN2O濃
度の測定値に比例させて調整することが望ましい。In the present invention, when injecting ammonia into the exhaust gas, the injection amount is made proportional to the measured value of NO concentration in the exhaust gas, and the injection amount of the reducing agent of at least one of alcohol and hydrocarbon is adjusted to the exhaust gas. It is desirable to adjust in proportion to the measured value of the N 2 O concentration therein.
【0010】このように、本発明の上記第一触媒はN2
O分解活性およびNO分解活性を合わせ持つ触媒であ
る。Thus, the first catalyst of the present invention is N 2
It is a catalyst that has both O decomposition activity and NO decomposition activity.
【0011】ここで言うアルコールとは炭素数が比較的
少ないメタノール、エタノール、プロパノールなどを指
し、炭化水素とは炭素数が比較的少ないメタン、エタ
ン、メチレン、プロパン及びプロピレンなどを指す。Alcohol as used herein refers to methanol, ethanol, propanol or the like having a relatively low carbon number, and hydrocarbon refers to methane, ethane, methylene, propane, propylene or the like having a relatively low carbon number.
【0012】上記本発明の第一触媒であるFe担持ゼオ
ライト触媒を用い、還元剤にアルコールおよび/または
炭化水素を用いる方法は従来のアンモニアを還元剤とす
る方法より低温でN2O、NOを除去できる優れた方法
であるが、条件によっては、アルコールおよび/または
炭化水素の分解によってCOを生成するため、排ガス煙
道出口から流出し易いという問題を有していた。特にア
ルコールの場合、排ガス煙道内にアルコール溶液を注入
するため、アルコール溶液供給系の負荷変動に対する追
従性が悪く、N2O、NO変動に追従して還元剤濃度を
抑制することが困難となり、このため公知のN2O除去
性能だけを有する触媒を用いた場合、N2O除去率を一
定以上に高くするために還元剤を過剰に注入する必要が
生じ、より多量のCOが流出するという現象を生じる。
さらに、NOを同時に除去する場合には、NOの還元剤
としてNH3を用いるため、COだけでなくアンモニア
が流出するという問題を生じる。The method of using the Fe-supported zeolite catalyst, which is the first catalyst of the present invention, and alcohol and / or hydrocarbon as the reducing agent, produces N 2 O and NO at a lower temperature than the conventional method using ammonia as the reducing agent. Although it is an excellent method that can be removed, it has a problem that CO is produced by the decomposition of alcohol and / or hydrocarbon depending on the conditions, and therefore CO easily flows out from the exhaust gas flue outlet. Particularly in the case of alcohol, since the alcohol solution is injected into the exhaust gas flue, the ability to follow the load fluctuation of the alcohol solution supply system is poor, and it becomes difficult to suppress the reducing agent concentration by following the N 2 O and NO fluctuations. Therefore, when a known catalyst having only N 2 O removal performance is used, it is necessary to excessively inject a reducing agent in order to increase the N 2 O removal rate above a certain level, and a larger amount of CO flows out. Cause a phenomenon.
Furthermore, when removing NO at the same time, NH 3 is used as a reducing agent for NO, which causes a problem that ammonia as well as CO flows out.
【0013】本発明は上記還元剤にアルコールおよび/
または炭化水素を用いる脱硝方法を改善する次の構成も
含まれる。In the present invention, the reducing agent is alcohol and / or
Alternatively, the following configuration for improving the denitration method using hydrocarbon is also included.
【0014】排ガス中のN2Oをアルコールおよび炭化
水素の少なくともいずれかの還元剤を用いて接触的に還
元除去する方法において、CO分解活性とN2O分解活
性とを合わせ持つ触媒を用いる排ガス中のN2Oの除去
方法、または、排ガス中のN2O、NOおよびCOをN
H3、アルコールおよび炭化水素の少なくともいずれか
の還元剤を用いて接触的に還元除去する方法において、
CO分解活性とNH3分解活性とN2O分解活性とNO分
解活性とを合わせ持つ触媒を用いる排ガス中のN2O、
NOの除去方法である。In a method of catalytically reducing and removing N 2 O in exhaust gas using at least one reducing agent of alcohol and hydrocarbon, exhaust gas using a catalyst having both CO decomposition activity and N 2 O decomposition activity Method for removing N 2 O in the exhaust gas or N 2 O, NO and CO in exhaust gas
In the method of catalytically reducing and removing using a reducing agent of at least one of H 3 , alcohol and hydrocarbon,
N 2 O in the exhaust gas using a catalyst having both a CO decomposition activity and NH 3 decomposing activity and N 2 O decomposition activity and NO decomposition activity,
This is a method of removing NO.
【0015】本発明の上記CO分解活性とNH3分解活
性とN2O分解活性とNO分解活性とを合わせ持つ触媒
(第二触媒)は、鉄(Fe)を担持したゼオライトを第
1成分、白金(Pt)またはパラジウム(Pd)から選
ばれる貴金属塩類またはゼオライト、アルミナ、シリカ
などの多孔体に予め担持された貴金属組成物を第2成分
とした触媒組成物を用いることができる。The catalyst (second catalyst) of the present invention having both the CO decomposing activity, the NH 3 decomposing activity, the N 2 O decomposing activity and the NO decomposing activity comprises a zeolite carrying iron (Fe) as the first component, A catalyst composition containing a noble metal salt selected from platinum (Pt) or palladium (Pd) or a noble metal composition previously supported on a porous material such as zeolite, alumina, or silica as a second component can be used.
【0016】第1成分を担持するゼオライトとしてはモ
ルデナイト、ペンタシル型ゼオライトなどが脱硝率、N
2O除去率ともに好結果を与え、好ましい。As the zeolite carrying the first component, mordenite, pentasil-type zeolite and the like have a denitrification rate of N
2 O removal rate is preferable because it gives good results.
【0017】また、アルコールおよび炭化水素の少なく
ともいずれかの還元剤またはこれに加えてアンモニアを
用いて上記第一触媒または第二触媒を充填した触媒層に
排ガスを通過させる排ガス中のN2Oまたは/およびN
Oの除去装置も本発明の範囲内のものである。Further, N 2 O in exhaust gas or N 2 O contained in the exhaust gas is passed through a catalyst layer filled with the first catalyst or the second catalyst using a reducing agent of at least one of alcohol and hydrocarbon or ammonia in addition to the reducing agent. / And N
An O removing device is also within the scope of the present invention.
【0018】[0018]
【作用】本発明者らが鋭意検討した結果、鉄(Fe)を
担持したモルデナイトおよび/またはペンタシル型のゼ
オライト触媒(第一触媒)上ではアルコールおよび/ま
たは炭化水素によるN2O還元反応が、従来のアンモニ
ア還元より低温で進行することから明らかになった。さ
らに、この反応はFeを担持したゼオライト触媒上での
み進行し、Fe以外の物質を活性成分としたゼオライト
触媒やゼオライト以外の担体にFeを担持した触媒では
ほとんど進行しないことが判明した。As a result of earnest studies by the present inventors, N 2 O reduction reaction by alcohol and / or hydrocarbon on the mordenite and / or pentasil type zeolite catalyst (first catalyst) supporting iron (Fe) It became clear from the fact that it proceeds at a lower temperature than conventional ammonia reduction. Further, it has been found that this reaction proceeds only on the zeolite catalyst supporting Fe, and hardly progresses on the zeolite catalyst using a substance other than Fe as an active component or the catalyst supporting Fe on a carrier other than zeolite.
【0019】図3にFe担持モルデナイト触媒を用いる
N2O除去に関するN2Oとメタノール、プロパンとのモ
ル比特性及びNOとメタノールとのモル比特性を示す。
これからN2Oとアルコール及びN2Oと炭化水素とはそ
れぞれ1対1のモル比で反応することが分かる。すなわ
ち十分なN2O除去率を得るために必要なアルコール及
び炭化水素の注入量はN2Oに対してほぼ等モル量であ
り,大過剤の注入は触媒層気出口からの流出を招き、好
ましくない。[0019] FIG 3 N 2 O and methanol about N 2 O removal using a Fe supported mordenite catalyst, the molar ratio characteristics of the molar ratio characteristic and NO and methanol and propane.
From this, it can be seen that N 2 O and alcohol and N 2 O and hydrocarbon react at a molar ratio of 1: 1 respectively. That is, the injection amount of alcohol and hydrocarbon required to obtain a sufficient N 2 O removal rate is almost equimolar to N 2 O, and the injection of the large catalyst causes the outflow from the catalyst layer gas outlet. , Not preferable.
【0020】さらに、図3から明らかなように、NOは
アルコールとほとんど反応しない(図3の縦軸のN2O
除去率をNO除去率と読み替えるものとする。)。すな
わち、1モルのNOと1モルのNH3で反応が進み、N2
Oとアルコールまたは炭化水素との反応も等モルで反応
が進む。したがって、NOとN2Oが共存する場合には
NH3とアルコール又は炭化水素を併用し、NH3はNO
と等モル量、アルコール及び炭化水素の注入量はN2O
と等モル量注入すると、脱硝率及びN2O除去率ともに
好結果が得られる。Further, as is clear from FIG. 3, NO hardly reacts with alcohol (N 2 O on the vertical axis of FIG. 3).
The removal rate shall be read as the NO removal rate. ). That is, the reaction proceeds with 1 mol of NO and 1 mol of NH 3 , and N 2
The reaction of O with alcohol or hydrocarbon proceeds in an equimolar manner. Therefore, when NO and N 2 O coexist, NH 3 and alcohol or hydrocarbon are used together, and NH 3 is NO.
The amount of alcohol and hydrocarbon injected is equimolar to N 2 O
When the same molar amount is injected, good results are obtained for both the denitration rate and the N 2 O removal rate.
【0021】また、図2において、触媒層2に本発明の
第二触媒を充填する場合には、燃焼器1の排ガスは触媒
層2に導入され、触媒層2中のFe/ゼオライトなどの
本発明の第二触媒の第1成分の作用により、アルコール
および/または炭化水素の還元剤6とN2Oが反応器5
中で反応してN2Oが窒素(N2)に還元される。この
時、アルコールおよび/または炭化水素の一部は分解し
てCOを生成する。しかし、本発明による第二触媒を用
いれば、生成したCOは第二触媒中の貴金属の作用によ
り酸化されて無害なCO2となるため、触媒層2からの
COの流出を防ぐことができる。そして、浄化された排
ガスは熱交換器3で熱交換した後、煙突4から排出され
る。また、アルコールおよび/または炭化水素の注入の
不均一さやN2Oの変動を見込んで過剰の還元剤6を注
入しても多量のCOを流出することがない。Further, in FIG. 2, when the catalyst layer 2 is filled with the second catalyst of the present invention, the exhaust gas of the combustor 1 is introduced into the catalyst layer 2 and Fe / zeolite or the like in the catalyst layer 2 is introduced. By the action of the first component of the second catalyst of the invention, the alcohol and / or hydrocarbon reducing agent 6 and N 2 O are converted into the reactor 5
Reacting in to reduce N 2 O to nitrogen (N 2 ). At this time, part of the alcohol and / or hydrocarbon is decomposed to generate CO. However, when the second catalyst according to the present invention is used, the produced CO is oxidized by the action of the noble metal in the second catalyst and becomes harmless CO 2 , so that the outflow of CO from the catalyst layer 2 can be prevented. Then, the purified exhaust gas exchanges heat with the heat exchanger 3 and is then discharged from the chimney 4. Further, even if an excessive reducing agent 6 is injected in anticipation of non-uniform injection of alcohol and / or hydrocarbon and fluctuation of N 2 O, a large amount of CO does not flow out.
【0022】さらに、排ガス中のNOを同時除去する場
合において、NOの還元剤としてアンモニアを使用して
NOをN2に還元する場合にも、反応に使用されなかっ
たアンモニアは本発明の第二触媒が充填された触媒層2
中の貴金属の作用により酸化され無害なN2と水に分解
されるため、出口側への流出を防ぐことができる。Furthermore, in the case of simultaneously removing NO in exhaust gas, when ammonia is used as a reducing agent for NO to reduce NO to N 2 , the ammonia not used in the reaction is the second aspect of the present invention. Catalyst layer 2 filled with catalyst
Oxidized by the action of the precious metal inside and decomposed into harmless N 2 and water, it is possible to prevent outflow to the outlet side.
【0023】[0023]
【実施例】以下、本発明を実施例を用いて詳細に説明す
る。 実施例1 本発明の第一触媒に相当する触媒調製例を次のようにし
て行った。モルデナイト(東ソー(株)製TSZ−65
0X0A、SiO2/A12O3比=23)50gを硝酸
鉄(Fe2(NO3)3・9H2O)18kgを含む水溶液
100ml中に投入後、砂浴上150℃で撹拌しながら
蒸発乾固した。得られた粉末を油圧プレスを用い3to
n/cm2でペレット状に成形し、さらにこれを破砕し
て10〜20メッシュの触媒を得た。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. Example 1 A catalyst preparation example corresponding to the first catalyst of the present invention was carried out as follows. Mordenite (TSZ-65 manufactured by Tosoh Corporation)
0x0A, after turning into an aqueous solution 100ml containing SiO 2 / A1 2 O 3 ratio = 23) of iron nitrate and 50g (Fe 2 (NO 3) 3 · 9H 2 O) 18kg, with stirring over 0.99 ° C. sand bath evaporated Dried up. The obtained powder is 3to using a hydraulic press.
It was molded into a pellet at n / cm 2 , and further crushed to obtain a 10 to 20 mesh catalyst.
【0024】反応管に前記調製した触媒を充填し、N2
Oを含む摸擬ガスを流通させ、反応管上流からCH3O
H7.1gを水1リットルに溶かして調製した水溶液を
注入し、表1の条件でN2O除去試験を行った。A reaction tube was filled with the above-prepared catalyst, and N 2
A pseudo gas containing O is circulated, and CH 3 O is supplied from the upstream side of the reaction tube.
An aqueous solution prepared by dissolving 7.1 g of H in 1 liter of water was injected, and a N 2 O removal test was conducted under the conditions shown in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】比較例1 CH3OHの代わりにNH3を用い、NH3/N2Oの比率
(モル比)を1.2とした以外は実施例1と同様にして
N2O除去試険を行った。Comparative Example 1 N 2 O removal test was conducted in the same manner as in Example 1 except that NH 3 was used instead of CH 3 OH and the ratio (molar ratio) of NH 3 / N 2 O was 1.2. I went.
【0027】実施例1及び比較例1の試験結果を第1図
に示した。本図から明らかなように、本発明による方法
は従来の方法よりも同一温度でのN2O除去性能が高
く、より低温でN2O除去が可能であることが分かる。The test results of Example 1 and Comparative Example 1 are shown in FIG. As is clear from this figure, the method according to the present invention has higher N 2 O removal performance at the same temperature than the conventional method, and it is possible to remove N 2 O at a lower temperature.
【0028】実施例2〜8 実施例1の触媒を用いて還元剤のCH3OHをC2H5O
H、C3H8OH、CH4、C2H8、C2H6、C3H8及び
C3H8にそれぞれ換えて、そのほかは実施例1と同様に
してN2O除去率を測定した。Examples 2 to 8 Using the catalyst of Example 1, the reducing agent CH 3 OH was replaced with C 2 H 5 O.
H, C 3 H 8 OH, instead each CH 4, C 2 H 8, C 2 H 6, C 3 H 8 and C 3 H 8, the other is N 2 O removal ratio in the same manner as in Example 1 It was measured.
【0029】[0029]
【表2】 [Table 2]
【0030】表2に実施例1〜8及び比較例1の各還元
剤による450℃でのN2O除去率を示した。還元剤と
してアルコール及び炭化水素を用いると、いずれも従来
のNH3法より高いN20除去率が得られる。Table 2 shows the N 2 O removal rates at 450 ° C. by the reducing agents of Examples 1 to 8 and Comparative Example 1. When alcohol and hydrocarbon are used as the reducing agent, a higher N 2 0 removal rate than that of the conventional NH 3 method can be obtained.
【0031】実施例9 実施例1の触媒調製例のモルデナイトをペンタシル型ゼ
オライト(PQ社製ZSM−5、SiO2/Al2O3比
=30)に変更して他は同様にして触媒を調製した。こ
の触媒を用い、そのほかは実施例1と同機に模擬ガス中
のN2O除去試験を行った。Example 9 A catalyst was prepared in the same manner as in Example 1, except that the mordenite of the catalyst preparation example was changed to a pentasil-type zeolite (ZSM-5 manufactured by PQ, SiO 2 / Al 2 O 3 ratio = 30). did. A test for removing N 2 O in a simulated gas was conducted on the same machine as in Example 1 except that this catalyst was used.
【0032】比較例2、3 実施例1の硝醸鉄を酢酸銅(Cu(NO3)2・3H
20)9.53g、硝酸コバルト(Co(NO3)2・6
H20)12.5gに変更して、他は触媒調製例1と同
様にして触媒を認製した。この触媒を用い、そのほかは
実施例1と同様にN2O除去試験を行った。Comparative Examples 2 and 3 The iron nitrate of Example 1 was mixed with copper acetate (Cu (NO 3 ) 2 .3H).
2 0) 9.53 g, cobalt nitrate (Co (NO 3) 2 · 6
Change in H 2 0) 12.5g, others were認製the catalyst in the same manner as in Catalyst Preparation Example 1. Using this catalyst, a N 2 O removal test was conducted in the same manner as in Example 1 except for the above.
【0033】比較例4 実施例1のモルデナイトをメタチタン酸スラリ(TiO
2含有量30wt%、S04含有量8wt%)167gに
変更して、他は同様にして触媒を調製した。この触媒を
用い、そのほかは実施例1と同機にN2O除去試験を行
った。表3に実施例9及び比較例2〜4の結果を示す。Comparative Example 4 The mordenite of Example 1 was mixed with a slurry of metatitanate (TiO 2).
2 content 30 wt%, and change the S0 4 content 8 wt%) 167 g, the other A catalyst was prepared in the same manner. Using this catalyst, a N 2 O removal test was conducted on the same equipment as in Example 1 except for the above. Table 3 shows the results of Example 9 and Comparative Examples 2 to 4.
【0034】[0034]
【表3】 [Table 3]
【0035】表3の結果から、アルコールを用いれば、
担体であるゼオライトをペンタシル型ゼオライトに代え
てもNH3より高いN2O除去性能が得られる。一方、F
e以外の活性成分を担持したゼオライト触媒及びFeを
担持したチタニアでは、いずれもN2O除去活性は低
く、本発明による組み合わせのみが優れていることが分
かる。From the results shown in Table 3, if alcohol is used,
Even if the zeolite that is a carrier is replaced with a pentasil-type zeolite, N 2 O removal performance higher than NH 3 can be obtained. On the other hand, F
It can be seen that both the zeolite catalyst supporting an active component other than e and the titania supporting Fe have low N 2 O removing activity, and only the combination according to the present invention is excellent.
【0036】実施例10 反応管に実施例1で調製した触媒を充填し、NOとN2
Oを含む模擬ガスを流通させ、反応管上流側からNH3
(濃度2%−残りN2)とCH3OH7.1gを水1リッ
トルに溶かして調製した水溶液を注入し、表4の条件で
NO及びN2O除去試験を行った。Example 10 A reaction tube was filled with the catalyst prepared in Example 1, and NO and N 2 were added.
A simulated gas containing O is circulated, and NH 3 is supplied from the upstream side of the reaction tube.
An aqueous solution prepared by dissolving (concentration 2% -remaining N 2 ) and 7.1 g of CH 3 OH in 1 liter of water was injected, and NO and N 2 O removal test was conducted under the conditions of Table 4.
【0037】[0037]
【表4】 [Table 4]
【0038】表4でCH3OHの濃度がN2O濃度の1.
2倍になっている理由は、触媒の性能を安定に評価する
ために当量以上注入しているためである。また、NH3
の濃度がNO濃度の1.2倍としている点も同様の理由
である。その結果、NO除去率は80.0%、N2O除
去率は65.5%であった。[0038] Table 4 1 Concentration of CH 3 OH is N 2 O concentration.
The reason for the doubling is that the equivalent amount or more is injected to stably evaluate the performance of the catalyst. Also, NH 3
The reason is that the concentration is 1.2 times the NO concentration for the same reason. As a result, the NO removal rate was 80.0% and the N 2 O removal rate was 65.5%.
【0039】実施例11 本実施例は実施例10と同様に反応管に実施例1で調製
した触媒を充填し、NOとN2Oを含む模擬ガスとNH3
とCH3OHを含む水溶液を注入する方法で試験を行っ
た。そのとき、NH3とアルコールおよび/または炭化
水素の注入量のコントロールについて、NH3量はNO
濃度に、アルコールおよび/または炭化水素量はN2O
濃度にそれぞれ比例させて各々独立に注入量を制御して
行った。具体的には次の表5のようにNH3、アルコー
ルおよび炭化水素の注入量を変えた。Example 11 In this example, as in Example 10, the reaction tube was filled with the catalyst prepared in Example 1, and a simulated gas containing NO and N 2 O and NH 3 were added.
The test was carried out by injecting an aqueous solution containing CH 3 OH and CH 3 OH. At that time, regarding the control of the injection amount of NH 3 and alcohol and / or hydrocarbon, the NH 3 amount is NO
Depending on the concentration, the amount of alcohol and / or hydrocarbon is N 2 O
The injection amount was controlled independently in proportion to the concentration. Specifically, the injection amounts of NH 3 , alcohol and hydrocarbon were changed as shown in Table 5 below.
【0040】[0040]
【表5】 [Table 5]
【0041】条件1に対して条件2はN2O濃度が増
加、NO濃度が減少する場合で、それにあわせてCH3
OHは増加、NH3は減少するように注入する。条件3
はその逆でN2O濃度が減少、NO濃度が増加する場合
で、それにあわせてCH3OH濃度は減少、NH3濃度は
増加するように注入する。N2O及びNOの除去率はこ
の程度の変化ではN2O及びNOの濃度には依存しない
ので同様である。[0041] Condition 2 for the condition 1 is increased N 2 O concentration, in the case where NO concentration decreases, CH 3 accordingly
Inject so that OH increases and NH 3 decreases. Condition 3
In the opposite case, the N 2 O concentration is decreased and the NO concentration is increased, and the CH 3 OH concentration is decreased and the NH 3 concentration is increased accordingly. Removal rate of N 2 O and NO is the same does not depend on the concentration of N 2 O and NO in a change in this degree.
【0042】実施例12 本発明の第二触媒として、次のような手順で触媒を調製
した。モルデナイト(東ソー(株)製、SiO2/Al
2O3比=23)50kgを水100kgに硝酸鉄(F
e2(NO3)3・9H2O)18kgを溶かした水溶
液中に投入後、砂浴上150℃で撹拌しながら蒸発乾固
した。これを空気中500℃で2時間焼成して3wt%
のFeを担持したモルデナイトを調製し、第1成分であ
るN2O除去触媒を得た。Example 12 As the second catalyst of the present invention, a catalyst was prepared by the following procedure. Mordenite (Tosoh Co., Ltd., SiO 2 / Al
50 kg of 2 O 3 ratio = 23) in 100 kg of water and iron nitrate (F
e 2 (NO 3) 3 · 9H 2 O) after turning 18kg in an aqueous solution by dissolving, and evaporated to dryness with stirring on a 0.99 ° C. sand bath. 3 wt% by firing this in air at 500 ° C for 2 hours
Mordenite supporting Fe was prepared to obtain the N 2 O removal catalyst as the first component.
【0043】一方、塩化白金酸(H2[PtCl6]・
6H2O)0.665gを水1リットルに溶解したもの
に、市販微粒シリカ粉末(富田製薬(株)製、マイコン
F)500gを加え、砂浴上で蒸発乾固した。これを空
気中で500℃で2時間焼成して0.05wt%のPt
を担持したSiO2を調製し、第2成分を得た。On the other hand, chloroplatinic acid (H 2 [PtCl 6 ].
6H 2 O) 0.665 g was dissolved in 1 liter of water, and 500 g of commercially available fine silica powder (manufactured by Tomita Pharmaceutical Co., Ltd., Microcomputer F) was added, and the mixture was evaporated to dryness on a sand bath. This was baked in air at 500 ° C. for 2 hours to obtain 0.05 wt% Pt.
The SiO 2 is prepared carrying, to obtain a second component.
【0044】これとは別に、繊維径9μmのEガラス繊
維1400本の捻糸を10本/インチの粗さで平織りし
た網状物にチタニア40%、シリカゾル20%、ポリビ
ニールアルコール1%のスラリを含浸させ、150℃で
乾燥して剛性を持たせ触媒基材を得た。Separately from this, a net of 1400 threads of E glass fiber having a fiber diameter of 9 μm and having a roughness of 10 threads / inch was plain woven with a slurry of 40% titania, 20% silica sol and 1% polyvinyl alcohol. It was impregnated and dried at 150 ° C. to have rigidity to obtain a catalyst substrate.
【0045】第1成分20kgと第2成分816gに硝
酸(60%含有)430ミリリットル、活性アルミナ
8.95kg、水31kg、シリカアルミナ系無機繊維
8.95kgを加えてニーダで混練し、触媒ペーストを
得た。上記2枚の触媒基材の間に調製したペースト状触
媒混合物を置き、加圧ローラを通過させることにより基
材の網目間および表面に触媒を圧着して厚さ約1.5m
mの板状触媒を得た。得られた触媒は、180℃で2時
間乾燥後、大気中で500℃で2時間焼成した。本触媒
中の第1成分と第2成分の比は4/96であり、Pt含
有量は触媒基材・無機繊維を除いて20ppmに相当す
る。To 20 kg of the first component and 816 g of the second component, 430 ml of nitric acid (containing 60%), 8.95 kg of activated alumina, 31 kg of water, and 8.95 kg of silica-alumina inorganic fiber were added and kneaded with a kneader to obtain a catalyst paste. Obtained. The prepared catalyst mixture in paste form is placed between the above two catalyst substrates, and the catalyst is pressure-bonded between the meshes and the surface of the substrate by passing through a pressure roller to a thickness of about 1.5 m.
m plate catalyst was obtained. The obtained catalyst was dried at 180 ° C. for 2 hours and then calcined in the air at 500 ° C. for 2 hours. The ratio of the first component to the second component in this catalyst was 4/96, and the Pt content was 20 ppm excluding the catalyst base material and the inorganic fibers.
【0046】比較例5 実施例12において、第2成分を添加しないで、その他
は同様に触媒を調製した。Comparative Example 5 A catalyst was prepared in the same manner as in Example 12, except that the second component was not added.
【0047】実験例1 上記実施例12および比較例5の触媒を幅20mm×長
さ100mmに切断したものを3mm間隔で反応器に3
枚充填し、その上部に磁製ラシヒリングを充填した。反
応器上流からN2Oを含む模擬ガスを流通させ、さらに
還元剤としてメタノール(CH3OH)7.1gを水1
リットルに溶かして調製した水溶液を注入してラシヒリ
ング上で蒸発させ、表6の条件で、メタノールをN2O
に対して変化させた時のN2O除去率およびCO流出量
を測定した。結果を図4に示す。Experimental Example 1 The catalysts obtained in Example 12 and Comparative Example 5 were cut into a piece having a width of 20 mm and a length of 100 mm.
One piece was filled, and a porcelain Raschig ring was filled on the top. A simulated gas containing N 2 O was circulated from the upstream of the reactor, and 7.1 g of methanol (CH 3 OH) as a reducing agent was added to water 1
An aqueous solution prepared by dissolving in liter was poured and evaporated on Raschig rings, and methanol was added to N 2 O under the conditions shown in Table 6.
The N 2 O removal rate and the CO outflow rate were measured when the ratio was changed with respect to. FIG. 4 shows the results.
【0048】[0048]
【表6】 [Table 6]
【0049】図4に示すように実施例12の触媒を用い
た場合、メタノール/N2Oのモル比を大きくするとN2
O除去率は比較例5と同等に高く、しかも出口CO流出
量は10数ppmと低い。一方、比較例5の触媒を用い
た場合では還元剤/N2Oモル比の増加に伴って出口か
らのCO流出量が増加する。この結果から、本発明の方
法により従来技術の問題点であるCOの流出を防止する
ことができ、さらに、還元剤を過剰注入した場合にもC
O流出を防げることが分かる。As shown in FIG. 4, when the catalyst of Example 12 was used, when the molar ratio of methanol / N 2 O was increased, N 2
The O removal rate is as high as that of Comparative Example 5, and the outlet CO outflow rate is as low as 10's of ppm. On the other hand, when the catalyst of Comparative Example 5 is used, the amount of CO outflow from the outlet increases as the reducing agent / N 2 O molar ratio increases. From this result, the method of the present invention can prevent the outflow of CO, which is a problem of the prior art, and further, even when the reducing agent is excessively injected, C
It turns out that O can be prevented.
【0050】実施例13 実施例12における塩化白金酸を、硝酸パラジウム(P
d(NO3)3)に替えて、それぞれ担持量が0.05w
tになるように調製した。これを第2成分とし、その他
は実施例12と同じにして板状触媒を調製した。Example 13 The chloroplatinic acid in Example 12 was converted into palladium nitrate (P
Instead of d (NO 3 ) 3 ), each carrying amount is 0.05w
It was prepared to be t. A plate-like catalyst was prepared in the same manner as in Example 12 except that this was the second component.
【0051】実施例14、15 実施例12の微粒シリカ粉末(富田製薬(株)製,マイ
コンF)を、モルデナイト粉末およびγアルミナ粉末
(住友化学(株)製)に替えて、その他は同様にしてそ
れぞれ第2成分を調製し、実施例12の第1成分を用い
て板状触媒を調製した。Examples 14 and 15 The fine silica powder of Example 12 (manufactured by Tomita Pharmaceutical Co., Ltd., Microcomputer F) was replaced with mordenite powder and γ-alumina powder (manufactured by Sumitomo Chemical Co., Ltd.), and the others were the same. To prepare a second component, and the first component of Example 12 was used to prepare a plate catalyst.
【0052】実施例16 実施例12のモルデナイト(東ソー(株)製、SiO2
/Al2O3比=23)をZSM−5(PQ社製、ペンタ
シル型ゼオライトSiO2/Al2O3比=30)に替え
て、その他は実施例12と同様にして第1成分を調製し
た。さらに実施例12の第2成分を用いて実施例12と
同様にして板状触媒を調製した。Example 16 Mordenite of Example 12 (manufactured by Tosoh Corporation, SiO 2
/ Al 2 O 3 ratio = 23) was replaced with ZSM-5 (PQ, pentasil-type zeolite SiO 2 / Al 2 O 3 ratio = 30), and otherwise the first component was prepared in the same manner as in Example 12. did. Furthermore, a plate-like catalyst was prepared in the same manner as in Example 12 using the second component of Example 12.
【0053】実験例2 実施例12〜16の触媒を用い、そのほかは実験例1と
同様にして還元剤/N2Oモル比が1.2および1.5
の時のN2O除去率およびCO流出量をそれぞれ測定し
た。結果を表7に示す。Experimental Example 2 The catalysts of Examples 12 to 16 were used, and the same as in Experimental Example 1 except that the reducing agent / N 2 O molar ratios were 1.2 and 1.5.
At that time, the N 2 O removal rate and the CO outflow rate were measured. Table 7 shows the results.
【0054】[0054]
【表7】 [Table 7]
【0055】本結果から、本発明による方法により、還
元剤の分解により生じるCOの出口側への流出を防止す
ることが分かる。From these results, it can be seen that the method according to the present invention prevents the outflow of CO, which is caused by the decomposition of the reducing agent, to the outlet side.
【0056】実験例3および4 実施例12の触媒を用い、還元剤のメタノールをエタノ
ール、メタンに替えてその他は実験例1と同様にして還
元剤/N2Oモル比が1.5の時のN2O除去率およびC
O流出量をそれぞれ測定した。還元剤をエタノールおよ
びメタンに替えてもN2O除去率はそれぞれ65および
66%と、メタノールの場合と同じく高い除去率が得ら
れ、かつ出口側から流出するCOの量はそれぞれ10お
よび12ppmであり、還元剤を替えても同様の効果が
得られた。Experimental Examples 3 and 4 Using the catalyst of Example 12, the reducing agent methanol was replaced by ethanol and methane, and the same as in Experimental Example 1 except that the reducing agent / N 2 O molar ratio was 1.5. N 2 O removal rate and C
The amount of O 2 outflow was measured. Even if the reducing agent was changed to ethanol and methane, the N 2 O removal rates were 65 and 66%, respectively, and the high removal rates were obtained as in the case of methanol, and the amount of CO flowing out from the outlet side was 10 and 12 ppm, respectively. The same effect was obtained even if the reducing agent was changed.
【0057】実験例5 表1のガス組成にNOを200ppmとなるように調製
し、N2Oの還元剤としてメタノールをN2Oに対して
1.5mol/molで注入し、それとは別にNOの還
元剤としてNH3をNOに対して1.2mol/mol
となるように反応器上流側から注入して、実施例12の
触媒を用いてその他は実験例1と同様にしてN2Oおよ
びNO除去試験を行い、N2O除去率、脱硝率、出口C
Oおよびアンモニア流出量を測定した。その結果、N2
O除去率は73%、脱硝率は96%で、出口からのCO
流出量は11ppmであり、かつNH3流出量は数pp
mで検出限界以下であった。[0057] was prepared so as to 200ppm NO to the gas composition in Experimental Example 5 Table 1, methanol was injected at 1.5 mol / mol relative to N 2 O as N 2 O of the reducing agent, separately NO from that As a reducing agent for NH 3 with respect to NO, 1.2 mol / mol
Is injected from the reactor upstream so that, other using the catalyst of Example 12 performed N 2 O and NO removal test in the same manner as in Experimental Example 1, N 2 O removal ratio, denitrification rate, outlet C
O and ammonia effluent were measured. As a result, N 2
O removal rate is 73%, denitration rate is 96%, CO from the outlet
Outflow is 11 ppm, and NH 3 outflow is several pp
m was below the detection limit.
【0058】本結果から、本発明の方法により、還元剤
としてNH3を用いた場合にも未反応のアンモニアの流
出を防げることが分かる。From these results, it is understood that the method of the present invention can prevent the outflow of unreacted ammonia even when NH 3 is used as the reducing agent.
【0059】[0059]
【発明の効果】本発明により、オゾン層の破壊物質であ
るN2Oの除去を350〜450℃において効率よく行
うことができる。また、本発明により、高除去率を得る
ための還元剤過剰注入の際に問題となるCO、アンモニ
アの流出を防ぐことができる。According to the present invention, N 2 O, which is a substance depleting the ozone layer, can be efficiently removed at 350 to 450 ° C. Further, according to the present invention, it is possible to prevent the outflow of CO and ammonia, which is a problem when the reducing agent is excessively injected to obtain a high removal rate.
【図1】 本発明の実施例1および比較例1の比較を示
す図である。FIG. 1 is a diagram showing a comparison between Example 1 and Comparative Example 1 of the present invention.
【図2】 脱硫プロセスを示すフロー図である。FIG. 2 is a flow chart showing a desulfurization process.
【図3】 本発明のメタノール、プロパンによるN2O
のモル比特性及びメタノールによるNOのモル比特性を
示す図である。FIG. 3 N 2 O with methanol and propane of the present invention
FIG. 3 is a diagram showing the molar ratio characteristic of NO and the molar ratio characteristic of NO with methanol.
【図4】 本発明の実施例12および比較例5の比較を
示す図である。FIG. 4 is a diagram showing a comparison between Example 12 of the present invention and Comparative Example 5.
1…燃焼器、2…N2O除去用触媒、3…熱交換器、4
…煙突、5…反応器、6…還元剤1 ... combustor, 2 ... N 2 O removing catalyst, 3 ... heat exchanger, 4
... chimney, 5 ... reactor, 6 ... reducing agent
Claims (8)
イトおよびペンタシル型ゼオライトの少なくともいずれ
かの担体に鉄を担持させた触媒を設置し、アルコールお
よび炭化水素の少なくともいずれかの還元剤を注入して
当該触媒上で亜酸化窒素と反応させ亜酸化窒素を窒素に
還元することを特徴とする排ガス中の亜酸化窒素の除去
方法。1. A catalyst having iron supported on at least one carrier of mordenite and pentasil-type zeolite is installed in an exhaust gas passage containing nitrous oxide, and a reducing agent of at least one of alcohol and hydrocarbon is injected. A method for removing nitrous oxide in exhaust gas, which comprises reacting nitrous oxide on the catalyst to reduce nitrous oxide to nitrogen.
ス中にモルデナイトおよびペンタシル型ゼオライトの少
なくともいずれかの担体に鉄を担持させた触媒を設置
し、アルコールおよび炭化水素の少なくともいずれかの
還元剤およびアンモニアを注入し、当該触媒上で亜酸化
窒素および一酸化窒素を窒素に還元することを特徴とす
る排ガス中の亜酸化窒素および一酸化窒素の除去方法。2. A catalyst in which iron is supported on a carrier of at least one of mordenite and pentasil-type zeolite is installed in an exhaust gas containing nitrous oxide and nitric oxide, and a reducing agent for at least one of alcohol and hydrocarbon. And a method for removing nitrous oxide and nitric oxide in exhaust gas, which comprises injecting ammonia and reducing nitrous oxide and nitric oxide to nitrogen on the catalyst.
窒素濃度の測定値に比例させ、かつアルコールおよび炭
化水素の少なくともいずれかの還元剤の注入量を排ガス
中の亜酸化窒素濃度の測定値に比例させて調整すること
を特徴とする請求項2記載の排ガス中の亜酸化窒素およ
び一酸化窒素の除去方法。3. The amount of ammonia injected is proportional to the measured value of the concentration of nitric oxide in the exhaust gas, and the injected amount of the reducing agent of at least one of alcohol and hydrocarbon is the measured value of the concentration of nitrous oxide in the exhaust gas. The method for removing nitrous oxide and nitric oxide in exhaust gas according to claim 2, wherein the method is adjusted in proportion to
イトの少なくともいずれかの担体に鉄を担持したことを
特徴とする亜酸化窒素分解活性および一酸化窒素分解活
性を合わせ持つ触媒。4. A catalyst having both nitrous oxide decomposing activity and nitric oxide decomposing activity, characterized in that iron is supported on at least one carrier of mordenite and pentasil-type zeolite.
したゼオライトを第1成分とし、白金またはパラジウム
の貴金属塩類またはゼオライト、アルミナ、シリカなど
の多孔体に予め担持された前記貴金属組成物を第2成分
とする触媒を設置してアルコールおよび炭化水素の少な
くともいずれかの還元剤を注入して当該触媒上で一酸化
炭素と亜酸化窒素とを分解除去する排ガス中の亜酸化窒
素の除去方法。5. The noble metal composition, wherein a zeolite having iron supported in an exhaust gas passage containing nitrous oxide is used as a first component, and a noble metal salt of platinum or palladium or a porous material such as zeolite, alumina or silica is preliminarily supported. Is installed as a second component, and a reducing agent for at least one of alcohol and hydrocarbon is injected to decompose and remove carbon monoxide and nitrous oxide on the catalyst. Removal of nitrous oxide in exhaust gas Method.
ス流路に鉄を担持したゼオライトを第1成分とし、白金
またはパラジウムの貴金属塩類またはゼオライト、アル
ミナ、シリカなどの多孔体に予め担持された前記貴金属
組成物を第2成分とする触媒を設置してアルコールおよ
び炭化水素の少なくともいずれかの還元剤およびアンモ
ニアを注入して当該触媒上で一酸化炭素と亜酸化窒素と
一酸化窒素と過剰アンモニアを分解除去する排ガス中の
亜酸化窒素および一酸化窒素の除去方法。6. A zeolite having iron supported in an exhaust gas passage containing nitrous oxide and nitric oxide as a first component, which has been previously supported on a noble metal salt of platinum or palladium or a porous material such as zeolite, alumina or silica. A catalyst containing the noble metal composition as the second component is installed, and a reducing agent of at least one of alcohol and hydrocarbon and ammonia are injected to cause carbon monoxide, nitrous oxide, nitric oxide, and excess ammonia on the catalyst. Method for decomposing and removing nitrous oxide and nitric oxide in exhaust gas.
金またはパラジウムの貴金属塩類またはゼオライト、ア
ルミナ、シリカなどの多孔体に予め担持された前記貴金
属組成物を第2成分とした触媒である一酸化炭素分解活
性とアンモニア分解活性と亜酸化窒素分解活性と一酸化
窒素分解活性を合わせ持つ触媒。7. A catalyst comprising, as a second component, an iron-supported zeolite as a first component, a platinum or palladium noble metal salt or a noble metal composition previously supported on a porous material such as zeolite, alumina, or silica. A catalyst that combines carbon oxide decomposition activity, ammonia decomposition activity, nitrous oxide decomposition activity, and nitric oxide decomposition activity.
いずれかの還元剤またはこれに加えてアンモニアを還元
剤として用いて請求項4または7記載の触媒を充填した
触媒層に排ガスを通過させることを特徴とする排ガス中
の窒素酸化物の除去装置。8. An exhaust gas is passed through a catalyst layer filled with the catalyst according to claim 4, using at least one of a reducing agent of alcohol and hydrocarbon or ammonia in addition to this as a reducing agent. A device for removing nitrogen oxides from exhaust gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15043195A JP4203926B2 (en) | 1995-06-16 | 1995-06-16 | Method and apparatus for removing nitrous oxide, etc. from exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15043195A JP4203926B2 (en) | 1995-06-16 | 1995-06-16 | Method and apparatus for removing nitrous oxide, etc. from exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09884A true JPH09884A (en) | 1997-01-07 |
JP4203926B2 JP4203926B2 (en) | 2009-01-07 |
Family
ID=15496784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15043195A Expired - Fee Related JP4203926B2 (en) | 1995-06-16 | 1995-06-16 | Method and apparatus for removing nitrous oxide, etc. from exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4203926B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0891809A1 (en) * | 1997-01-08 | 1999-01-20 | Ngk Insulators, Ltd. | Adsorbent |
NL1008746C2 (en) * | 1998-03-30 | 1999-10-01 | Stichting Energie | Method for converting nitrous oxide. |
WO2003084646A1 (en) * | 2002-04-09 | 2003-10-16 | Uhde Gmbh | Denitrification method |
WO2003106026A1 (en) * | 2002-06-17 | 2003-12-24 | 住友金属鉱山株式会社 | Catalyst and method for clarifying exhaust gas |
KR100847739B1 (en) * | 2006-08-01 | 2008-07-23 | 고등기술연구원연구조합 | Catalyzer for cleaning nitrous oxide, production method thereof, and cleaning method of nitrous oxide using it |
FR2913453A1 (en) * | 2007-03-08 | 2008-09-12 | Peugeot Citroen Automobiles Sa | EXHAUST LINE OF A DIESEL-TYPE VEHICLE AND VEHICLE COMPRISING SUCH AN EXHAUST LINE |
WO2009001688A1 (en) * | 2007-06-26 | 2008-12-31 | Metawater, Ltd. | Method for removal of n2o contained in exhaust gas from sewage sludge incinerator |
JP2009061394A (en) * | 2007-09-06 | 2009-03-26 | National Institute Of Advanced Industrial & Technology | Catalytic reduction removal method of nitrogen oxide in exhaust gas |
BG65640B1 (en) * | 1999-09-06 | 2009-04-30 | Stichting Energieonderzoek Centrum Nederland | Reduction of n2o emissions |
WO2009099038A1 (en) * | 2008-02-05 | 2009-08-13 | Metawater Co., Ltd. | Exhaust gas-borne n2o removal method |
WO2009099040A1 (en) * | 2008-02-05 | 2009-08-13 | Metawater Co., Ltd. | Exhaust gas-borne n2o removal method |
WO2010146718A1 (en) * | 2009-06-15 | 2010-12-23 | トヨタ自動車株式会社 | Exhaust emission control device for internal combustion engine |
EP3075435B1 (en) | 2005-05-11 | 2019-06-19 | thyssenkrupp Industrial Solutions AG | Method for reducing the nitrogen oxide concentration in gases |
EP3741449A1 (en) * | 2019-05-21 | 2020-11-25 | Haldor Topsøe A/S | A process for the removal of dinitrogen oxide in process off-gas |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103877853A (en) * | 2012-12-21 | 2014-06-25 | 中国科学院大连化学物理研究所 | Application of Y-type ferrite catalyst in nitrous oxide (N2O) decomposition process |
-
1995
- 1995-06-16 JP JP15043195A patent/JP4203926B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0891809A4 (en) * | 1997-01-08 | 1999-03-31 | Ngk Insulators Ltd | Adsorbent |
US6207604B1 (en) | 1997-01-08 | 2001-03-27 | Ngk Insulators, Ltd. | β-zeolite molecular sieve absorbent |
EP0891809A1 (en) * | 1997-01-08 | 1999-01-20 | Ngk Insulators, Ltd. | Adsorbent |
BG65174B1 (en) * | 1998-03-30 | 2007-05-31 | Stichting Energieonderzoek Centrum Nederland | Method for the catalytic reduction of dinitrogen oxide |
NL1008746C2 (en) * | 1998-03-30 | 1999-10-01 | Stichting Energie | Method for converting nitrous oxide. |
BG65640B1 (en) * | 1999-09-06 | 2009-04-30 | Stichting Energieonderzoek Centrum Nederland | Reduction of n2o emissions |
CN100337724C (en) * | 2002-04-09 | 2007-09-19 | 犹德有限公司 | Denitrification method |
KR100910932B1 (en) * | 2002-04-09 | 2009-08-06 | 우데 게엠베하 | Process for the removal of nitrogen oxides |
AU2003216865B2 (en) * | 2002-04-09 | 2008-04-10 | Thyssenkrupp Uhde Gmbh | Process for the removal of nitrogen oxides |
US7393512B2 (en) | 2002-04-09 | 2008-07-01 | Uhde Gmbh | Denitrification method |
WO2003084646A1 (en) * | 2002-04-09 | 2003-10-16 | Uhde Gmbh | Denitrification method |
CN1305568C (en) * | 2002-06-17 | 2007-03-21 | 住友金属矿山株式会社 | Catalyst and method for clarifying exhaust gas |
WO2003106026A1 (en) * | 2002-06-17 | 2003-12-24 | 住友金属鉱山株式会社 | Catalyst and method for clarifying exhaust gas |
EP3075435B1 (en) | 2005-05-11 | 2019-06-19 | thyssenkrupp Industrial Solutions AG | Method for reducing the nitrogen oxide concentration in gases |
KR100847739B1 (en) * | 2006-08-01 | 2008-07-23 | 고등기술연구원연구조합 | Catalyzer for cleaning nitrous oxide, production method thereof, and cleaning method of nitrous oxide using it |
FR2913453A1 (en) * | 2007-03-08 | 2008-09-12 | Peugeot Citroen Automobiles Sa | EXHAUST LINE OF A DIESEL-TYPE VEHICLE AND VEHICLE COMPRISING SUCH AN EXHAUST LINE |
WO2008125768A1 (en) * | 2007-03-08 | 2008-10-23 | Peugeot Citroën Automobiles SA | Exhaust line for a diesel type vehicle and vehicle including such exhaust line |
WO2009001688A1 (en) * | 2007-06-26 | 2008-12-31 | Metawater, Ltd. | Method for removal of n2o contained in exhaust gas from sewage sludge incinerator |
JP2009061394A (en) * | 2007-09-06 | 2009-03-26 | National Institute Of Advanced Industrial & Technology | Catalytic reduction removal method of nitrogen oxide in exhaust gas |
WO2009099038A1 (en) * | 2008-02-05 | 2009-08-13 | Metawater Co., Ltd. | Exhaust gas-borne n2o removal method |
WO2009099040A1 (en) * | 2008-02-05 | 2009-08-13 | Metawater Co., Ltd. | Exhaust gas-borne n2o removal method |
JP2009183827A (en) * | 2008-02-05 | 2009-08-20 | Metawater Co Ltd | Removing method of n2o in exhaust gas |
JP2009183828A (en) * | 2008-02-05 | 2009-08-20 | Metawater Co Ltd | Removing method of n2o in exhaust gas |
US8192708B2 (en) | 2008-02-05 | 2012-06-05 | Metawater Co., Ltd. | Method of removing N2O from waste gas |
WO2010146718A1 (en) * | 2009-06-15 | 2010-12-23 | トヨタ自動車株式会社 | Exhaust emission control device for internal combustion engine |
JP4911245B2 (en) * | 2009-06-15 | 2012-04-04 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
EP3741449A1 (en) * | 2019-05-21 | 2020-11-25 | Haldor Topsøe A/S | A process for the removal of dinitrogen oxide in process off-gas |
US11179674B2 (en) | 2019-05-21 | 2021-11-23 | Haldor Topsoe A/S | Process for the removal of dinitrogen oxide in process off-gas |
Also Published As
Publication number | Publication date |
---|---|
JP4203926B2 (en) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7597865B2 (en) | Nitrogen oxide removal catalyst system and nitrogen oxide removal method | |
JP4203926B2 (en) | Method and apparatus for removing nitrous oxide, etc. from exhaust gas | |
US7371706B2 (en) | Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas | |
JP3436567B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
EP0960649A2 (en) | Exhaust gas clean-up catalysts | |
JP2006043533A (en) | Method of reducing nitrogen oxide catalytically | |
JP3992083B2 (en) | Method and apparatus for flue gas denitration using solid reducing agent | |
US7976805B2 (en) | Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst | |
EP2351611A1 (en) | Exhaust gas treating catalyst and exhaust gas purification apparatus using the same | |
JP3285206B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2007239616A (en) | Exhaust emission control device, exhaust emission control method, and purification catalyst | |
JP2009138591A (en) | Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine | |
JPH06126177A (en) | Catalyst for removing nitrous oxide in exhaust gas | |
JP3981807B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP2011050855A (en) | Exhaust gas purifying apparatus | |
JP3234237B2 (en) | Catalyst for removing nitrous oxide in exhaust gas and method for producing the same | |
JPH05329334A (en) | Catalyst for purifying exhaust gas and method for purifying exhaust gas | |
JP2007170323A (en) | Exhaust emission control device | |
JP3263105B2 (en) | Nitrogen oxide treatment method and treatment apparatus | |
JP3368920B2 (en) | Natural gas combustion method and natural gas combustor | |
JP2010184171A (en) | Catalyst and method for purification of exhaust gas | |
JP2001179092A (en) | Exhaust gas cleaning catalyst | |
JP4051514B2 (en) | Combustion exhaust gas purification method and combustion exhaust gas purification device | |
JPS581616B2 (en) | Denitrification reaction tower | |
JP2009056459A (en) | Catalyst and method for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081008 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081008 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |