JP3992083B2 - Method and apparatus for flue gas denitration using solid reducing agent - Google Patents

Method and apparatus for flue gas denitration using solid reducing agent Download PDF

Info

Publication number
JP3992083B2
JP3992083B2 JP10908893A JP10908893A JP3992083B2 JP 3992083 B2 JP3992083 B2 JP 3992083B2 JP 10908893 A JP10908893 A JP 10908893A JP 10908893 A JP10908893 A JP 10908893A JP 3992083 B2 JP3992083 B2 JP 3992083B2
Authority
JP
Japan
Prior art keywords
reducing agent
solid reducing
exhaust gas
catalyst
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10908893A
Other languages
Japanese (ja)
Other versions
JPH06319950A (en
Inventor
泰良 加藤
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10908893A priority Critical patent/JP3992083B2/en
Publication of JPH06319950A publication Critical patent/JPH06319950A/en
Application granted granted Critical
Publication of JP3992083B2 publication Critical patent/JP3992083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は接触還元法による排煙脱硝技術に係わり、還元剤として安全かつ取り扱いが容易な固体還元剤を用いて脱硝反応を行うのに好適な排煙脱硝方法と装置に関する。
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中の窒素酸化物(NOx)は、光化学スモッグの原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。
最近は、ディーゼルエンジン、ガスタービンなどを利用したコージェネレーションシステムが都心部を中心として増加しており、このシステムに対してもNOxの排出規制が適用され、かつ地域によってはその規制が強化されるため、大型プラント同様に排煙脱硝装置の設置が急務となっている。このような小規模施設用排煙脱硝装置はビルなど人口密集地で使用されるため、液化NH3の適用は困難である。そこで、液化NH3の代わりに取り扱いが容易でかつ安全な尿素、シアヌル酸、メラミン、炭酸水素アンモニウム等の固体還元剤を使用する方法が注目されている。
【0003】
ここで、排ガス中に均一に分散されている窒素酸化物と固体還元剤とを反応させるためには、固体還元剤を充分に気化し、排ガス中に混合させることが必要となる。
そのために、例えば固体還元剤を使用する方法として、以下の二つの方法が挙げられる。第一は還元剤水溶液を直接排ガス中に噴霧し蒸発させる方法であり、これに関連する特許として、例えば、特開昭53−62772号、特開昭53−64102号、特開昭53−112273号、特開昭53−115658号等が挙げられる。また、第二の方法は上記還元剤粉末を煙道中に直接噴霧し、気化させて脱硝用還元剤として用いるものであり、特開平2−268811号が知られている。
【0004】
【発明が解決しようとする課題】
上記した還元剤を水溶液として直接排ガス煙道中に噴霧する技術は、水溶液の完全蒸発の点について配慮がされておらず、また還元剤を粉末固体で排ガス煙道中に供給する技術は、還元剤自身の完全気化が困難であるという問題点があった。
例えば尿素水溶液の場合、水溶液を排ガス煙道中に投入するために排ガス温度が低下し、排ガス中に硫黄酸化物が存在する場合には、尿素の分解により生じたNH3と硫黄酸化物が反応して酸性硫安の析出が生じ、後流機器に悪影響を与えること、さらに、ドレンが煙道に溜まったり、後流側に設置する脱硝触媒層まで水分が飛散し、触媒性能への悪影響が無視できないこと等が問題としてあった。
【0005】
もう一つの方法である、固体還元剤を直接排ガス煙道中に噴霧し、気化させる方法では、尿素等を固体状態で供給するため、排ガスとの接触混合が悪く、触媒層に流入する還元剤の濃度を均一にすることが難しいと言う問題点を有していた。そればかりでなく固体還元剤の気化速度が遅く、還元剤が気化しないで触媒表面に付着したり、排ガスとともに排出されるという問題があった。
さらに両者の方法に共通する実用上の大きな問題点は、還元剤粉末あるいは還元剤水溶液の注入量を排ガス中のNOxに追従させて一定比率でコントロールすることがアンモニアガスの場合に容易でなく、高脱硝率を得るためにはNOxに対し大過剰の還元剤を注入する必要があることである。この様な運転方法では脱硝率は高く維持できるものの未反応還元剤はNH3やCOになって排出されることにより、人工密集地での使用の妨げになっている。逆に還元剤の注入量を一定量以下に抑えて未反応還元剤の流出を防ごうとすると高い脱硝率が得られないことである。
本発明の目的は、上記した従来技術の問題点をなくし、アンモニアやCOの流出が少なく、かつNOx変動の少ない、固体を還元剤とする排煙脱硝方法と装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的は次の構成によって達成される。
すなわち、排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝方法において、排ガス煙道中に固体還元剤を噴霧した後、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ、シリカのいずれかの多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性を併せ持つ触媒に接触させ、未反応状態のアンモニアを分解する固体還元剤を用いる排煙脱硝方法、または
排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝装置において、排ガス煙道中に、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ又はシリカを含む多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性を併せ持つ触媒を設置し、その上流部に固体還元剤を噴霧する装置を設置して未反応状態のアンモニアを分解する固体還元剤を用いる排煙脱硝装置である。
【0007】
また、本発明の上記目的は次の構成によっても達成される。
すなわち、排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝方法において、排ガス煙道中に固体還元剤を噴霧した後、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ又はシリカを含む多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなる未反応状態のアンモニアを分解する固体還元剤を用いる排煙脱硝方法、または、
排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝装置において、排ガス煙道中に、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ又はシリカを含む多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性と一酸化炭素を酸化する活性を併せ持つ触媒を設置し、その上流部に固体還元剤を噴霧する装置を設置して未反応状態のアンモニアを分解する固体還元剤を用いる排煙脱硝装置である。
【0008】
本発明において、(固体還元剤)/(排ガス中の窒素酸化物)のモル比を(固体還元剤のアンモニア換算値)/(排ガス中の窒素酸化物)のモル比で1以上となるような固体還元剤の供給量で排ガス煙道中に供給制御しても、処理排ガス中にはNH3とCOの排出は抑制される。
本発明で使用される固体還元剤は尿素、シアヌル酸、メラミン、炭酸アンモニウム等の分解によりアンモニアを生成する固体化合物である。
また、本発明の触媒には白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持した微粒シリカ、ゼオライトもしくはアルミナと酸化チタンを主成分としバナジウム(V)、モリブデン(Mo)、タングステン(W)を触媒成分として含有する触媒組成物を板状、ハニカム状もしくは粒状に成形したものが用いられる。
また固体還元剤の供給装置には粉末状の還元剤を窒素、空気などで搬送して噴霧する装置(図2参照)、尿素、炭酸アンモン等の水溶液を液体状態で噴霧する装置(図3参照)、還元剤を強熱して発生する蒸気をガス状で吹き込む装置(図4参照)、上記還元剤を予めアルカリ水溶液で加水分解して注入する装置(図5参照)など各種の供給装置が用いられる。
【0009】
【作用】
還元剤供給装置から尿素、シアヌル酸などの固体還元剤そのものが粉末状として、またはその水溶液が液体状として150〜550℃の排ガス煙道内に吹き込まれる。煙道内では排ガスの潜熱により固体還元剤は気化、加水分解および一部は熱分解された状態で排ガス中に分散された後、触媒層に導かれる。
触媒層では触媒中のTi、V、MoあるいはWの作用により、まず還元剤から生成したアンモニアにより次式(1)のNOの還元反応が進行し、NOxの低減が達成される。
NH3+NO+1/4O2 → N2+3/2H2O (1)
【0010】
上記脱硝反応に使用されなかった還元剤の内、すでにアンモニアに分解されているものはそのまま気化され、まだ未分解のものは前述した触媒の作用により排ガス中の水蒸気で加水分解されアンモニアに転化された後、触媒中の貴金属の作用により(2)式に示すように酸素で酸化され無害な窒素と水に分解される。
2NH3+3/2O2 → N2+3H2O (2)
このため、たとえ還元剤を過剰に注入しても触媒層からは未反応の還元剤やアンモニアが流出することがなく、脱硝率を高く維持するためにNOxに対し過剰の還元剤を注入することが可能となる。
【0011】
一般に、前述の還元剤を固体状や液体状で排ガス煙道内に吹き込んだ場合には、固体粒子および液滴の慣性のため還元剤濃度を均一にすることが困難である。また、粉体や液体の供給系の負荷変動に対する制御性は悪く、排ガス中のNOx変動に追従させて還元剤濃度の制御をすることが困難である。従って公知の脱硝機能だけを有する触媒をこのような系に用いた場合には、(a)未反応還元剤もしくは未反応アンモニアの流出を一定以上に抑えようとすると、還元剤の不足する部分や不足する時間帯を生じ脱硝率が著しく悪くなる現象や、(b)脱硝率を一定以上に高くするため過剰に還元剤を注入すると未反応還元剤やアンモニアの流出量が増大するという現象を生じていた。
【0012】
これに対し本発明の方法では触媒が(2)式の未反応アンモニアの分解活性を有するため、注入時の不均一さやNOxの変動を見込んで過剰の還元剤を注入しても触媒層から未反応還元剤やアンモニアの流出を生じることがない。これにより尿素、炭酸アンモニウム、シアヌル酸、メラミンなどの液体アンモニアに比べ運搬や保管の容易な固体還元剤を用いて高脱硝率と未反応還元剤の流出の低減を達成することが可能になる。
さらに、本発明で使用する触媒はNOx、NH3の共存下でもCOの酸化作用があるため、排ガス中に存在するCOまたは還元剤の分解により生成するCOをCO2に酸化することもできる。
【0013】
【実施例】
本発明の実施例を図面とともに説明する。
本発明の実施例の概略フローを図1に示す。
NOx発生源である燃焼装置(例えばボイラ、自動車用エンジン)1の排ガス煙道2に還元剤注入ノズル3から還元剤が注入される。この還元剤注入ノズル3の後流側の煙道2には脱硝反応器4が配置され、その中に本発明の触媒5が収納されている。脱硝反応器4の後流には熱交換器6が配置され、ここで排ガスの熱を回収した後、煙突7から浄化排ガスが大気中に排出される。ここで、還元剤注入ノズル3には還元剤供給装置8と還元剤貯蔵器9から還元剤が供給される。
【0014】
固体還元剤の供給のための機構としては、図2に示すように、還元剤粉体ホッパ13から粉体フィーダ11を経て混合器10に供給される固体還元剤を混合器10において、窒素または空気供給ライン12から供給される窒素または空気と混合して還元剤注入ノズル3から排ガス煙道2中に粉末状にして還元剤を供給するもの、図3に示すように、尿素、炭酸アンモン等の還元剤水溶液タンク14からポンプ15を経て、還元剤注入ノズル3から排ガス煙道2中に液状の還元剤を噴霧するもの、図4に示すように、還元剤粉体ホッパ13から粉体フィーダ11を経てヒータ16で加熱される気化器17に供給される還元剤を強熱して発生する蒸気をガス状で煙道2中に還元剤注入ノズル3から吹き込むもの、図5に示すように、還元剤水溶液タンク14からポンプ15を経てヒータ16で加熱される加水分解器18に導き、予めアルカリ水溶液で加水分解して加水分解触媒液19とし、この触媒液19にキャリアガス供給ライン20からキャリアガスを吹き込むことで、還元剤注入ノズル3から排ガス煙道2中に一部NH3を含む還元剤を注入するものなど各種の装置が用いられる。
【0015】
実施例1
(1)触媒の製造
メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにパラタングステン酸アンモニウム((NH41010・W1246・6H2O)を3.59kgおよびメタバナジウム酸アンモン1.29kgとを加え加熱ニーダを用いて水を蒸発させながら混練し水分約36%のペーストを得た。これを3¢の柱状に押し出し造粒後、流動層乾燥機で乾燥し、次に大気中550℃で2時間焼成した。得られた顆粒をハンマーミルで1μmの粒径が60%以上になるように粉砕し、第一成分である脱硝触媒粉末を得た。このときの組成はV/W/Ti=4/5/91(原子比)である。
【0016】
一方、塩化白金酸(H2[PtCl6]・6H2O)0.665gを水1リットルに溶解したものに、市販微粒シリカ粉末(富田製薬(株)製;マイコンF(商品名))500gを加えて砂浴上で蒸発乾固して白金(Pt)を担持した。これを180℃で2時間乾燥後、空気中で500℃で2時間焼成し0.05wt%Pt−SiO2を調製し第二成分にした。
これとは別に繊維径9μmのEガラス性繊維1400本の捻糸を10本/インチの荒さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニールアルコール1%のスラリーを含浸させ、150℃で乾燥して剛性を持たせ触媒基材を得た。
【0017】
第一成分20kgと第二成分816gにシリカ・アルミナ系無機繊維5.3kg、水17kgを加えてニーダで混練し、触媒ペーストを得た。上記基材2枚の間に調製したペースト状触媒混合物を置き、加圧ローラを通過させることにより基材の編目間および表面に触媒を圧着して厚さ約1mm板状触媒を得た。得られた触媒は、180℃で2時間乾燥後大気中で500℃−2時間焼成した。本触媒中の第一成分と第二成分の第二成分/第一成分比は4/96で有り、Pt含有量は触媒基材・無機繊維を除いて20ppmに相当する。
比較例1
実施例1において第二成分を添加しないで同様に触媒を調製した。
【0018】
実験例1
上記実施例1および比較例1の触媒を幅20mm×長さ100mmに切断したものを3mm間隔で反応器に3枚充填し、その上部に磁製ラシヒリングを充填した蒸発部を設け、その上に尿素の20wt%水溶液を滴下して蒸発させ還元剤とした。本装置を用い、表1に示した条件で還元剤濃度変化させた場合の脱硝率と反応器出口におけるアンモニア濃度を測定し、還元剤が過剰になった場合のアンモニア流出量を測定した。得られた結果を図6に示す。
【0019】
【表1】

Figure 0003992083
【0020】
図6に示されるように実施例1の触媒は還元剤の注入量を増加させ、尿素/NO比を大きくした場合、脱硝率は比較例1と同等であるにもかかわらず反応器出口におけるアンモニア濃度は数ppmと低い。これに対し比較例1は尿素量/NO比が増加するにつれ高濃度のNH3が反応器出口に検出された。この結果は、本発明の方法が還元剤の濃度にアンバランスがあっても未反応還元剤に起因するアンモニアを極めて低く抑えることができることを示すものである。
【0021】
実施例2および3
実施例1における塩化白金酸を硝酸パラジウム(Pd(NO33)および硝酸ロジウム(Rh(NO33)の硝酸溶解液に変更し、PdもしくはRh担持量0.05wt%のSiO2を調製した。これをPt−SiO2の場合と同様の方法で第一成分に添加して触媒の調製をした。
実施例4および5
実施例1における微粒シリカ粉末(富田製薬(株)製:マイコンF(商品名))に替えてH型モルデナイト粉末およびγ−アルミナ(住友化学(株)製)粉末を用いて同様に第二成分を調製し、これと第一成分とを第二成分/第一成分比=4/96で使用して触媒を調製した。
実施例6
実施例1の第一成分調製法におけるパラタングステン酸アンモニウムに替えてパラモリブデン酸アンモン((NH46・Mo724・4H2O)を用いて他は同様に触媒調製した。
【0022】
実験例2および3
実験例1の装置、還元剤として尿素および炭酸アンモニウム((NH42CO3)を用い、還元剤注入量を1分ごとにNOに対し0.5モル/モルと0.8モル/モル(NH3/NO換算でそれぞれ1.0モル/モルと1.6モル/モル)の間で交互に切り替えて注入し、実施例1〜6および比較例1の触媒について還元剤のアンバランス、時間遅れがある場合の脱硝率とアンモニアの流出の模擬試験を行った。
その結果を表2にまとめて示した。本結果から明らかなように本発明の方法を用いれば、固体還元剤の注入精度が悪い固体還元剤を用いる場合にも高脱硝率と未反応還元剤(アンモニア)の流出を防ぐことができる。これに対し、従来の方法では脱硝率を高くしようとすると多量の未反応還元剤の流出を生じることがわかる。
【0023】
実験例4および5
実験例2の方法において、磁製ラシヒリング層を450℃に加熱し、かつ尿素水溶液に替えて顆粒状の尿素およびシアヌル酸を2分間隔で約4mgずつラシヒリング上に投下して気化、熱分解させて還元剤とし実施例1〜6および比較例1の触媒について脱硝率および流出アンモニアを測定した。得られた結果を表2に併記した。
本結果の場合にも本発明の方法では実験例2および3の場合と同様に高い脱硝率と低い未反応還元剤の流出が達成されることがわかる。
【0024】
【表2】
Figure 0003992083
【0025】
また、比較例1の触媒ではシアヌル酸を還元剤に用いた場合に最高300ppmのCOの生成が認められたが、本発明の方法ではそのようなCO発生は認められなかった。したがって、本発明の方法では排ガス中のCOの抑制も有効に行われることが分かる。
【0026】
【発明の効果】
本発明によれば、煙道に注入する固体還元剤が均一でなかったり、注入量の制御精度が遅い場合でも、未反応還元剤の流出は極めて僅少にできる。そのため、還元剤の注入量を注入量のアンバランス、時間遅れを見込んで高く制御する方法を採用でき、未反応還元剤の流出を低レベルに抑えたまま脱硝率を達成できる。これにより、簡単な還元剤注入装置を用いることができ、固体還元剤を従来の液化NH3利用脱硝法と同等の簡便さで取り扱うことができるようになる。また、液化NH3貯蔵用高圧容器を設ける必要がないので、脱硝装置を小型かつ安全性大にすることができる。
これらの効果により、ジーゼルエンジンや、ガスタービンなどの都市近郊で用いられる、起動停止の多い発電システムの安全かつ高性能な脱硝装置の提供が可能になる。
【図面の簡単な説明】
【図1】 本発明の一実施例になる脱硝装置の基本系統図。
【図2】 図1に用いる固体還元剤供給装置の例を示す図。
【図3】 図1に用いる固体還元剤供給装置の例を示す図。
【図4】 図1に用いる固体還元剤供給装置の例を示す図。
【図5】 図1に用いる固体還元剤供給装置の例を示す図。
【図6】 本発明の一実施例の脱硝方法および装置の効果を示す図。
【符号の説明】
1…NOx発生源、2…煙道、3…還元剤注入ノズル、4…脱硝反応器、
5…触媒、6…熱交換器、7…煙突、8…還元剤供給装置、
9…還元剤貯蔵器、10…混合器、11…粉体フィーダ、
12…空気供給ライン、13…還元剤粉体ホッパ、
14…還元剤水溶液タンク、15…ポンプ、16…ヒータ、17…気化器、
18…加水分解器、19…加水分解触媒液、20…キャリアガス供給ライン[0001]
[Industrial application fields]
The present invention relates to a flue gas denitration technique based on a catalytic reduction method, and relates to a flue gas denitration method and apparatus suitable for performing a denitration reaction using a solid reducing agent that is safe and easy to handle as a reducing agent.
[0002]
[Prior art]
Nitrogen oxides (NOx) in smoke emitted from power plants, various factories, automobiles, etc. are causative substances of photochemical smog, and ammonia (NH 3 ) is used as a reducing agent as an effective removal method. The flue gas denitration method by selective catalytic reduction is widely used mainly in thermal power plants.
Recently, cogeneration systems using diesel engines, gas turbines, etc. are increasing mainly in the city center, and NOx emission regulations are also applied to these systems, and the regulations are strengthened depending on the region. Therefore, installation of flue gas denitration equipment is urgently required as in large plants. Since such a flue gas denitration apparatus for small-scale facilities is used in a densely populated area such as a building, application of liquefied NH 3 is difficult. Therefore, attention has been focused on a method using a solid reducing agent such as urea, cyanuric acid, melamine, ammonium hydrogen carbonate and the like that is easy to handle and safe instead of liquefied NH 3 .
[0003]
Here, in order to react the nitrogen oxides uniformly dispersed in the exhaust gas with the solid reducing agent, it is necessary to sufficiently vaporize the solid reducing agent and mix it in the exhaust gas.
Therefore, for example, the following two methods are mentioned as a method of using a solid reducing agent. The first is a method in which a reducing agent aqueous solution is directly sprayed into an exhaust gas to evaporate, and as patents related thereto, for example, JP-A-53-62772, JP-A-53-64102, JP-A-53-112273. And JP-A-53-115658. The second method is sprayed directly onto flue the reducing agent powder, vaporized is intended to be used as a denitration reducing agent for, JP 2-268811 is known.
[0004]
[Problems to be solved by the invention]
The technology for spraying the reducing agent as an aqueous solution directly into the exhaust gas flue does not give consideration to the point of complete evaporation of the aqueous solution, and the technology for supplying the reducing agent as a powder solid into the exhaust gas flue is the reducing agent itself. There was a problem that complete vaporization was difficult.
For example, in the case of an aqueous urea solution, the temperature of the exhaust gas is lowered because the aqueous solution is put into the exhaust gas flue, and when sulfur oxide is present in the exhaust gas, NH 3 generated by decomposition of urea reacts with the sulfur oxide. As a result, precipitation of acidic ammonium sulfate occurs and adversely affects the downstream equipment. In addition, drainage accumulates in the flue and water is scattered to the denitration catalyst layer installed on the downstream side, so the negative impact on catalyst performance cannot be ignored. That was a problem.
[0005]
In another method, in which the solid reducing agent is sprayed directly into the flue gas flue and vaporized, urea and the like are supplied in a solid state, so contact mixing with the exhaust gas is poor, and the reducing agent flowing into the catalyst layer is poor. There was a problem that it was difficult to make the concentration uniform. In addition, the vaporization rate of the solid reducing agent is slow, and there is a problem that the reducing agent does not vaporize and adheres to the catalyst surface or is discharged together with the exhaust gas.
Furthermore, a major practical problem common to both methods is that it is not easy in the case of ammonia gas to control the injection amount of the reducing agent powder or the reducing agent aqueous solution at a constant ratio by following the NOx in the exhaust gas, In order to obtain a high denitration rate, it is necessary to inject a large excess of reducing agent with respect to NOx. In such an operation method, although the denitration rate can be maintained at a high level, the unreacted reducing agent is discharged as NH 3 or CO, which hinders its use in an artificially crowded area. On the contrary, if the injection amount of the reducing agent is suppressed to a certain amount or less to prevent the unreacted reducing agent from flowing out, a high denitration rate cannot be obtained.
An object of the present invention is to provide a flue gas denitration method and apparatus using a solid as a reducing agent, which eliminates the problems of the prior art described above, has a small outflow of ammonia and CO, and has little NOx fluctuation.
[0006]
[Means for Solving the Problems]
The above object is achieved by the following configuration.
That is, in a flue gas denitration method in which nitrogen oxides in exhaust gas are catalytically reduced and removed using a solid reducing agent, after the solid reducing agent is sprayed into the exhaust gas flue, titanium (Ti), vanadium (V), tungsten (W), a composition comprising an oxide of one or more elements selected from molybdenum (Mo) as a first component, a noble metal selected from platinum (Pt), palladium (Pd), and rhodium (Rh) as zeolite, alumina The catalyst is composed of a catalyst composition having the noble metal-containing composition previously supported on any porous body of silica as a second component, and is brought into contact with a catalyst having both decomposition activity and denitration activity of ammonia, and decomposes unreacted ammonia. In a flue gas denitration method using a solid reducing agent, or in a flue gas denitration device that catalytically reduces and removes nitrogen oxides in exhaust gas using a solid reducing agent, In the exhaust gas flue, a composition comprising an oxide of one or more elements selected from titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) is used as a first component, and platinum (Pt), palladium (Pd), rhodium (Rh) precious metal selected from precious metal-containing composition previously supported on a porous body containing zeolite, alumina, or silica as a second component, ammonia decomposition activity and denitration activity Is a flue gas denitration apparatus that uses a solid reducing agent that decomposes unreacted ammonia by installing a device that sprays a solid reducing agent upstream of the catalyst.
[0007]
The above object of the present invention can also be achieved by the following configuration.
That is, in a flue gas denitration method in which nitrogen oxides in exhaust gas are catalytically reduced and removed using a solid reducing agent, after the solid reducing agent is sprayed into the exhaust gas flue, titanium (Ti), vanadium (V), tungsten (W), a composition comprising an oxide of one or more elements selected from molybdenum (Mo) as a first component, a noble metal selected from platinum (Pt), palladium (Pd), and rhodium (Rh) as zeolite, alumina or flue gas denitration method using a porous material in advance supported the noble metal-containing composition of the solid reductant you decompose unreacted ammonia state consisting of a catalyst composition and a second component comprising silica, or
In a flue gas denitration device that catalytically reduces and removes nitrogen oxides in exhaust gas using a solid reducing agent , titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) are contained in the exhaust gas flue. A composition comprising an oxide of one or more selected elements is used as a first component, and a noble metal selected from platinum (Pt), palladium (Pd), and rhodium (Rh) is supported in advance on a porous body containing zeolite, alumina, or silica. A catalyst having ammonia decomposition activity, denitration activity and carbon monoxide oxidation activity comprising a catalyst composition having the above-mentioned noble metal-containing composition as a second component is installed, and a solid reducing agent is sprayed upstream of the catalyst. It is a flue gas denitration device using a solid reducing agent that installs the device and decomposes unreacted ammonia.
[0008]
In the present invention, the molar ratio of (solid reducing agent) / (nitrogen oxide in exhaust gas) is 1 or more in terms of the molar ratio of (solid ammonia in the solid reducing agent) / (nitrogen oxide in exhaust gas). Even if supply control is performed in the exhaust gas flue with the supply amount of the solid reducing agent, the discharge of NH 3 and CO in the treated exhaust gas is suppressed.
The solid reducing agent used in the present invention is a solid compound that generates ammonia by decomposition of urea, cyanuric acid, melamine, ammonium carbonate and the like.
Further, the catalyst of the present invention includes fine-particle silica supporting noble metals such as platinum (Pt), palladium (Pd), rhodium (Rh), zeolite or alumina and titanium oxide as main components, vanadium (V), molybdenum (Mo). A catalyst composition containing tungsten (W) as a catalyst component is formed into a plate shape, a honeycomb shape, or a granular shape.
In addition, the solid reducing agent supply device is a device that transports and sprays a powdery reducing agent with nitrogen, air, etc. (see FIG. 2), and a device that sprays an aqueous solution of urea, ammonium carbonate, etc. in a liquid state (see FIG. 3). ), A device for injecting vapor generated by igniting the reducing agent in a gaseous state (see FIG. 4), and a device for hydrolyzing the reducing agent in advance with an alkaline aqueous solution (see FIG. 5). It is done.
[0009]
[Action]
A solid reducing agent such as urea or cyanuric acid itself is powdered or its aqueous solution is blown into a flue gas flue at 150 to 550 ° C. from the reducing agent supply device. In the flue, the solid reducing agent is vaporized, hydrolyzed, and partly pyrolyzed and dispersed in the exhaust gas by the latent heat of the exhaust gas, and then guided to the catalyst layer.
In the catalyst layer, by the action of Ti, V, Mo or W in the catalyst, first, the NO reduction reaction of the following formula (1) proceeds by ammonia generated from the reducing agent, and NOx reduction is achieved.
NH 3 + NO + 1 / 4O 2 → N 2 + 3 / 2H 2 O (1)
[0010]
Of the reducing agents not used in the denitration reaction, those that have already been decomposed into ammonia are vaporized as they are, and those that have not yet been decomposed are hydrolyzed with water vapor in the exhaust gas and converted into ammonia by the action of the catalyst described above. After that, by the action of the noble metal in the catalyst, it is oxidized with oxygen and decomposed into harmless nitrogen and water as shown in the formula (2).
2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O (2)
For this reason, even if excessive reducing agent is injected, unreacted reducing agent or ammonia does not flow out from the catalyst layer, and excessive reducing agent is injected into NOx in order to maintain a high NOx removal rate. Is possible.
[0011]
In general, when the above-described reducing agent is blown into the flue gas flue in a solid or liquid state, it is difficult to make the reducing agent concentration uniform due to inertia of solid particles and droplets. Moreover, the controllability with respect to the load fluctuation of the powder or liquid supply system is poor, and it is difficult to control the reducing agent concentration by following the NOx fluctuation in the exhaust gas. Therefore, when a catalyst having only a known denitration function is used in such a system, (a) if the outflow of unreacted reducing agent or unreacted ammonia is suppressed to a certain level or more, Phenomenon that denitration rate becomes extremely worse due to insufficient time zone, and (b) Phenomenon that unreacted reducing agent and ammonia outflow increase when excessive amount of reducing agent is injected to increase denitration rate above a certain level. It was.
[0012]
On the other hand, in the method of the present invention, since the catalyst has a decomposition activity of unreacted ammonia of the formula (2), even if an excessive reducing agent is injected in view of nonuniformity during injection and fluctuations in NOx, the catalyst layer does not There will be no outflow of reaction reducing agent or ammonia. This makes it possible to achieve a high denitration rate and a reduction in the flow of unreacted reducing agent by using a solid reducing agent that is easier to transport and store than liquid ammonia such as urea, ammonium carbonate, cyanuric acid, and melamine.
Further, since the catalyst used in the present invention has an oxidizing action of CO even in the presence of NOx and NH 3 , CO present in the exhaust gas or CO generated by decomposition of the reducing agent can be oxidized to CO 2 .
[0013]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
A schematic flow of an embodiment of the present invention is shown in FIG.
A reducing agent is injected from a reducing agent injection nozzle 3 into an exhaust gas flue 2 of a combustion apparatus (for example, a boiler, an automobile engine) 1 that is a NOx generation source. A denitration reactor 4 is disposed in the flue 2 on the downstream side of the reducing agent injection nozzle 3, and the catalyst 5 of the present invention is accommodated therein. A heat exchanger 6 is disposed downstream of the denitration reactor 4, and after collecting the heat of the exhaust gas, the purified exhaust gas is discharged from the chimney 7 into the atmosphere. Here, the reducing agent injection nozzle 3 is supplied with the reducing agent from the reducing agent supply device 8 and the reducing agent reservoir 9.
[0014]
As a mechanism for supplying the solid reducing agent, as shown in FIG. 2, the solid reducing agent supplied from the reducing agent powder hopper 13 through the powder feeder 11 to the mixer 10 is mixed with nitrogen or Mixing with nitrogen or air supplied from the air supply line 12 to supply the reducing agent in the form of powder into the exhaust gas flue 2 from the reducing agent injection nozzle 3, as shown in FIG. 3, urea, ammonium carbonate, etc. A liquid reducing agent sprayed from the reducing agent aqueous solution tank 14 to the exhaust gas flue 2 from the reducing agent injection nozzle 3 through the pump 15, as shown in FIG. 4, from the reducing agent powder hopper 13 to the powder feeder. 11, the reductant supplied to the vaporizer 17 heated by the heater 16 through 11 is ignited in a gaseous form and blown into the flue 2 from the reductant injection nozzle 3, as shown in FIG. Reducing agent aqueous solution It is led from a tank 14 through a pump 15 to a hydrolyzer 18 heated by a heater 16 and previously hydrolyzed with an alkaline aqueous solution to form a hydrolyzed catalyst liquid 19, and carrier gas is blown into the catalyst liquid 19 from a carrier gas supply line 20. Thus, various devices such as one that injects a reducing agent partially containing NH 3 into the exhaust gas flue 2 from the reducing agent injection nozzle 3 are used.
[0015]
Example 1
(1) Production of catalyst 67 mg of metatitanate slurry (TiO 2 content: 30 wt%, SO 4 content: 8 wt%) and ammonium paratungstate ((NH 4 ) 10 H 10 · W 12 O 46 · 6H 2 O) 3.59 kg and 1.29 kg of ammonium metavanadate were added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded and granulated into 3 ¢ columns, dried in a fluidized bed dryer, and then baked in the atmosphere at 550 ° C for 2 hours. The obtained granule was pulverized with a hammer mill so that the particle size of 1 μm was 60% or more to obtain a denitration catalyst powder as a first component. The composition at this time is V / W / Ti = 4/5/91 (atomic ratio).
[0016]
On the other hand, 0.665 g of chloroplatinic acid (H 2 [PtCl 6 ] .6H 2 O) dissolved in 1 liter of water is added to 500 g of commercially available fine silica powder (Tonda Pharmaceutical Co., Ltd .; Microcomputer F (trade name)). And evaporated to dryness on a sand bath to carry platinum (Pt). This was dried at 180 ° C. for 2 hours and then calcined in air at 500 ° C. for 2 hours to prepare 0.05 wt% Pt—SiO 2 as a second component.
Separately, a net-like material obtained by plain weaving of 1400 E glass fibers with a fiber diameter of 9 μm at a roughness of 10 / inch is impregnated with a slurry of 40% titania, 20% silica sol, and 1% polyvinyl alcohol. The catalyst base material was obtained by drying at 0 ° C. to give rigidity.
[0017]
To 20 kg of the first component and 816 g of the second component, 5.3 kg of silica / alumina inorganic fiber and 17 kg of water were added and kneaded with a kneader to obtain a catalyst paste. A paste-like catalyst mixture prepared between the two substrates was placed and passed through a pressure roller, whereby the catalyst was pressure-bonded between the stitches and the surface of the substrate to obtain a plate-shaped catalyst having a thickness of about 1 mm. The obtained catalyst was dried at 180 ° C. for 2 hours and then calcined in the atmosphere at 500 ° C. for 2 hours. The ratio of the second component / first component of the first component and the second component in the catalyst is 4/96, and the Pt content corresponds to 20 ppm excluding the catalyst substrate and inorganic fibers.
Comparative Example 1
In Example 1, the catalyst was similarly prepared without adding the second component.
[0018]
Experimental example 1
The catalyst of Example 1 and Comparative Example 1 cut into a width of 20 mm and a length of 100 mm was filled in a reactor at intervals of 3 mm, and an evaporation part filled with a magnetic Raschig ring was provided on the top, on which A 20 wt% aqueous solution of urea was dropped and evaporated to obtain a reducing agent. Using this apparatus, the denitration rate when the reducing agent concentration was changed under the conditions shown in Table 1 and the ammonia concentration at the reactor outlet were measured, and the ammonia outflow when the reducing agent was excessive was measured. The obtained result is shown in FIG.
[0019]
[Table 1]
Figure 0003992083
[0020]
As shown in FIG. 6, when the catalyst of Example 1 increased the injection amount of the reducing agent and increased the urea / NO ratio, ammonia at the reactor outlet was obtained even though the denitration rate was equivalent to that of Comparative Example 1. The concentration is as low as several ppm. In contrast, in Comparative Example 1, a high concentration of NH 3 was detected at the reactor outlet as the urea amount / NO ratio increased. This result shows that the ammonia of the unreacted reducing agent can be kept very low even if the method of the present invention has an imbalance in the concentration of the reducing agent.
[0021]
Examples 2 and 3
The chloroplatinic acid in Example 1 was changed to a nitric acid solution of palladium nitrate (Pd (NO 3 ) 3 ) and rhodium nitrate (Rh (NO 3 ) 3 ), and SiO 2 having a Pd or Rh loading of 0.05 wt% was changed. Prepared. This was added to the first component in the same manner as in the case of Pt—SiO 2 to prepare a catalyst.
Examples 4 and 5
In place of the fine silica powder (produced by Tomita Pharmaceutical Co., Ltd .: microcomputer F (trade name)) in Example 1, H-type mordenite powder and γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) powder were used in the same manner. And a catalyst was prepared using this and the first component in a second component / first component ratio = 4/96.
Example 6
A catalyst was prepared in the same manner except that ammonium paramolybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O) was used instead of ammonium paratungstate in the first component preparation method of Example 1.
[0022]
Experimental Examples 2 and 3
Using the apparatus of Experimental Example 1, urea and ammonium carbonate ((NH 4 ) 2 CO 3 ) as the reducing agent, the reducing agent injection amount was 0.5 mol / mol and 0.8 mol / mol with respect to NO per minute. (Alternately switched between 1.0 mol / mol and 1.6 mol / mol in terms of NH 3 / NO, respectively) and injected to reduce the unbalance of reducing agents for the catalysts of Examples 1 to 6 and Comparative Example 1. Simulated tests of NOx removal rate and ammonia outflow when there was a time delay were conducted.
The results are summarized in Table 2. As is apparent from the results, when the method of the present invention is used, a high denitration rate and an unreacted reducing agent (ammonia) can be prevented from flowing even when a solid reducing agent with poor accuracy of injecting the solid reducing agent is used. On the other hand, in the conventional method, it is understood that a large amount of unreacted reducing agent flows out when an attempt is made to increase the denitration rate.
[0023]
Experimental Examples 4 and 5
In the method of Experimental Example 2, the porcelain Raschig ring layer is heated to 450 ° C., and granular urea and cyanuric acid are dropped onto the Raschig ring at intervals of 2 minutes in place of the urea aqueous solution to vaporize and thermally decompose. As a reducing agent, the denitration rate and the outflow ammonia were measured for the catalysts of Examples 1 to 6 and Comparative Example 1. The obtained results are also shown in Table 2.
Also in the case of this result, it can be seen that the method of the present invention achieves a high denitration rate and a low unreacted reducing agent outflow as in the case of Experimental Examples 2 and 3.
[0024]
[Table 2]
Figure 0003992083
[0025]
In addition, in the catalyst of Comparative Example 1, when cyanuric acid was used as the reducing agent, a maximum of 300 ppm of CO was observed, but such CO generation was not observed in the method of the present invention. Therefore, it can be seen that the method of the present invention also effectively suppresses CO in the exhaust gas.
[0026]
【The invention's effect】
According to the present invention, even when the solid reducing agent injected into the flue is not uniform or the injection amount control accuracy is slow, the outflow of the unreacted reducing agent can be extremely small. Therefore, it is possible to employ a method of controlling the injection amount of the reducing agent to be high in consideration of the imbalance of the injection amount and time delay, and the denitration rate can be achieved while keeping the unreacted reducing agent outflow at a low level. As a result, a simple reducing agent injection device can be used, and the solid reducing agent can be handled with the same convenience as the conventional liquefied NH 3 -based denitration method. Further, since there is no need to provide a high-pressure vessel for storing liquefied NH 3 , the denitration device can be made small and large in safety.
Due to these effects, it is possible to provide a safe and high-performance denitration device for a power generation system frequently used for starting and stopping, such as diesel engines and gas turbines.
[Brief description of the drawings]
FIG. 1 is a basic system diagram of a denitration apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a solid reducing agent supply device used in FIG.
FIG. 3 is a diagram showing an example of a solid reducing agent supply device used in FIG.
4 is a diagram showing an example of a solid reducing agent supply device used in FIG.
FIG. 5 is a view showing an example of a solid reducing agent supply device used in FIG. 1;
FIG. 6 is a diagram showing the effect of a denitration method and apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... NOx generation source, 2 ... Flue, 3 ... Reducing agent injection nozzle, 4 ... Denitration reactor,
5 ... Catalyst, 6 ... Heat exchanger, 7 ... Chimney, 8 ... Reducing agent supply device,
9 ... Reducing agent reservoir, 10 ... Mixer, 11 ... Powder feeder,
12 ... Air supply line, 13 ... Reducing agent powder hopper,
14 ... reducing agent aqueous solution tank, 15 ... pump, 16 ... heater, 17 ... vaporizer,
18 ... hydrolyzer, 19 ... hydrolysis catalyst solution, 20 ... carrier gas supply line

Claims (7)

排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝方法において、
排ガス煙道中に固体還元剤を噴霧した後、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ又はシリカを含む多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性を併せ持つ触媒に接触させ、未反応状態のアンモニアを分解することを特徴とする固体還元剤を用いる排煙脱硝方法。
In the flue gas denitration method that catalytically reduces and removes nitrogen oxides in exhaust gas using a solid reducing agent,
After spraying the solid reducing agent into the flue gas flue, a composition comprising an oxide of one or more elements selected from titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) is used as the first component. And a catalyst composition comprising the noble metal-containing composition previously supported on a porous body containing zeolite, alumina or silica as a second component, a noble metal selected from platinum (Pt), palladium (Pd), and rhodium (Rh). A flue gas denitration method using a solid reducing agent, which is brought into contact with a catalyst having both ammonia decomposition activity and denitration activity to decompose unreacted ammonia.
排ガス煙道中に固体還元剤の噴霧は(a)固体還元剤を粉体状あるいは液体状で噴霧する、(b)固体還元剤を加熱により気化あるいは熱分解後にガス状で噴霧する、あるいは(c)固体還元剤を水蒸気と予め接触させて一部をアンモニア分解させた後にガス状で噴霧することを特徴とする請求項1記載の固体還元剤を用いる排煙脱硝方法。  The solid reducing agent is sprayed into the flue gas flue by (a) spraying the solid reducing agent in powder or liquid form, (b) spraying the solid reducing agent in a gaseous state after vaporization or thermal decomposition by heating, or (c 2. The exhaust gas denitration method using a solid reducing agent according to claim 1, wherein the solid reducing agent is preliminarily contacted with water vapor and partially decomposed with ammonia, and then sprayed in a gaseous state. (固体還元剤)/(排ガス中の窒素酸化物)のモル比を(固体還元剤のアンモニア換算値)/(排ガス中の窒素酸化物)のモル比で1以上となるような固体還元剤の供給量で排ガス煙道中に供給制御することを特徴とする請求項1または2記載の固体還元剤を用いる排煙脱硝方法。  The solid ratio of the solid reducing agent such that the molar ratio of (solid reducing agent) / (nitrogen oxide in the exhaust gas) is 1 or more in terms of the ammonia ratio of the solid reducing agent / (nitrogen oxide in the exhaust gas). 3. The exhaust gas denitration method using a solid reducing agent according to claim 1, wherein the supply control is performed in the exhaust gas flue by the supply amount. 排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝装置において、
排ガス煙道中に、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ又はシリカを含む多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性を併せ持つ触媒を設置し、その上流部に固体還元剤を噴霧する装置を設置して未反応状態のアンモニアを分解することを特徴とする固体還元剤を用いる排煙脱硝装置。
In flue gas denitration equipment that reduces and removes nitrogen oxides in exhaust gas catalytically using a solid reducing agent,
In the exhaust gas flue, a composition comprising an oxide of one or more elements selected from titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) is used as a first component, and platinum (Pt), palladium (Pd), rhodium (Rh) precious metal selected from precious metal-containing composition previously supported on a porous body containing zeolite, alumina, or silica as a second component, ammonia decomposition activity and denitration activity A flue gas denitration apparatus using a solid reducing agent, characterized in that a catalyst having a catalyst is installed and a device for spraying the solid reducing agent is installed upstream of the catalyst to decompose unreacted ammonia.
固体還元剤を噴霧する装置は固体還元剤を粉体状あるいは液体状で噴霧する装置、固体還元剤を加熱により気化あるいは熱分解後にガス状で供給する装置あるいは固体還元剤を水蒸気と予め接触させて一部をアンモニア分解させた後にガス状で供給する装置であることを特徴とする請求項記載の固体還元剤を用いる排煙脱硝装置。The device for spraying the solid reducing agent is a device for spraying the solid reducing agent in the form of powder or liquid, a device for supplying the solid reducing agent in a gaseous state after being vaporized or thermally decomposed by heating, or by bringing the solid reducing agent into contact with water vapor in advance. 5. A flue gas denitration apparatus using a solid reducing agent according to claim 4, wherein a part of the gas is supplied after being decomposed with ammonia. 排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝方法において、
排ガス煙道中に固体還元剤を噴霧した後、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ、シリカのいずれかの多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性と一酸化炭素を酸化する活性を併せ持つ触媒に接触させ、未反応状態のアンモニアを分解することを特徴とする固体還元剤を用いる排煙脱硝方法。
In the flue gas denitration method that catalytically reduces and removes nitrogen oxides in exhaust gas using a solid reducing agent,
After spraying the solid reducing agent into the flue gas flue, a composition comprising an oxide of one or more elements selected from titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) is used as the first component. Catalyst composition comprising, as a second component, the noble metal-containing composition in which a noble metal selected from platinum, platinum (Pt), palladium (Pd), and rhodium (Rh) is previously supported on a porous body of zeolite, alumina, or silica A flue gas denitration method using a solid reducing agent, comprising contacting a catalyst having both ammonia decomposition activity, denitration activity, and carbon monoxide oxidation activity, and decomposing unreacted ammonia.
排ガス中の窒素酸化物を固体還元剤を用いて接触的に還元除去する排煙脱硝装置において、
排ガス煙道中に、チタン(Ti)、バナジウム(V)、タングステン(W)、モリブデン(Mo)から選ばれる一種以上の元素の酸化物からなる組成物を第一成分とし、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる貴金属をゼオライト、アルミナ、シリカのいずれかの多孔体にあらかじめ担持された前記貴金属含有組成物を第二成分とした触媒組成物からなるアンモニアの分解活性と脱硝活性と一酸化炭素を酸化する活性を併せ持つ触媒を設置し、その上流部に固体還元剤を噴霧する装置を設置して未反応状態のアンモニアを分解することを特徴とする固体還元剤を用いる排煙脱硝装置。
In flue gas denitration equipment that reduces and removes nitrogen oxides in exhaust gas catalytically using a solid reducing agent,
In the exhaust gas flue, a composition comprising an oxide of one or more elements selected from titanium (Ti), vanadium (V), tungsten (W), and molybdenum (Mo) is used as a first component, and platinum (Pt), palladium (Pd), rhodium (Rh), a noble metal selected from a catalyst composition having the noble metal-containing composition previously supported on a porous body of zeolite, alumina, or silica as a second component ; Use a solid reducing agent characterized by installing a catalyst that has both denitration activity and carbon monoxide oxidizing activity, and installing a device that sprays the solid reducing agent upstream of it to decompose unreacted ammonia Flue gas denitration equipment.
JP10908893A 1993-05-11 1993-05-11 Method and apparatus for flue gas denitration using solid reducing agent Expired - Fee Related JP3992083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10908893A JP3992083B2 (en) 1993-05-11 1993-05-11 Method and apparatus for flue gas denitration using solid reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10908893A JP3992083B2 (en) 1993-05-11 1993-05-11 Method and apparatus for flue gas denitration using solid reducing agent

Publications (2)

Publication Number Publication Date
JPH06319950A JPH06319950A (en) 1994-11-22
JP3992083B2 true JP3992083B2 (en) 2007-10-17

Family

ID=14501290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10908893A Expired - Fee Related JP3992083B2 (en) 1993-05-11 1993-05-11 Method and apparatus for flue gas denitration using solid reducing agent

Country Status (1)

Country Link
JP (1) JP3992083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404661A (en) * 2018-04-28 2018-08-17 南京新瓦特智控科技有限公司 The full load of a kind of leveling of on-line velocity field and concentration field measurement precisely sprays ammonia system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935547B2 (en) * 1997-02-19 2007-06-27 三菱重工業株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
KR200234632Y1 (en) * 2001-03-12 2001-11-16 홍종두 System for removing nitrogen oxide using oxidation catalyst
KR100406510B1 (en) * 2001-03-12 2003-11-28 홍종두 Method and system for removing nitrogen oxide using oxidation catalyst
FI116897B (en) * 2003-02-04 2006-03-31 Kemira Oyj Use of ammonium formate in the reduction process
FI117891B (en) 2004-08-04 2007-04-13 Kemira Oyj Reducing Agent Composition
KR100553838B1 (en) * 2004-08-31 2006-02-24 주식회사 코캣 Cleaning apparatus of no2 visible gas from stationary sources
CN106268221B (en) * 2016-09-21 2019-10-18 山东大学 A method of denitrating flue gas is carried out using melamine waste
CN109289463A (en) * 2018-10-12 2019-02-01 彩虹(合肥)液晶玻璃有限公司 A kind of urea spray system
CN110898647A (en) * 2019-11-19 2020-03-24 上海众仕环境科技股份有限公司 Hydrophobic powder denitration agent for thermally controlled release of ammonia, preparation method and application
CN113617206B (en) * 2020-05-07 2023-08-22 江苏海默环保科技有限公司 Control method of spray gun, control system of spray gun and incineration system
CN114570202B (en) * 2020-11-30 2023-06-09 河北林格环保科技有限公司 Flue gas denitration system and flue gas denitration method
CN114733568A (en) * 2022-05-06 2022-07-12 无锡卓能环境科技有限公司 Denitration agent for removing nitrogen oxide in flue gas by selective non-catalytic method
CN114768868A (en) * 2022-05-06 2022-07-22 无锡卓能环境科技有限公司 Preparation method of urea suitable for flue gas denitration of biomass boilers such as waste incineration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404661A (en) * 2018-04-28 2018-08-17 南京新瓦特智控科技有限公司 The full load of a kind of leveling of on-line velocity field and concentration field measurement precisely sprays ammonia system

Also Published As

Publication number Publication date
JPH06319950A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP3992083B2 (en) Method and apparatus for flue gas denitration using solid reducing agent
KR100686381B1 (en) Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
JP6125552B2 (en) Bifunctional catalyst for selective ammonia oxidation
CA2138133C (en) Method for removal of nitrogen oxides from exhaust gas
US7963104B2 (en) Emission control system having a coated mixer for an internal combustion engine and method of use
JP2007313486A (en) NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND NOx REDUCTION METHOD
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
US7744840B2 (en) Selective catalytic reduction system and process using a pre-sulfated zirconia binder
JP2008049290A (en) Catalyst, method and apparatus for removing nitrogen oxide
WO1998022209A1 (en) SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING
JP2007332797A (en) Method of purifying exhaust gas and exhaust gas purifying system
JP4203926B2 (en) Method and apparatus for removing nitrous oxide, etc. from exhaust gas
JP4830570B2 (en) Exhaust gas purification system
JPH05146634A (en) Ammonia decomposing catalyst having denitration function and purification of exhaust gas
JP4118077B2 (en) Exhaust gas purification method
JPH02268811A (en) Denitration using ammonia generated by hydrolyzing urea
JP2007301524A (en) Method and apparatus for denitrification
JP2001027112A (en) NOx REMOVAL SYSTEM
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08290062A (en) Waste gas purifying catalyst, its manufacture and waste gas purifying method
JPH09150039A (en) Apparatus and method for purifying exhaust gas
KR20020058179A (en) Catalyst for selective catalytic reduction of nitrogen oxides including sulfur dioxide at low temperature
JP3885272B2 (en) Denitration equipment
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040601

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees