JP2007332797A - Method of purifying exhaust gas and exhaust gas purifying system - Google Patents

Method of purifying exhaust gas and exhaust gas purifying system Download PDF

Info

Publication number
JP2007332797A
JP2007332797A JP2006162568A JP2006162568A JP2007332797A JP 2007332797 A JP2007332797 A JP 2007332797A JP 2006162568 A JP2006162568 A JP 2006162568A JP 2006162568 A JP2006162568 A JP 2006162568A JP 2007332797 A JP2007332797 A JP 2007332797A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
exhaust
nox
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162568A
Other languages
Japanese (ja)
Other versions
JP4961847B2 (en
Inventor
Ryusuke Fujino
竜介 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006162568A priority Critical patent/JP4961847B2/en
Publication of JP2007332797A publication Critical patent/JP2007332797A/en
Application granted granted Critical
Publication of JP4961847B2 publication Critical patent/JP4961847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of purifying exhaust gas that can be used even in a compact car, etc., can promote efficient evaporation and diffusion of purifying agent in a short distance in an exhaust pipe, and can allow the purifying agent in an equalized state to reach an exhaust gas purifying device, and to provide an exhaust gas purifying system thereof. <P>SOLUTION: In a method of purifying exhaust gas, the purifying agent F consumed at an exhaust gas purifying device 10 disposed in an exhaust gas passage 4 of an internal combustion engine E, is supplied into the exhaust gas passage 4 upstream side of the exhaust gas purifying device 10 by an injection device 13 in an exhaust pipe, and mixed into an exhaust gas G. In the exhaust gas passage 4, a shield plate 14 is provided inclined at a predetermined angle θ from a main direction X of the stream of an exhaust gas G about a normal axis 14c to the main direction X of the exhaust gas stream, and the purifying agent F is injected downstream side of the shield plate 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気ガスを排気通路内に浄化剤を噴射して排気ガスを浄化又は排気ガス浄化装置の再生を行う排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification method and an exhaust gas purification system that purify exhaust gas from an internal combustion engine into an exhaust passage to purify exhaust gas or regenerate an exhaust gas purification device.

自動車に対する排ガス規制は厳しさを増し、エンジン側の技術開発だけでは追いつけない状況となりつつある。そのため、排気ガスを後処理装置によって浄化することが必要不可欠であり、ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOx(窒素酸化物)を還元除去するためのNOx触媒や、これらの排気ガス中の粒子状物質(パティキュレート・マター:以下、PM)を除去するディーゼルパティキュレートフィルタ装置(以下、DPF装置)について、種々の研究や提案がなされている。   Exhaust gas regulations on automobiles are becoming stricter, and it is becoming a situation that cannot be caught up by technological development on the engine side alone. For this reason, it is indispensable to purify the exhaust gas with an aftertreatment device, and NOx (nitrogen oxide) is reduced and removed from the exhaust gas of internal combustion engines such as diesel engines and some gasoline engines and various combustion devices. Various researches and proposals have been made on NOx catalysts for the purpose and diesel particulate filter devices (hereinafter referred to as DPF devices) that remove particulate matter (hereinafter referred to as PM) in these exhaust gases. .

その中に、ディーゼルエンジン用のNOx低減触媒として、アンモニア選択還元型NOx触媒(Selective Catalystic Reduction:SCR触媒)やNOx吸蔵還元型触媒とNOx直接還元型触媒がある。   Among these, as NOx reduction catalysts for diesel engines, there are ammonia selective reduction type NOx catalysts (Selective Catalystic Reduction: SCR catalysts), NOx storage reduction type catalysts and NOx direct reduction type catalysts.

アンモニア選択還元型NOx触媒を備えた排気ガス浄化システムでは、エンジン出口からアンモニア選択還元型NOx触媒までの排気管の中に尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(ここでは「浄化剤」という)を噴射し、排気ガスとアンモニア系溶液を混合し、発生したアンモニアのNOxとの選択的な還元反応により、NOxを浄化している。   In an exhaust gas purification system equipped with an ammonia selective reduction type NOx catalyst, an ammonia-based solution such as an aqueous urea solution, ammonia, aqueous ammonia (herein, “purifying agent”) is placed in the exhaust pipe from the engine outlet to the ammonia selective reduction type NOx catalyst NOx is purified by a selective reduction reaction of the generated ammonia with NOx by mixing exhaust gas and ammonia-based solution.

この排気ガス浄化システムでは、現在は主にアンモニアを反応させるSCR触媒が主流であるが、添加する浄化剤は毒性のあるアンモニアの代りに排気ガス中でアンモニアに変化する無害の尿素水溶液を添加する方式に移行しつつある。   In this exhaust gas purification system, an SCR catalyst that mainly reacts with ammonia is mainly used at present, but a purifying agent to be added is an innocuous urea aqueous solution that changes to ammonia in exhaust gas instead of toxic ammonia. We are shifting to the method.

この尿素水溶液は排気管中に噴射すると、これ自身の熱容量と蒸発潜熱が大きいため、容易に気体にはならず、液滴状態のままとなり、この液滴状態が続くと排気ガス中での拡散性が著しく低下する。そのため、尿素噴霧が排気ガス中で偏り、十分に均一拡散できないままSCR触媒に尿素が到達し、尿素から変化したアンモニアが不均一に分散し、過剰な部分では未反応のアンモニアがそのまま大気中に排出し(アンモニアスリップ)、不足の部分では、未反応のNOxがそのまま大気中に排出される。   When this aqueous urea solution is injected into the exhaust pipe, it has a large heat capacity and latent heat of vaporization, so it does not easily turn into a gas and remains in a droplet state. When this droplet state continues, diffusion in the exhaust gas Remarkably deteriorates. Therefore, urea spray is biased in the exhaust gas, urea reaches the SCR catalyst without being able to diffuse sufficiently uniformly, the ammonia changed from urea is dispersed unevenly, and unreacted ammonia is left in the atmosphere as it is in excess. When exhausted (ammonia slip) and insufficient, unreacted NOx is discharged as it is into the atmosphere.

また、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵還元型触媒は、酸化機能を持つ貴金属触媒と、アルカリ金属等のNOx吸蔵機能を持つNOx吸蔵材を担持しており、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。そして、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気ガスの空燃比をリッチ状態にして、NOx吸蔵能力回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。   Further, in the exhaust gas purification system provided with the NOx occlusion reduction type catalyst, the NOx occlusion reduction type catalyst carries a noble metal catalyst having an oxidation function and a NOx occlusion material having a NOx occlusion function such as alkali metal. Thus, two functions of NOx occlusion and NOx release / purification are exhibited depending on the oxygen concentration in the exhaust gas. When the estimated NOx occlusion amount becomes the NOx occlusion saturation amount, the exhaust gas air-fuel ratio is made rich, and regeneration control for restoring NOx occlusion capability is performed. One of the regeneration controls is to the exhaust pipe. There is an exhaust pipe injection rich control that directly supplies hydrocarbons such as fuel (herein referred to as “purifier”).

また、NOx直接還元型触媒を備えた排気ガス浄化システムでは、NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持し、NOxを直接還元する。そして、NOx還元性能が悪化してくると、排気ガスの空燃比をリッチ空燃比にして、触媒の活性物質を再生して活性化するNOx還元性能回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。   Further, in the exhaust gas purification system provided with the NOx direct reduction catalyst, the NOx direct reduction catalyst carries a metal such as rhodium (Rh) or palladium (Pd), which is a catalyst component, on a support such as β-type zeolite, NOx is reduced directly. When the NOx reduction performance deteriorates, the regeneration control for recovering the NOx reduction performance is performed by regenerating and activating the active substance of the catalyst by setting the air-fuel ratio of the exhaust gas to a rich air-fuel ratio. One of them is in-pipe injection rich control for supplying hydrocarbons such as fuel (herein referred to as “purifier”) directly to the exhaust pipe.

また、排気ガス中のPM(粒子状物質)を捕集する連続再生型DPFを備えた排気ガス浄化システムでは、フィルタ部分に捕集され蓄積されたPMを燃焼除去してフィルタを再生するために、排気管内噴射により、排気管内に軽油燃料等の炭化水素(ここでは「浄化剤」という)を供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素を酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去することが行われている。   Further, in an exhaust gas purification system equipped with a continuously regenerating DPF that collects PM (particulate matter) in exhaust gas, in order to regenerate the filter by burning and removing the PM collected and accumulated in the filter portion Then, hydrocarbons such as light oil fuel (herein referred to as “purifiers”) are supplied into the exhaust pipe by injection into the exhaust pipe, and this carbonization is carried out by an oxidation catalyst arranged on the upstream side of the filter or an oxidation catalyst carried on the filter. Oxidation of hydrogen raises the temperature of the filter and burns and removes the PM of the filter.

これらの排気管内噴射においては、浄化剤が偏った状態で触媒や連続再生型DPFに到達すると、排気ガスのNOx浄化やNOx触媒の再生や連続再生型DPFの再生の効率が下がり、また、浄化剤が十分に消費されず、下流側に排出されてしまう。そのため、浄化剤を排気ガス中に略均一に供給し、排気ガスと浄化剤の混合濃度を均一化することが重要で、様々な工夫がなされている。   In these exhaust pipe injections, the efficiency of NOx purification of NOx, regeneration of NOx catalyst and regeneration of continuous regeneration type DPF is reduced when the catalyst reaches the catalyst or continuous regeneration type DPF in a state where the purifier is biased. The agent is not consumed sufficiently and is discharged downstream. For this reason, it is important to supply the purifying agent into the exhaust gas substantially uniformly to make the mixed concentration of the exhaust gas and the purifying agent uniform, and various devices have been made.

その一つに、排気中に還元剤を均一に拡散させるために、還元剤噴射装置(混入部)の下流位置の排気管内に、絞り部を設けて局所的に高流速で低圧の状態を造り、還元剤の気化を促すか、又は、還元剤噴射装置(混入部)の下流位置の排気管内に、撹拌部材を設けて乱流を起こし、排気流れの撹拌を促すエンジンの排気浄化構造も提案されている(例えば、特許文献1参照。)。   For example, in order to evenly diffuse the reducing agent in the exhaust, a throttling part is provided in the exhaust pipe downstream of the reducing agent injection device (mixing part) to create a locally high flow rate and low pressure state. Also proposed is an engine exhaust purification system that promotes vaporization of the reducing agent, or provides a stirring member in the exhaust pipe downstream of the reducing agent injection device (mixing part) to create turbulent flow and promote exhaust gas stirring. (For example, refer to Patent Document 1).

しかしながら、絞り部を設けた場合には、還元剤が噴霧状態の場合には、絞り部で流れの方向が中心方向に変化するため、慣性力が作用している噴霧状態の還元剤が絞り部の壁面に衝突して液状に付着するという問題がある。また、撹拌部材を設けた場合には、同様に、噴霧状態の還元剤が撹拌部材に衝突して液状に付着するという問題がある。   However, in the case where the throttle part is provided, when the reducing agent is in the spray state, the flow direction changes in the central direction in the throttle part. There is a problem that it collides with the wall surface of and adheres to the liquid. Further, when the stirring member is provided, similarly, there is a problem that the reducing agent in the spray state collides with the stirring member and adheres to the liquid.

更に、還元剤と排出ガスとの混合物を形成するための装置で、排出ガスと還元剤を導入可能な混合物形成領域を備え、この混合物形成領域の壁部を少なくとも部分的に、隆起部及び凹部を備えて、特に波形に形成して、言い換えれば、排気管に波形管を用いて渦流を起こして還元剤を混合する装置及び排出ガス浄化装置が提案されている(例えば、特許文献2参照。)。   Furthermore, an apparatus for forming a mixture of a reducing agent and an exhaust gas, comprising a mixture forming region into which the exhaust gas and the reducing agent can be introduced, wherein at least part of the wall portion of the mixture forming region is a ridge and a recess. In particular, a device and an exhaust gas purification device that are formed into a corrugated shape, in other words, cause a vortex to flow in the exhaust pipe and mix the reducing agent are proposed (for example, see Patent Document 2). ).

しかしながら、波形管を用いると、この凹部に煤が溜まり易く腐食の原因となったり、波形管は剛性が低くなるため、排気管の振動が誘因されたりするという問題がある。   However, when a corrugated tube is used, there is a problem that soot is easily accumulated in the concave portion and causes corrosion, and the rigidity of the corrugated tube is low, so that vibration of the exhaust pipe is induced.

また、バルブなどの気流制御体と、該気流制御体の上流側と下流側とを連通させるバイパス通路とを有する、気流に旋回力を付与する気流制御手段と、該気流制御手段によって制御される旋回気流の中心軸に直交ないし交差する方向に燃料又は他の液体を噴射する少なくとも1つの噴射手段と、該噴射手段の下流に配置され、気流を絞るとともに加熱することが可能な気化手段とを備えて構成された気化混合装置が提案されている(例えば、特許文献3参照。)。   Further, the air flow control means for imparting a turning force to the air flow, the air flow control means having a flow control body such as a valve, and a bypass passage for communicating the upstream side and the downstream side of the air flow control body, and the air flow control means. At least one injection means for injecting fuel or other liquid in a direction perpendicular to or intersecting with the central axis of the swirling airflow, and a vaporization means arranged downstream of the injection means and capable of constricting and heating the airflow A vaporizing and mixing apparatus configured to be provided has been proposed (see, for example, Patent Document 3).

しかしながら、この構成では、気流の主方向周りの旋回力を付与するため、遠心力によって燃料等が吸気通路部の壁面に付着し易く、また、気流制御装置が特殊な形状をしているため工作性が悪く、しかも、圧力損失が大きいという問題がある。   However, in this configuration, since a turning force around the main direction of the airflow is applied, fuel or the like is likely to adhere to the wall surface of the intake passage due to the centrifugal force, and the airflow control device has a special shape, so In addition, there is a problem that the pressure loss is large.

また、圧縮空気と浄化剤を混合させて排気管中に噴霧させて、蒸発し易いように微細化を図るエアアシスト式という方法もあるが、この方法はエアタンクを装備している中・大型車でのみ可能な方法である。そのため、エアタンクを装備していない小型車では、均一拡散できるように、長い末広管を設けて蒸発と拡散ができる余地を与える方法が考えられている。しかしながら、この方法では、過渡運転による排ガス規制走行モードに対しては、応答性遅れのため排気ガス浄化制御が追随できなくなるという問題がある。そのため、浄化剤を如何に短時間で効率よく蒸発と拡散を行って均一に排気ガス浄化装置に到達させることが重要な課題となっている。
特開2002−213233号公報 特開2004−510909号公報 特開2004−324585号公報
There is also an air-assist method that mixes compressed air and purifiers and sprays them into the exhaust pipe to make them finer so that they can easily evaporate. This is possible only with For this reason, in a small car not equipped with an air tank, a method of providing a room for evaporation and diffusion by providing a long divergent tube so as to allow uniform diffusion has been considered. However, this method has a problem that the exhaust gas purification control cannot follow the exhaust gas regulation travel mode due to transient operation due to a delay in response. For this reason, it is an important issue how to efficiently evaporate and diffuse the purifying agent in a short time to reach the exhaust gas purifying device uniformly.
JP 2002-213233 A JP 2004-510909 A JP 2004-324585 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、エアアシスト方式が採用できない小型車であっても、排気管内において短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一化した状態で排気ガス浄化装置に到達させることができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The present invention has been made to solve the above problems, and its purpose is to efficiently promote the evaporation and diffusion of the purifier within a short distance in the exhaust pipe even in a small vehicle that cannot adopt the air assist method. An object of the present invention is to provide an exhaust gas purification method and an exhaust gas purification system that can reach the exhaust gas purification device in a state where the purification agent is made uniform.

上記のような目的を達成するための排気ガス浄化方法は、内燃機関の排気通路に配設された排気ガス浄化装置で消費される浄化剤を、排気管内噴射装置によって前記排気ガス浄化装置より上流側の前記排気通路内に供給して排気ガスに混入させる排気ガス浄化方法において、遮蔽板を、前記排気通路に排気ガスの流れの主方向に対して垂直な軸周りに前記排気ガスの流れの主方向から所定の角度傾斜させて設け、該遮蔽板の下流側に前記浄化剤を噴射することを特徴とする。   In the exhaust gas purification method for achieving the above object, a purification agent consumed in an exhaust gas purification device disposed in an exhaust passage of an internal combustion engine is upstream of the exhaust gas purification device by an exhaust pipe injection device. In the exhaust gas purification method in which the exhaust gas is supplied into the exhaust passage on the side and mixed into the exhaust gas, a shielding plate is disposed around the axis perpendicular to the main direction of the exhaust gas flow in the exhaust passage. It is provided to be inclined at a predetermined angle from the main direction, and the purifier is injected downstream of the shielding plate.

なお、この遮蔽板の下流側とは、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽板で生じる渦流に巻き込まれる範囲の下流側のことをいう。また、この遮蔽板の形状は、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良く、特に限定されない。また、遮蔽板の大きさは、排気通路の断面の多くを覆う必要はなく、浄化剤の噴射口に、排気ガスが直接当たることを妨げることができる程度の大きさと位置であればよい。   In addition, the downstream side of this shielding board means the downstream side of the range in which at least a part of the sprayed (or sprayed) cleaning agent is caught in the vortex generated in the shielding board. The shape of the shielding plate is not particularly limited as long as a part of the exhaust passage is narrowed to generate a vortex in the exhaust gas flow. Further, the size of the shielding plate does not need to cover most of the cross section of the exhaust passage, and may be any size and position that can prevent the exhaust gas from directly hitting the cleaning agent injection port.

この構成によれば、排気通路(排気管)に所定の角度を有して設けた遮蔽板により、安定した排気ガスの流れを故意に乱流化及び低速化させて、渦流を発生させ、この渦流が発生する部分の近傍に浄化剤を噴射する。噴射され微粒化された浄化剤は、遮蔽板によって発生する渦流と戻り流による淀み領域で微粒化した浄化剤が滞留し、徐々に下流へ流れて行くため、浄化剤の噴霧が偏って生じる局部的な排気ガス温度の低下が起こらず、浄化剤の蒸発が効率よく行われる。そのため、浄化剤は、排気管内において、短い距離で効率良く蒸発及び拡散し均一化した状態で排気ガス浄化装置に到達するようになる。   According to this configuration, the shielding plate provided at a predetermined angle in the exhaust passage (exhaust pipe) deliberately turbulent and slows the flow of the stable exhaust gas to generate a vortex. A cleaning agent is injected in the vicinity of the portion where the vortex flow is generated. The sprayed and atomized cleaning agent is localized in the spraying of the cleaning agent because the cleaning agent atomized by the vortex generated by the shielding plate and the stagnation region by the return flow stays and gradually flows downstream. The exhaust gas temperature is not lowered, and the purifier is efficiently evaporated. Therefore, the purifier reaches the exhaust gas purification device in a state in which it is evaporated and diffused efficiently at a short distance and is uniformized in the exhaust pipe.

従って、浄化剤の噴射位置と排気ガス浄化装置の距離が短い配置であっても、浄化剤を均一に拡散させて排気ガス浄化装置へ送ることができる。そのため、過渡運転による排ガス規制走行モードであっても、応答遅れが少なくなり、浄化制御や再生制御の追従性が向上する。また、この遮蔽板を設ける構成、即ち、排気通路の断面積を不連続に変化させる構成は単純となる。   Accordingly, even if the distance between the cleaning agent injection position and the exhaust gas purification device is short, the purification agent can be uniformly diffused and sent to the exhaust gas purification device. Therefore, even in the exhaust gas regulation travel mode by transient operation, the response delay is reduced, and the followability of the purification control and the regeneration control is improved. Moreover, the structure which provides this shielding board, ie, the structure which changes the cross-sectional area of an exhaust passage discontinuously, becomes simple.

なお、遮蔽板の面の形状は、通常は加工が容易であるため、平面が用いられるが、渦流の発生を促進するために、円柱面や球面や円錐面等の曲面を使用することもできる。   As the shape of the surface of the shielding plate, a flat surface is usually used because it is easy to process. However, a curved surface such as a cylindrical surface, a spherical surface, or a conical surface can also be used to promote the generation of eddy currents. .

更に、上記の排気ガス浄化方法において、前記所定の角度を30度〜60度、好ましくは、40度〜50度の範囲内の角度とすると、渦流の発生の促進によるNOx浄化率の向上、NH3 のスリップ軽減・防止等の効果と、圧損の増加である排圧上昇率のマイナス効果とのバランスが取れる。 Furthermore, in the above exhaust gas purification method, if the predetermined angle is 30 ° to 60 °, preferably 40 ° to 50 °, the NOx purification rate is improved by promoting the generation of eddy currents, NH The effect of slip reduction / prevention in 3 and the negative effect of the rate of increase in exhaust pressure, which is an increase in pressure loss, can be balanced.

そして、上記の排気ガス浄化方法は、特に、前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液である場合に大きな効果を奏することができる。   The above exhaust gas purification method is particularly effective when the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst and the purification agent is an ammonia-based solution.

そして、上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に排気ガス浄化装置を備えると共に、該排気ガス浄化装置で消費される浄化剤を前記排気ガス浄化装置の上流側の前記排気通路内に供給して排気ガスに混入させる排気管内噴射装置を備えた排気ガス浄化システムにおいて、前記排気通路に排気ガスの流れの主方向に対して垂直な軸周りに前記排気ガスの流れの主方向から所定の角度傾斜した遮蔽板を、前記排気管内噴射装置の噴射口の上流側に設けて構成する。   An exhaust gas purification system for achieving the above object includes an exhaust gas purification device in an exhaust passage of an internal combustion engine, and a purification agent consumed in the exhaust gas purification device is supplied to the exhaust gas purification device. In the exhaust gas purification system provided with an exhaust pipe injection device that supplies the exhaust gas into the exhaust passage on the upstream side and mixes the exhaust gas with the exhaust gas, the exhaust gas is about the axis perpendicular to the main direction of the exhaust gas flow in the exhaust passage. A shielding plate inclined at a predetermined angle from the main direction of the gas flow is provided on the upstream side of the injection port of the in-exhaust pipe injection device.

この構成により、遮蔽板で発生する排気ガスの渦流部分に又はその近傍に、浄化剤を噴射することができるので、この渦流により、排気ガスとの混合が促進され、この混合により、浄化剤の分散均一化と蒸発が短距離で効率良く行われる。そのため、排気管内噴射装置の噴射口と排気ガス浄化装置との間が短くても、浄化剤は、均一分散状態で排気ガス浄化装置に到達する。また、排気通路に遮蔽板を設ける構成は、構造が単純となる。   With this configuration, since the purifying agent can be injected into or near the swirl portion of the exhaust gas generated by the shielding plate, mixing with the exhaust gas is promoted by this swirl flow. Uniform dispersion and evaporation are performed efficiently over a short distance. Therefore, even if the distance between the injection port of the in-pipe injection device and the exhaust gas purification device is short, the purifier reaches the exhaust gas purification device in a uniformly dispersed state. Further, the structure in which the shielding plate is provided in the exhaust passage has a simple structure.

また、上記の排気ガス浄化システムで、前記所定の角度を30度〜60度、好ましくは、40度〜50度の範囲内の角度とすると、渦流の発生の促進によるNOx浄化率の向上、NH3 のスリップ軽減・防止等の効果と、圧損の増加である排圧上昇率のマイナス効果とのバランスが取れる。 Further, in the above exhaust gas purification system, when the predetermined angle is set to an angle within a range of 30 degrees to 60 degrees, preferably 40 degrees to 50 degrees, the NOx purification rate is improved by promoting the generation of eddy currents, NH The effect of slip reduction / prevention in 3 and the negative effect of the rate of increase in exhaust pressure, which is an increase in pressure loss, can be balanced.

そして、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であるように構成される。このアンモニア系溶液としては、アンモニア選択還元型NOx触媒で使用されるアンモニア水、アンモニア水溶液、尿素水溶液等がある。   In the exhaust gas purification system, the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst, and the purification agent is an ammonia-based solution. Examples of the ammonia-based solution include ammonia water, ammonia aqueous solution, urea aqueous solution and the like used in the ammonia selective reduction type NOx catalyst.

あるいは、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで構成され、前記浄化剤が炭化水素であるように構成される。   Alternatively, in the exhaust gas purification system, the exhaust gas purification device includes an upstream oxidation catalyst and a downstream NOx storage reduction catalyst, an upstream oxidation catalyst and a downstream side. The exhaust gas purification device formed with a NOx direct reduction type catalyst or the exhaust gas purification device formed with a continuous regeneration type diesel particulate filter having an oxidation catalyst, The purification agent is configured to be a hydrocarbon.

これらの構成により、それぞれの排気ガス浄化システムにおいて、浄化剤を適宜、排気ガス中に均一的に混入して、排気ガス浄化装置に供給することができるので、効率よく、NOxの浄化、NOx吸蔵還元型触媒やNOx直接還元型触媒の再生、連続再生型ディーゼルパティキュレートフィルタの再生を行うことができる。   With these configurations, in each exhaust gas purification system, the purifying agent can be appropriately mixed uniformly into the exhaust gas and supplied to the exhaust gas purification device, so that the NOx purification and NOx occlusion can be performed efficiently. Regeneration of the reduction catalyst or NOx direct reduction catalyst and regeneration of the continuous regeneration type diesel particulate filter can be performed.

以上説明したように、本発明に係る排気ガス浄化方法及び排気ガス浄化システムによれば、排気管内において、短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一分散状態で排気ガス浄化装置に供給することができる。   As described above, according to the exhaust gas purification method and the exhaust gas purification system of the present invention, the evaporation and diffusion of the purification agent can be efficiently promoted at a short distance in the exhaust pipe, and the purification agent is uniformly dispersed. It can supply to an exhaust gas purification device.

しかも、圧縮空気を使用しないので、エアアシスト方式が使えない小型車等においても使用可能となる。   In addition, since compressed air is not used, it can also be used in small vehicles that cannot use the air assist method.

以下、本発明に係る実施の形態の排気ガス浄化システムについて、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings.

図1に、本発明の第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1では、エンジン(内燃機関)Eの排気通路4に、アンモニア選択還元型NOx触媒11を有する排気ガス浄化装置10が配置される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to a first embodiment of the present invention. In the exhaust gas purification system 1, an exhaust gas purification device 10 having an ammonia selective reduction type NOx catalyst 11 is disposed in an exhaust passage 4 of an engine (internal combustion engine) E.

このアンモニア選択還元型NOx触媒11は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造の担持体(触媒構造体)に、チタニアーバナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。   This ammonia selective reduction type NOx catalyst 11 has a honeycomb structure carrier (catalyst structure) formed of cordierite, aluminum oxide, titanium oxide or the like, titania-vanadium, zeolite, chromium oxide, manganese oxide, molybdenum oxide, It is formed by supporting titanium oxide, tungsten oxide or the like.

このアンモニア選択還元型NOx触媒11では、酸素過剰の雰囲気で、排気通路4内に、尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(浄化剤)Fを噴射して、アンモニアをアンモニア選択還元型NOx触媒11に供給して、排気ガス中のNOxに対してアンモニアと選択的に反応させることにより、NOxを窒素に還元して浄化する。   In this ammonia selective reduction type NOx catalyst 11, ammonia-based solution (purifying agent) F such as urea aqueous solution, ammonia, ammonia water or the like is injected into the exhaust passage 4 in an oxygen-excess atmosphere, and ammonia is selectively reduced by ammonia. By supplying the NOx catalyst 11 and selectively reacting ammonia with NOx in the exhaust gas, NOx is reduced to nitrogen and purified.

そのため、アンモニア選択還元型NOx触媒11の上流側の排気通路4に、NOxの還元剤となるアンモニア系溶液Fを噴射又は噴霧により供給するための排気管内噴射装置13を設ける。この排気管内噴射装置13は、図示しない貯蔵タンクから図示しない配管を経由して供給されてくるアンモニア系溶液Fを排気通路4内に直接噴射する。   Therefore, an exhaust pipe injection device 13 is provided in the exhaust passage 4 on the upstream side of the ammonia selective reduction type NOx catalyst 11 for supplying the ammonia-based solution F serving as a NOx reducing agent by injection or spraying. The in-pipe injection device 13 directly injects the ammonia-based solution F supplied from a storage tank (not shown) via a pipe (not shown) into the exhaust passage 4.

また、アンモニア選択還元型NOx触媒11の温度を測定するために、上流側温度センサー15と下流側温度センサー16を、アンモニア選択還元型NOx触媒11の上流側と下流側、即ち、前後にそれぞれ配置する。この二箇所に設置した温度センサ15、16の温度差により、触媒11内の温度差を推定する。   Further, in order to measure the temperature of the ammonia selective reduction type NOx catalyst 11, the upstream side temperature sensor 15 and the downstream side temperature sensor 16 are respectively arranged on the upstream side and the downstream side of the ammonia selective reduction type NOx catalyst 11, that is, before and after. To do. The temperature difference in the catalyst 11 is estimated from the temperature difference between the temperature sensors 15 and 16 installed at these two locations.

更に、排気ガス浄化システム1の制御装置が、エンジンEの制御装置20に組み込まれ、エンジンEの運転制御と並行して、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、排気管内噴射装置13のアンモニア系溶液Fの噴射制御を行う。   Further, the control device of the exhaust gas purification system 1 is incorporated in the control device 20 of the engine E, and controls the exhaust gas purification system 1 in parallel with the operation control of the engine E. The control device of the exhaust gas purification system 1 performs injection control of the ammonia-based solution F in the exhaust pipe injection device 13.

この噴射制御では、エンジンEの運転状態(回転数や負荷)によって、アンモニア系溶液Fの噴射量を変化させて、排気ガスGの流量が変化しても、より効率よく排気ガスG中のNOxを還元すると共に、排気ガス浄化装置10の下流側の浄化された排気ガスGc中へのアンモニアの流出(アンモニアスリップ)が極力少なくなるように制御する。   In this injection control, even if the injection amount of the ammonia-based solution F is changed and the flow rate of the exhaust gas G is changed depending on the operating state (the rotational speed and the load) of the engine E, the NOx in the exhaust gas G is more efficiently changed. Is controlled so that the outflow of ammonia (ammonia slip) into the purified exhaust gas Gc on the downstream side of the exhaust gas purification device 10 is minimized.

そして、本発明においては、図1〜図7に示すように、排気通路4における排気管内噴射装置13の噴射口13aの上流側に遮蔽板(遮蔽部材)14を設ける。この遮蔽板14は、図3に示すように、排気ガスGの流れの主方向Xに対して垂直な軸14c周りに所定の角度θ傾斜させて設ける。   And in this invention, as shown in FIGS. 1-7, the shielding board (shielding member) 14 is provided in the upstream of the injection port 13a of the injection apparatus 13 in the exhaust pipe in the exhaust passage 4. As shown in FIG. As shown in FIG. 3, the shielding plate 14 is provided to be inclined at a predetermined angle θ around an axis 14 c perpendicular to the main direction X of the exhaust gas G flow.

この所定の角度θは、30度〜60度、好ましくは、40度〜50度の範囲内の角度とする。これにより、渦流の発生の促進によるNOx浄化率の向上、NH3 のスリップ軽減・防止等の効果と、圧損の増加である排圧上昇率のマイナス効果とのバランスを取る。 The predetermined angle θ is an angle in the range of 30 degrees to 60 degrees, preferably 40 degrees to 50 degrees. This balances the effects of improving the NOx purification rate by promoting the generation of eddy currents, reducing and preventing NH 3 slip, and the negative effect of the exhaust pressure increase rate, which is an increase in pressure loss.

この遮蔽板14の形状や、排気通路4への突出量dや閉塞率や、幅Bや円弧の角度α等は特に限定せず、排気ガスGが直接噴射口13aに直接当たることを防ぐことができる大きさや配置で、かつ、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良い。また、遮蔽板14と噴射口13aの距離は、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽板14で生じる渦流に巻き込まれる範囲であれば良い。   There are no particular limitations on the shape of the shielding plate 14, the projection amount d or the blocking rate to the exhaust passage 4, the width B, the arc angle α, etc., and the exhaust gas G is prevented from directly hitting the injection port 13 a. It is only necessary that the exhaust passage has a size and arrangement that can be reduced, and a part of the exhaust passage is narrowed to generate a vortex in the exhaust gas flow. Further, the distance between the shielding plate 14 and the injection port 13a may be within a range where at least a part of the sprayed (or sprayed) cleaning agent is caught in the vortex generated in the shielding plate 14.

なお、この遮蔽板14の大きさと配置位置は、実験や数値計算によって定めることができるが、簡易的には、排気通路4の上流側の軸方向から見た場合に噴射口13aが遮蔽板14によって遮られて見えないような大きさや配置とすればよい。   The size and arrangement position of the shielding plate 14 can be determined by experiment or numerical calculation, but for simplicity, the injection port 13a is located at the shielding plate 14 when viewed from the axial direction upstream of the exhaust passage 4. The size and the arrangement may be such that they cannot be seen by being blocked.

また、図1の構成では、排気管内噴射装置13は、アンモニア系溶液Fを排気通路4の排気ガスGの流れの方向Xに対して垂直方向に噴射するように噴射口(開口部)13aを排気通路4の内壁から突出させて設ける。つまり、噴射口13aから噴射されるアンモニア系溶液Fの流れの向きを排気通路4の軸方向Xと垂直な方向にする。   In the configuration of FIG. 1, the in-pipe injection device 13 has an injection port (opening) 13 a so as to inject the ammonia-based solution F in a direction perpendicular to the direction X of the flow of the exhaust gas G in the exhaust passage 4. It is provided so as to protrude from the inner wall of the exhaust passage 4. That is, the flow direction of the ammonia-based solution F injected from the injection port 13 a is set to a direction perpendicular to the axial direction X of the exhaust passage 4.

また、アンモニア系溶液Fの噴射中心の傾斜角度、噴射の拡がり範囲、噴射口13aの位置等もそれぞれの排気ガス浄化システム1の構造に対応させて最適な構成を採用することができる。つまり、排気ガスGの流れの方向Xに対して垂直方向に噴射する構成以外の、例えば、排気ガスGの流れの方向Xに対して平行な方向に噴射する構成も採用できる。   In addition, the angle of inclination of the injection center of the ammonia-based solution F, the expansion range of the injection, the position of the injection port 13a, and the like can be adopted in accordance with the structure of each exhaust gas purification system 1. In other words, for example, a configuration in which injection is performed in a direction parallel to the flow direction X of the exhaust gas G other than the configuration in which injection is performed in a direction perpendicular to the flow direction X of the exhaust gas G may be employed.

この構成によれば、排気通路4の直線状部分に所定の角度θで傾斜した遮蔽板14を設けて安定した排気ガスGの流れに故意に渦流を発生させると共に、この遮蔽板14の下流側近傍に排気管内噴射装置13の噴射口13aを設けてアンモニア系溶液Fを噴射する構成により、アンモニア系溶液Fは、この遮蔽板14で発生する渦流により排気ガスGと混合し、拡散する。そのため、排気ガス温度が均一化し、温度の低い部分が発生しないのでアンモニア系溶液Fの蒸発が効率よく行われ、排気通路4内において、短い距離で効率良く蒸発及び拡散し均一に排気ガス浄化装置10に到達する。従って、排気管内噴射装置13の噴射口13aと排気ガス浄化装置10の距離が短い配置であっても、アンモニア系溶液Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。   According to this configuration, the shielding plate 14 inclined at a predetermined angle θ is provided in the linear portion of the exhaust passage 4 to intentionally generate a vortex flow in the stable flow of the exhaust gas G, and on the downstream side of the shielding plate 14. With the configuration in which the injection port 13a of the exhaust pipe injection device 13 is provided in the vicinity to inject the ammonia solution F, the ammonia solution F is mixed and diffused with the exhaust gas G by the vortex generated by the shielding plate 14. Therefore, the exhaust gas temperature is made uniform, and a low temperature portion is not generated, so that the ammonia-based solution F is efficiently evaporated, and the exhaust gas purification device uniformly evaporates and diffuses in a short distance in the exhaust passage 4. Reach 10 Accordingly, even when the distance between the injection port 13a of the exhaust pipe injection device 13 and the exhaust gas purification device 10 is short, the ammonia-based solution F can be uniformly diffused and supplied to the exhaust gas purification device 10.

次に、第2の実施の形態について説明する。この第2の実施の形態においては、図5〜図7に示すように、第1の実施の形態の排気ガス浄化システム1の構成に加えて、排気通路4内において、アンモニア系溶液(浄化剤)Fの噴射経路にアンモニア系溶液Fの微粒化を促進させる分散部材としての衝突板17、17Aを設ける。この衝突板17、17Aの分散効果によりアンモニア系溶液Fの微粒化を促進させることができ、より微粒化及び均一分散化できる。   Next, a second embodiment will be described. In the second embodiment, as shown in FIGS. 5 to 7, in addition to the configuration of the exhaust gas purification system 1 of the first embodiment, an ammonia-based solution (purifying agent) is provided in the exhaust passage 4. ) Colliding plates 17 and 17A as dispersion members for promoting atomization of the ammonia-based solution F are provided in the F injection path. Due to the dispersion effect of the collision plates 17 and 17A, atomization of the ammonia-based solution F can be promoted, and further atomization and uniform dispersion can be achieved.

この衝突板17、17Aは、この衝突板17、17Aに噴射されてくるアンモニア系溶液Fを分散させる機能を有するものであれば良い。なお、この衝突板17、17Aに噴射の分散機能に加えて、排気ガスGの流れを渦流にする渦流発生機能を持たせると、アンモニア系溶液Fのより分散化、均一化を図ることができる。   The collision plates 17 and 17A only need to have a function of dispersing the ammonia-based solution F injected to the collision plates 17 and 17A. If the collision plates 17 and 17A are provided with a function of generating a vortex that makes the flow of the exhaust gas G a vortex in addition to the function of dispersing the injection, the ammonia-based solution F can be more dispersed and uniform. .

図5に示す構成では、アンモニア系溶液Fが衝突する部分を、噴射方向に対して適当に(例えば、30°〜60°)に傾斜させた平面を有する衝突板17で形成する。この衝突板17は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向Xに垂直か垂直に近い角度となる時に大きな効果を奏することができる。   In the configuration shown in FIG. 5, the portion where the ammonia-based solution F collides is formed by the collision plate 17 having a plane inclined appropriately (for example, 30 ° to 60 °) with respect to the injection direction. The collision plate 17 can exert a great effect when the injection direction of the ammonia-based solution F is perpendicular to or substantially perpendicular to the flow direction X of the exhaust gas G.

また、図6及び図7に示す構成では、円錐の頂点を浄化剤の噴射口に対向させた円錐形状の棒状体で衝突板17Aを形成する。また、遮蔽板14は、噴射口13a部分に対して流れを遮蔽できればよいので、この遮蔽部分以外は支持部14aのみとする構成でもよい。この構成は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向Xに平行か平行に近い角度となる時に大きな効果を奏することができる。   Further, in the configuration shown in FIGS. 6 and 7, the collision plate 17A is formed of a conical rod-shaped body having the apex of the cone opposed to the cleaning agent injection port. Moreover, since the shielding board 14 should just be able to shield a flow with respect to the injection port 13a part, the structure which becomes only the support part 14a except this shielding part may be sufficient. This configuration can have a great effect when the injection direction of the ammonia-based solution F becomes an angle parallel to or close to parallel to the flow direction X of the exhaust gas G.

次に、第3及び第4の実施の形態の排気ガス浄化システムについて説明する。この第3及び第4の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び2の実施の形態と同様である。   Next, the exhaust gas purification systems of the third and fourth embodiments will be described. In the exhaust gas purification systems of the third and fourth embodiments, the exhaust gas purification device 10 is formed with an upstream oxidation catalyst and a downstream NOx occlusion reduction type catalyst, and the purification agent is hydrocarbon. Configured to be. Other configurations are the same as those of the first and second embodiments, respectively.

この酸化触媒は、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。また、NOx吸蔵還元型触媒は、酸化機能を持つ白金(Pt)等の貴金属触媒と、アルカリ金属やアルカリ土類金属や希土類等のNOx吸蔵機能を持つNOx吸蔵材を担持し、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。   The oxidation catalyst is formed by supporting a catalytic metal such as platinum, rhodium, or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Further, the NOx occlusion reduction type catalyst carries a noble metal catalyst such as platinum (Pt) having an oxidation function and a NOx occlusion material having a NOx occlusion function such as an alkali metal, an alkaline earth metal, and a rare earth, and thereby, exhaust gas is exhausted. Two functions of NOx occlusion and NOx release / purification are exhibited depending on the oxygen concentration in the gas.

そして、このNOx吸蔵還元型触媒は、通常運転時にNOxを触媒金属に吸蔵し、吸蔵能力が飽和に近づくと、適時、流入してくる排気ガスの空燃比をリッチ空燃比にして、吸蔵したNOxを放出させると共に、放出されたNOxを触媒の三元機能で還元する。   And this NOx occlusion reduction type catalyst occludes NOx in the catalyst metal during normal operation, and when the occlusion capacity approaches saturation, the air-fuel ratio of the exhaust gas that flows in is made the rich air-fuel ratio at a proper time, and the occluded NOx And the released NOx is reduced by the three-way function of the catalyst.

このNOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、吸収したNOxを放出させる。この放出されたNOxを貴金属触媒により還元させる。この再生処理により、NOx吸蔵能力を回復する。   In the exhaust gas purification system equipped with this NOx occlusion reduction type catalyst, when the estimated NOx occlusion amount becomes the NOx occlusion saturation amount, the exhaust pipe injection device 13 causes the hydrocarbons such as fuel (purifier) to be directly introduced into the exhaust passage 4. F is supplied. The hydrocarbon F is oxidized by the upstream side oxidation catalyst to make the air-fuel ratio of the exhaust gas G rich, and the absorbed NOx is released. This released NOx is reduced by a noble metal catalyst. This regeneration process restores the NOx storage capacity.

次に、第5及び第6の実施の形態の排気ガス浄化システムについて説明する。この第5及び第6の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。   Next, exhaust gas purification systems according to fifth and sixth embodiments will be described. In the exhaust gas purification systems of the fifth and sixth embodiments, the exhaust gas purification device 10 is formed with an upstream oxidation catalyst and a downstream NOx direct reduction catalyst, and the purification agent is hydrocarbon. Configured to be. Other configurations are the same as those of the first and second embodiments, respectively.

この酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持させて形成する。更に、金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に三元触媒を設けて酸化還元反応、特に排気ガスリッチ状態におけるNOxの還元反応を促進するようにしたり、NOxの浄化率を向上させるために単体に鉄(Fe)を加える等する。   As in the third and fourth embodiments, this oxidation catalyst carries a catalyst metal such as platinum, rhodium or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Formed. The NOx direct reduction catalyst is formed by supporting a catalyst component such as rhodium (Rh) or palladium (Pd) on a support such as β-type zeolite. In addition, cerium (Ce), which contributes to maintaining the NOx reduction ability, is reduced by reducing the metal oxidizing action, and a three-way catalyst is provided in the lower layer to promote the NOx reduction reaction, especially in the exhaust gas rich state. In order to improve the NOx purification rate, iron (Fe) is added to the single body.

そして、このNOx直接還元型触媒は、通常運転時のリーン状態でNOxを直接還元するが、この還元の際に触媒の活性物質である金属に酸素(O2 )が吸着して還元性能が悪化する。そのため、NOx還元性能が悪化してきた時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、触媒の活性物質である金属を再生して活性化する。 The NOx direct reduction type catalyst directly reduces NOx in a lean state during normal operation. During this reduction, oxygen (O 2 ) is adsorbed on the metal that is the active substance of the catalyst, and the reduction performance deteriorates. To do. For this reason, when the NOx reduction performance has deteriorated, hydrocarbon (purifier) F such as fuel is supplied directly to the exhaust passage 4 by the exhaust pipe injection device 13. By oxidizing this hydrocarbon F with an upstream oxidation catalyst, the air-fuel ratio of the exhaust gas G is made rich to regenerate and activate the metal that is the active substance of the catalyst.

次に、第7及び第8の実施の形態の排気ガス浄化システムについて説明する。この第7及び第8の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。   Next, exhaust gas purification systems according to seventh and eighth embodiments will be described. In the exhaust gas purification systems of the seventh and eighth embodiments, the exhaust gas purification device 10 is formed with a continuous regeneration type diesel particulate filter having an oxidation catalyst so that the purification agent is a hydrocarbon. Composed. Other configurations are the same as those of the first and second embodiments, respectively.

なお、この酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタとしては、上流側の酸化触媒と下流側のフィルタとから形成されるものや、酸化触媒を担持したフィルタから形成されるもの等がある。   Examples of the continuous regeneration type diesel particulate filter having this oxidation catalyst include those formed from an upstream oxidation catalyst and a downstream filter, and those formed from a filter carrying an oxidation catalyst.

この上流側の酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。フィルタは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じした、即ち、市松模様状に目封じしたモノリスハニカム型ウォールスルータイプのフィルタで形成される。このフィルタで排気ガス中のPM(粒子状物質)を捕集する。   As in the third and fourth embodiments, the upstream-side oxidation catalyst is formed of a catalytic metal such as platinum, rhodium, or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Is formed. The filter is formed of a monolith honeycomb type wall-through type filter in which the inlet and outlet of the channel of the porous ceramic honeycomb are alternately plugged, that is, in a checkered pattern. This filter collects PM (particulate matter) in the exhaust gas.

また、酸化触媒を担持したフィルタは、モノリスハニカム型ウォールスルータイプのフィルタに、白金やロジウムやパラジウム等の触媒金属を担持して形成され、このフィルタで排気ガス中のPMを捕集する。   The filter carrying the oxidation catalyst is formed by carrying a catalytic metal such as platinum, rhodium or palladium on a monolith honeycomb wall-through type filter, and this filter collects PM in the exhaust gas.

そして、フィルタ部分に捕集され蓄積されたPMを燃焼除去するために、排気管内噴射13により、排気通路4内に軽油燃料等の炭化水素(浄化剤)Fを供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素Fを酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去する。   Then, in order to burn and remove the PM collected and accumulated in the filter portion, a hydrocarbon (purifier) F such as light oil fuel is supplied into the exhaust passage 4 by the injection 13 in the exhaust pipe, and the upstream side of the filter The hydrocarbon F is oxidized by an oxidation catalyst disposed on the filter or an oxidation catalyst carried on the filter, whereby the temperature of the filter is raised and PM of the filter is burned and removed.

上記の第1〜第8の実施の形態の排気ガス浄化システムによれば、浄化剤Fを排気通路4内に供給する排気ガス浄化システム1において、遮蔽板14の下流側の近傍に噴射された浄化剤Fは、この所定の角度θ傾斜した遮蔽板14や衝突板17、17Aで発生する渦流により排気ガスとの混合が促進され、この混合により、浄化剤Fの分散均一化と蒸発が短距離で行われる。そのため、浄化剤Fは、短い距離で効率良く蒸発及び拡散し、均一化した状態で排気ガス浄化装置に到達する。   According to the exhaust gas purification systems of the first to eighth embodiments described above, the exhaust gas purification system 1 that supplies the purifier F into the exhaust passage 4 is injected near the downstream side of the shielding plate 14. The purifier F is promoted to mix with the exhaust gas by the vortex generated by the shielding plate 14 and the collision plates 17 and 17A inclined by the predetermined angle θ, and this mixing shortens the dispersion and uniformization of the purifier F and evaporation. Done at distance. Therefore, the purifier F efficiently evaporates and diffuses over a short distance, and reaches the exhaust gas purification device in a uniform state.

従って、浄化剤Fの噴射位置と排気ガス浄化装置10の距離が短い配置であっても、浄化剤Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。   Therefore, even if the distance between the injection position of the purification agent F and the exhaust gas purification device 10 is short, the purification agent F can be uniformly diffused and supplied to the exhaust gas purification device 10.

本発明の第2の実施の形態において、図5に示すように、遮蔽板14と衝突板(分散部材)17を設けたものを実施例とし、図8に示すように、遮蔽板14を設けず衝突板17のみを設けたものを比較例とした。   In the second embodiment of the present invention, as shown in FIG. 5, a shield plate 14 and a collision plate (dispersing member) 17 are provided as examples, and as shown in FIG. 8, the shield plate 14 is provided. A comparative example was provided with only the collision plate 17.

ここで、実施例では、排気通路4の直径Dが90mmφで遮蔽板14の形状は図4に示す円弧状の形状であり、その突出量dは15mmで、直径Dの17%で、根本の広がり角度αは根本部に対して60度である。また、排気ガスの主流方向Xに対して垂直な軸14c周りの所定の角度θは、45度にしている。   Here, in the embodiment, the diameter D of the exhaust passage 4 is 90 mmφ, and the shape of the shielding plate 14 is the arc shape shown in FIG. 4, and the protruding amount d is 15 mm, 17% of the diameter D, The spread angle α is 60 degrees with respect to the root portion. Further, the predetermined angle θ around the axis 14c perpendicular to the main flow direction X of the exhaust gas is set to 45 degrees.

実施例における遮蔽板14と噴射口13aとの距離は50mmである。また、衝突板17に関しては、いずれも、衝突板17のアンモニア系溶液Fが衝突する面の中心は、壁面から10mmの距離に置かれ、その衝突面は排気ガスGの流れの主方向Xに対しても、また、アンモニア系溶液Fの主噴射方向に対しても、45度傾斜している。   In the embodiment, the distance between the shielding plate 14 and the injection port 13a is 50 mm. As for the collision plate 17, the center of the surface of the collision plate 17 where the ammonia-based solution F collides is placed at a distance of 10 mm from the wall surface, and the collision surface is in the main direction X of the flow of the exhaust gas G. On the other hand, it is also inclined 45 degrees with respect to the main injection direction of the ammonia-based solution F.

この実施例と比較例に関して、NOx浄化試験を行った。このNOx浄化試験は、ガソリン13モードの9モード目(定格回転の60%回転、60%トルク)で行った。この結果を図9と図10に示す。   A NOx purification test was conducted on this example and the comparative example. This NOx purification test was conducted in the ninth mode of gasoline 13 mode (60% rotation of rated rotation, 60% torque). The results are shown in FIGS.

図9及び図10に示す横軸の当量比とは、理想状態でNOxと反応するアンモニアの比率である。当量比1の場合は、噴霧した尿素から発生するアンモニアの量が排気管中のNOxと1:1で反応する量である。   The equivalence ratio on the horizontal axis shown in FIGS. 9 and 10 is the ratio of ammonia that reacts with NOx in an ideal state. When the equivalence ratio is 1, the amount of ammonia generated from the sprayed urea is an amount that reacts 1: 1 with NOx in the exhaust pipe.

このNOx浄化率を比較した図9によれば、実施例(実線A)は、ほぼ理想状態のNOx浄化率で推移し、当量比1.0ではNOx浄化率が、目標NOx浄化率90%以上に対して、99%と目標値を上回っているが、それと比較して、比較例(点線B)は当量比0.5付近から既に理想浄化率(当量比0.5の場合は浄化率50%)を若干下回り始め、当量比1.0においても82%というNOx浄化率となっていることが分かる。   According to FIG. 9 in which the NOx purification rates are compared, in the example (solid line A), the NOx purification rate changes in an almost ideal state, and at an equivalence ratio of 1.0, the NOx purification rate is 90% or more of the target NOx purification rate. On the other hand, the target value is 99%, which is higher than the target value, but in comparison, the comparative example (dotted line B) already has an ideal purification rate from around the equivalent ratio of 0.5 (a purification rate of 50 when the equivalent ratio is 0.5). %), The NOx purification rate is 82% even at an equivalence ratio of 1.0.

また、図10によれば、アンモニアスリップは、実施例(実線A)では当量比1.0付近まで殆ど出ていないが、NOx浄化率が低い比較例(点線B)では著しいことが分かる。   Further, according to FIG. 10, ammonia slip hardly appears up to an equivalence ratio of around 1.0 in the example (solid line A), but it is remarkable in the comparative example (dotted line B) where the NOx purification rate is low.

従って、排気管内噴射装置13の上流側の近傍に所定の角度θ傾斜した遮蔽板14を設けた排気管形状では、排気管に段差4bを設けることなく、段差付き排気管形状と同様に、高いNOx浄化率を得られることが分かる。   Therefore, in the exhaust pipe shape in which the shielding plate 14 inclined by the predetermined angle θ is provided in the vicinity of the upstream side of the in-pipe injection device 13, the exhaust pipe is not provided with the step 4b, and is as high as the exhaust pipe shape with a step. It can be seen that the NOx purification rate can be obtained.

更に、図11に、図3で示した所定の角度(傾斜角度)θを変化させた場合のNOx浄化率(実線C)と排圧上昇率(点線D)を示す。この排圧上昇率は、遮蔽板14を所定の角度θを0度にして取り付けた時の排圧値をP0とし、また、所定の角度θを90度にした時の排圧値をP1とし、xを測定角度θにおける排圧実測値とし、yを排圧上昇度合(%表示)とした場合に、y=(x−P0)/(P1−P0)×100の式から求めている。つまり、y=(測定角度θにおける0度との排圧差)/(0〜90度の排圧差)×100である。この図11から、所定の角度θを30度〜60度とすると排圧上昇率を抑えながら、NOx浄化率を維持できることが分かる。   Further, FIG. 11 shows the NOx purification rate (solid line C) and the exhaust pressure increase rate (dotted line D) when the predetermined angle (inclination angle) θ shown in FIG. 3 is changed. The exhaust pressure increase rate is defined as P0 when the shield plate 14 is attached at a predetermined angle θ of 0 degree, and P1 when the predetermined angle θ is 90 degrees. , X is an exhaust pressure actual measurement value at the measurement angle θ, and y is an exhaust pressure increase degree (% display), and is obtained from an equation of y = (x−P0) / (P1−P0) × 100. That is, y = (exhaust pressure difference from 0 degree at the measurement angle θ) / (exhaust pressure difference from 0 to 90 degrees) × 100. From FIG. 11, it is understood that when the predetermined angle θ is 30 degrees to 60 degrees, the NOx purification rate can be maintained while suppressing the exhaust pressure increase rate.

本発明に係る第1実施の形態の排気ガス浄化システムの全体構成を示す図である。It is a figure showing the whole exhaust gas purification system composition of a 1st embodiment concerning the present invention. 遮蔽板を設けた部分を示す排気通路の側断面図である。It is a sectional side view of the exhaust passage which shows the part which provided the shielding board. 図2の平面断面図である。FIG. 3 is a plan sectional view of FIG. 2. 図2の横断面図である。FIG. 3 is a cross-sectional view of FIG. 2. 第2の実施の形態の衝突板で形成される分散部材を設けた構成を示す排気通路の側断面図である。It is a sectional side view of the exhaust passage which shows the structure which provided the dispersion member formed with the collision board of 2nd Embodiment. 第2の実施の形態の円錐を頭部に有する棒状体で形成される分散部材を設けた構成を示す排気通路の側断面図である。It is a sectional side view of the exhaust passage which shows the structure which provided the dispersion member formed with the rod-shaped body which has the cone of 2nd Embodiment in the head. 図6の横断面図である。It is a cross-sectional view of FIG. 比較例の遮蔽板を設けず分散部材を設けた構成を示す排気通路の側断面図である。It is a sectional side view of the exhaust passage which shows the structure which provided the dispersion member without providing the shielding board of a comparative example. 実施例と比較例のNOx浄化率を示す図である。It is a figure which shows the NOx purification rate of an Example and a comparative example. 実施例と比較例のアンモニアスリップを示す図である。It is a figure which shows the ammonia slip of an Example and a comparative example. 実施例の傾斜角度の変化とNOx浄化率と排圧上昇率との関係を示す図である。It is a figure which shows the relationship between the change of the inclination angle of an Example, a NOx purification rate, and an exhaust pressure raise rate.

符号の説明Explanation of symbols

E エンジン
1 排気ガス浄化システム
4 排気通路
10 排気ガス浄化装置
11 アンモニア選択還元型NOx触媒
13 排気管内噴射装置
13a 噴射口
14 遮蔽板(遮蔽部材)
14a 支持部
14c 軸
17 衝突板(分散部材)
17A 円錐形状の棒状体
θ 所定の角度(傾斜角度)
F アンモニア系溶液(浄化剤、液滴)
G 排気ガス
Gc 浄化された排気ガス
E Engine 1 Exhaust gas purification system 4 Exhaust passage 10 Exhaust gas purification device 11 Ammonia selective reduction type NOx catalyst 13 In-pipe injection device 13a Injection port 14 Shield plate (shield member)
14a support part 14c shaft 17 collision plate (dispersion member)
17A Conical rod-shaped body θ Predetermined angle (tilt angle)
F Ammonia-based solution (cleaning agent, droplet)
G Exhaust gas Gc Purified exhaust gas

Claims (7)

内燃機関の排気通路に配設された排気ガス浄化装置で消費される浄化剤を、排気管内噴射装置によって前記排気ガス浄化装置より上流側の前記排気通路内に供給して排気ガスに混入させる排気ガス浄化方法において、遮蔽板を、前記排気通路に排気ガスの流れの主方向に対して垂直な軸周りに前記排気ガスの流れの主方向から所定の角度傾斜させて設け、該遮蔽板の下流側に前記浄化剤を噴射することを特徴とする排気ガス浄化方法。   Exhaust gas that is supplied to the exhaust gas passage upstream of the exhaust gas purifying device by an exhaust pipe injection device and that is mixed with the exhaust gas by the exhaust gas injection device, in the exhaust gas purifying device disposed in the exhaust passage of the internal combustion engine In the gas purification method, a shielding plate is provided in the exhaust passage so as to be inclined at a predetermined angle from the main direction of the exhaust gas flow around an axis perpendicular to the main direction of the exhaust gas flow, and downstream of the shielding plate. An exhaust gas purification method characterized by injecting the purification agent to the side. 前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であることを特徴とする請求項1記載の排気ガス浄化方法。   The exhaust gas purification method according to claim 1, wherein the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst, and the purification agent is an ammonia-based solution. 内燃機関の排気通路に排気ガス浄化装置を備えると共に、該排気ガス浄化装置で消費される浄化剤を前記排気ガス浄化装置の上流側の前記排気通路内に供給して排気ガスに混入させる排気管内噴射装置を備えた排気ガス浄化システムにおいて、前記排気通路に排気ガスの流れの主方向に対して垂直な軸周りに前記排気ガスの流れの主方向から所定の角度傾斜した遮蔽板を、前記排気管内噴射装置の噴射口の上流側に設けたことを特徴とする排気ガス浄化システム。   In the exhaust pipe, an exhaust gas purification device is provided in the exhaust passage of the internal combustion engine, and a purification agent consumed in the exhaust gas purification device is supplied into the exhaust passage upstream of the exhaust gas purification device and mixed into the exhaust gas. In the exhaust gas purification system including an injection device, a shielding plate that is inclined at a predetermined angle from the main direction of the exhaust gas flow around an axis perpendicular to the main direction of the exhaust gas flow in the exhaust passage. An exhaust gas purification system provided on the upstream side of an injection port of a pipe injection device. 前記所定の角度を30度〜60度の範囲内の角度としたことを特徴とする請求項3記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 3, wherein the predetermined angle is an angle within a range of 30 to 60 degrees. 前記所定の角度を40度〜50度の範囲内の角度としたことを特徴とする請求項4記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 4, wherein the predetermined angle is an angle within a range of 40 degrees to 50 degrees. 前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であることを特徴とする請求項3、4又は5に記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 3, 4 or 5, wherein the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst, and the purification agent is an ammonia-based solution. 前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで構成され、前記浄化剤が炭化水素であることを特徴とする請求項3、4又は5に記載の排気ガス浄化システム。   The exhaust gas purification device is formed with an exhaust gas purification device formed with an upstream oxidation catalyst and a downstream NOx occlusion reduction type catalyst, and an upstream oxidation catalyst and a downstream NOx direct reduction type catalyst. Or an exhaust gas purification device formed with a continuously regenerating diesel particulate filter having an oxidation catalyst, and the purification agent is a hydrocarbon. The exhaust gas purification system according to claim 3, 4 or 5.
JP2006162568A 2006-06-12 2006-06-12 Exhaust gas purification method and exhaust gas purification system Expired - Fee Related JP4961847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162568A JP4961847B2 (en) 2006-06-12 2006-06-12 Exhaust gas purification method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162568A JP4961847B2 (en) 2006-06-12 2006-06-12 Exhaust gas purification method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2007332797A true JP2007332797A (en) 2007-12-27
JP4961847B2 JP4961847B2 (en) 2012-06-27

Family

ID=38932517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162568A Expired - Fee Related JP4961847B2 (en) 2006-06-12 2006-06-12 Exhaust gas purification method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4961847B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216074A (en) * 2008-03-10 2009-09-24 Sango Co Ltd Exhaust emission control device, exhaust pipe for diesel engine
WO2010032077A1 (en) * 2008-09-19 2010-03-25 Renault Trucks Mixing device in an exhaust gas pipe
JP2010133298A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010185365A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Control device of internal combustion engine
DE102010002245A1 (en) 2009-02-27 2010-10-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Exhaust line structure of an internal combustion engine
JP2011052667A (en) * 2009-09-04 2011-03-17 Mitsubishi Fuso Truck & Bus Corp Device for controlling exhaust emission
WO2013036406A2 (en) * 2011-09-08 2013-03-14 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
JP2013538684A (en) * 2010-09-28 2013-10-17 ダウ グローバル テクノロジーズ エルエルシー Reactive flow static mixer with crossflow obstruction
WO2015130640A1 (en) * 2014-02-28 2015-09-03 Tenneco Automotive Operating Company Inc. In-line flow diverter
US9347355B2 (en) 2011-09-08 2016-05-24 Tenneco Automotive Operating Company Inc. In-line flow diverter
US9726063B2 (en) 2011-09-08 2017-08-08 Tenneco Automotive Operating Company Inc. In-line flow diverter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193643A (en) * 1997-09-25 1999-04-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002523228A (en) * 1998-08-28 2002-07-30 キンバリー クラーク ワールドワイド インコーポレイテッド Equipment for combining different flows
JP2004532954A (en) * 2001-06-30 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixing equipment for exhaust gas purification equipment
JP2005291088A (en) * 2004-03-31 2005-10-20 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006029233A (en) * 2004-07-16 2006-02-02 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193643A (en) * 1997-09-25 1999-04-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002523228A (en) * 1998-08-28 2002-07-30 キンバリー クラーク ワールドワイド インコーポレイテッド Equipment for combining different flows
JP2004532954A (en) * 2001-06-30 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixing equipment for exhaust gas purification equipment
JP2005291088A (en) * 2004-03-31 2005-10-20 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006029233A (en) * 2004-07-16 2006-02-02 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216074A (en) * 2008-03-10 2009-09-24 Sango Co Ltd Exhaust emission control device, exhaust pipe for diesel engine
WO2010032077A1 (en) * 2008-09-19 2010-03-25 Renault Trucks Mixing device in an exhaust gas pipe
US8745978B2 (en) 2008-09-19 2014-06-10 Renault Trucks Mixing device in an exhaust gas pipe
JP2010133298A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010185365A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Control device of internal combustion engine
DE102010002245A1 (en) 2009-02-27 2010-10-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Exhaust line structure of an internal combustion engine
DE102010002245C5 (en) 2009-02-27 2020-07-09 Toyota Jidosha Kabushiki Kaisha Exhaust pipe arrangement of an internal combustion engine
DE102010002245B4 (en) * 2009-02-27 2015-12-10 Toyota Jidosha Kabushiki Kaisha Exhaust pipe arrangement of an internal combustion engine
JP2011052667A (en) * 2009-09-04 2011-03-17 Mitsubishi Fuso Truck & Bus Corp Device for controlling exhaust emission
US9975094B2 (en) 2010-09-28 2018-05-22 Dow Global Technologies Llc Reactive flow static mixer with cross-flow obstructions
JP2013538684A (en) * 2010-09-28 2013-10-17 ダウ グローバル テクノロジーズ エルエルシー Reactive flow static mixer with crossflow obstruction
JP2014531554A (en) * 2011-09-08 2014-11-27 テンネコ・オートモティブ・オペレーティング・カンパニー・インコーポレイテッド Pre-injection exhaust gas flow changer
CN103857889A (en) * 2011-09-08 2014-06-11 田纳科汽车营运公司 Pre-injection exhaust flow modifier
US8677738B2 (en) 2011-09-08 2014-03-25 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
US9347355B2 (en) 2011-09-08 2016-05-24 Tenneco Automotive Operating Company Inc. In-line flow diverter
US9726063B2 (en) 2011-09-08 2017-08-08 Tenneco Automotive Operating Company Inc. In-line flow diverter
CN107131032A (en) * 2011-09-08 2017-09-05 田纳科汽车营运公司 Preform injection exhaust gas flow adjuster
WO2013036406A3 (en) * 2011-09-08 2013-04-25 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
US10077702B2 (en) 2011-09-08 2018-09-18 Tenneco Automotive Operating Company Inc. In-line flow diverter
CN107131032B (en) * 2011-09-08 2019-09-27 田纳科汽车营运公司 Preform injection exhaust gas flow adjuster
WO2013036406A2 (en) * 2011-09-08 2013-03-14 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
WO2015130640A1 (en) * 2014-02-28 2015-09-03 Tenneco Automotive Operating Company Inc. In-line flow diverter
CN106030064A (en) * 2014-02-28 2016-10-12 天纳克汽车经营有限公司 In-line flow diverter
CN106030064B (en) * 2014-02-28 2018-10-19 天纳克汽车经营有限公司 In-line arrangement current divider

Also Published As

Publication number Publication date
JP4961847B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP3938187B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
US8209965B2 (en) Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
JP4830570B2 (en) Exhaust gas purification system
WO2009148024A1 (en) Exhaust gas purifier and system for exhaust gas purification
US20150308316A1 (en) Integrated mixing system for exhaust aftertreatment system
JP2009156078A (en) Exhaust emission control device for internal combustion engine
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
US9605573B2 (en) System and method for gas/liquid mixing in an exhaust aftertreatment system
WO2011136320A1 (en) Exhaust purification system for internal combustion engine
JP2010019239A (en) Exhaust emission control device
KR20180068808A (en) Exhaust gas purification system and controlling method thereof
US8443595B2 (en) Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
JP4626647B2 (en) Additive dispersion plate structure in exhaust passage
CN104781516A (en) Exhaust gas purification device for internal-combustion engine
JP2008240722A (en) Exhaust emission control device
JP2018105248A (en) Exhaust emission control device
JP2009156067A (en) Exhaust emission control device for internal combustion engine
JP4767909B2 (en) Exhaust gas purification device
JP2005207289A (en) System for fuel addition in exhaust pipe of diesel engine
JP4622903B2 (en) Additive supply device
US10041391B2 (en) Apparatus for purifying exhaust gas
US20140041370A1 (en) Exhaust Treatment System for Internal Combustion Engine
JP2007205308A (en) Exhaust emission control method and exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees