JP2005207289A - System for fuel addition in exhaust pipe of diesel engine - Google Patents

System for fuel addition in exhaust pipe of diesel engine Download PDF

Info

Publication number
JP2005207289A
JP2005207289A JP2004013747A JP2004013747A JP2005207289A JP 2005207289 A JP2005207289 A JP 2005207289A JP 2004013747 A JP2004013747 A JP 2004013747A JP 2004013747 A JP2004013747 A JP 2004013747A JP 2005207289 A JP2005207289 A JP 2005207289A
Authority
JP
Japan
Prior art keywords
fuel
exhaust pipe
fuel injection
injection nozzle
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013747A
Other languages
Japanese (ja)
Inventor
Haruyuki Yokota
治之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004013747A priority Critical patent/JP2005207289A/en
Priority to PCT/JP2005/000507 priority patent/WO2005071235A1/en
Publication of JP2005207289A publication Critical patent/JP2005207289A/en
Priority to US11/459,520 priority patent/US20060248881A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent injected fuel from adhering to the inside wall of an exhaust pipe, sufficiently perform reduction-regeneration of an exhaust-gas purification catalyst, and improve the fuel economy. <P>SOLUTION: In the system for fuel addition in the exhaust pipe of a diesel engine, a fuel injection nozzles (20) are installed in the exhaust pipe (10) of the diesel engine (1). Fuel is injected from the fuel-injection nozzles to conduct reduction-regeneration of the exhaust-gas purification catalyst (11) provided in the exhaust pipe. The plurality of fuel-injection nozzles are provided so that injection axes (20a) are crossed each other. The injection nozzles are installed at equal intervals in the peripheral direction of the exhaust pipe. It is preferable that the injection axes are crossed each other roughly at one point, and that the fuel injection nozzles are composed of hole-type or slit type fuel-injection nozzles respectively having one or two injection holes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排ガスの後処理装置として、NOX 吸蔵還元型触媒、DPNR等の還元再生型触媒を備えたディーゼルエンジンに使用されて好適な、ディーゼルエンジンの排気管燃料添加方式に関する。 The present invention, as a post-processing apparatus of the exhaust gas, NO X storage reduction catalyst, is used in a diesel engine equipped with a reduced reproduction catalyst such DPNR preferred, an exhaust pipe fuel addition method of a diesel engine.

近年、ディーゼルエンジンの排ガス中のパティキュレートマター(以下、PMという)やNOX を低減させる方式として、様々なものが開発されている。PMは、SOF、黒煙、サルフェート+結合水の3つの成分からなり、未燃燃料やオイルから成るSOFや排ガス中のHC、COは酸化触媒上で酸化浄化される。ディーゼルパティキュレートフィルタ(以下、DPFという)は、ディーゼルエンジン車の低公害化の一方策として、大幅なPM低減を可能とするものである。DPFは、PMを高効率で捕集可能な耐熱フィルタと、フィルタに捕集されたPMを除去するためのフィルタ再生装置とから成り、フィルタ再生装置としては、捕集したPMを、例えば軽油バーナ等により焼却除去してフィルタを再生するもの等がある。 Recently, particulate matter in the exhaust gas of a diesel engine (hereinafter, referred to as PM) as a method for reducing or NO X, it has been developed a variety of things. PM consists of three components, SOF, black smoke, sulfate + combined water. SOF composed of unburned fuel and oil, HC and CO in exhaust gas are oxidized and purified on the oxidation catalyst. The diesel particulate filter (hereinafter referred to as DPF) enables a significant PM reduction as one measure for reducing the pollution of diesel engine vehicles. The DPF is composed of a heat-resistant filter capable of collecting PM with high efficiency and a filter regenerating device for removing the PM collected by the filter. The filter regenerating device, for example, uses the collected PM as a light oil burner. For example, the filter is regenerated by incineration and removal.

この一方、ディーゼルエンジンの排ガス組成は常に酸素過剰領域にあり、しかも還元剤となる成分が極めて少なく、温度領域も広範囲にわたるため、触媒にとっては非常に困難な環境にある。この酸素過剰環境下において、NOX を浄化する触媒の1つの方式として、NOX 吸蔵還元型触媒がある。このNOX 吸蔵還元型触媒は、NOX 低減率が極めて高く、NOX に非常に厳しい基準の適合を求める場合に、有力な選択肢の一つとなる。また、このNOX 吸蔵還元型触媒と、上述のDPFとを一体化したディーゼルパティキュレート−NOX リダクションシステム(以下、DPNRという)もある。 On the other hand, the exhaust gas composition of a diesel engine is always in an oxygen-excess region, and there are very few components serving as a reducing agent, and the temperature region is wide, so that it is a very difficult environment for the catalyst. One type of catalyst for purifying NO x in this oxygen-excess environment is a NO x storage reduction type catalyst. This NO x storage reduction type catalyst has a very high NO x reduction rate, and is one of the promising options when it is required to meet very strict standards for NO x . There is also a diesel particulate-NO X reduction system (hereinafter referred to as DPNR) in which this NO X storage reduction catalyst and the above-mentioned DPF are integrated.

上述のNOX 吸蔵還元型触媒やDPNRは、NOX を吸着して形成されたNO3 から再び酸素を奪い取り、これによりフィルタの再生処理を行なう必要がある。そして、このための1つの方式として、排気管内に燃料を添加して、HC、CO、CO2 又はH2 等を増加させる排気管燃料添加方式がある(例えば、特許文献1参照)。この排気管燃料添加方式は、例えば、エンジンのフィードポンプから加圧燃料を導き、排気管内の触媒上流側に取り付けられた1個の、図8及び図9に示すようなホール型燃料噴射ノズル50、あるいは、図10及び図11に示すようなスリット型燃料噴射ノズル51から燃料を噴射するものである。ホール型燃料噴射ノズル50は、先端部に開けられた、例えば8個の円形の噴射孔50aから、またスリット型燃料噴射ノズル51は、先端部に開けられた1個又は複数個のスリット状の噴射孔51aから、それぞれ燃料が噴射される。また、触媒の還元再生を充分に行うためには、排気管内における燃料蒸気濃度を瞬時に上昇させ、リッチ空燃比にする必要がある。
特開2000−356137号公報(第8−11頁、第6図)
The NO X storage and reduction type catalyst or DPNR described above, again robbing oxygen from NO 3 which is formed by adsorbing NO X, thereby it is necessary to perform a reproduction process of the filter. As one method for this purpose, there is an exhaust pipe fuel addition system in which fuel is added into the exhaust pipe to increase HC, CO, CO 2, H 2 or the like (see, for example, Patent Document 1). In this exhaust pipe fuel addition system, for example, a pressurized fuel is led from a feed pump of an engine, and one hole type fuel injection nozzle 50 as shown in FIGS. 8 and 9 is attached to the upstream side of the catalyst in the exhaust pipe. Alternatively, the fuel is injected from the slit type fuel injection nozzle 51 as shown in FIGS. The hole type fuel injection nozzle 50 is formed from, for example, eight circular injection holes 50a opened at the tip portion, and the slit type fuel injection nozzle 51 is formed of one or a plurality of slit-like shapes opened at the tip portion. Fuel is injected from each of the injection holes 51a. In addition, in order to sufficiently reduce and regenerate the catalyst, it is necessary to instantaneously increase the fuel vapor concentration in the exhaust pipe to obtain a rich air-fuel ratio.
JP 2000-356137 A (pages 8-11, FIG. 6)

しかしながら、上述した従来のディーゼルエンジンの排気管燃料添加方式は、1個のホール型燃料噴射ノズル50やスリット型燃料噴射ノズル51により排気管内に燃料を添加させる。このホール型燃料噴射ノズル50は、先端部に開けられた、例えば8個の円形の噴射孔50aから、またスリット型燃料噴射ノズル51は、先端部に開けられた1個又は複数のスリット状の噴射孔51aから、それぞれ燃料が噴射される。   However, in the conventional diesel engine exhaust pipe fuel addition method described above, fuel is added into the exhaust pipe by one hall type fuel injection nozzle 50 or slit type fuel injection nozzle 51. The hole-type fuel injection nozzle 50 is formed, for example, from eight circular injection holes 50a opened at the tip, and the slit-type fuel injection nozzle 51 is formed of one or more slit-like holes opened at the tip. Fuel is injected from each of the injection holes 51a.

このため、図12に示すように、噴射燃料が排気管52内において筋状となり、その多くが排気管52の内壁53に付着する。これにより、図13に示すように、触媒に直接到達する燃料蒸気は半分程度になってしまう一方、排気管内壁に付着しそこで蒸発した燃料蒸気は、わずかな時間差ではあるが触媒に遅れて到達する。このため、従来のディーゼルエンジンの排気管燃料添加方式は、排気管内における燃料蒸気濃度を瞬時に上昇させることができず、触媒の還元再生を充分に行うことができないという問題がある。また、これに対応して、燃料蒸気濃度を触媒の還元再生に必要な濃度にまで上昇させるためには、多量の燃料を噴射しなければならず、燃費を悪化させるという問題が生じる。   For this reason, as shown in FIG. 12, the injected fuel becomes streaks in the exhaust pipe 52, and most of the fuel adheres to the inner wall 53 of the exhaust pipe 52. As a result, as shown in FIG. 13, the fuel vapor directly reaching the catalyst is reduced to about half, while the fuel vapor adhering to the inner wall of the exhaust pipe and evaporating there reaches the catalyst with a slight time difference. To do. For this reason, the conventional exhaust pipe fuel addition method of a diesel engine has a problem that the fuel vapor concentration in the exhaust pipe cannot be instantaneously increased, and the catalyst cannot be sufficiently reduced and regenerated. Correspondingly, in order to increase the fuel vapor concentration to the concentration necessary for the reduction and regeneration of the catalyst, a large amount of fuel must be injected, resulting in a problem of worsening fuel consumption.

本発明はこのような問題を解決するためになされたもので、噴射燃料の排気管内壁への付着を防止して、排気管内における燃料蒸気濃度を理論燃料蒸気濃度近くまで瞬時に上昇させ、これにより排ガス浄化触媒の還元再生を充分に行うことができると共に、燃費を著しく向上させることができるディーゼルエンジンの排気管燃料添加方式を提供することを課題とする。   The present invention has been made to solve such a problem, and prevents the injection fuel from adhering to the inner wall of the exhaust pipe to instantaneously increase the fuel vapor concentration in the exhaust pipe to near the theoretical fuel vapor concentration. Therefore, it is an object of the present invention to provide an exhaust pipe fuel addition method for a diesel engine that can sufficiently reduce and regenerate an exhaust gas purification catalyst and can significantly improve fuel efficiency.

上述の課題を解決するために、本発明が採用する手段は、ディーゼルエンジンの排気管内に燃料噴射ノズルを備え、この燃料噴射ノズルから燃料を噴射して排気管内に配設された排ガス浄化触媒の還元再生を行なうディーゼルエンジンの排気管燃料添加方式において、燃料噴射ノズルは、複数の噴射ノズルから成ると共に噴射軸線が相互に交差するように配設されたことにある。ここで、噴射軸線とは、各ノズルの噴射方向を示す噴射の中心線である。   In order to solve the above-mentioned problems, the means employed by the present invention is a fuel injection nozzle provided in the exhaust pipe of a diesel engine, injecting fuel from the fuel injection nozzle, and an exhaust gas purification catalyst disposed in the exhaust pipe. In an exhaust pipe fuel addition system for a diesel engine that performs reduction regeneration, the fuel injection nozzle is composed of a plurality of injection nozzles and is disposed so that the injection axes intersect each other. Here, the injection axis is a center line of injection indicating the injection direction of each nozzle.

本手段によれば、燃料噴射ノズルは、噴射軸線が相互に交差するように配設された複数個の燃料噴射ノズルから成るから、各燃料噴射ノズルから噴射された燃料が相互に衝突及び混合して最適な霧化がなされ、噴射燃料が排気管の内壁に付着することが防止される。   According to this means, since the fuel injection nozzle is composed of a plurality of fuel injection nozzles arranged so that the injection axes intersect each other, the fuel injected from each fuel injection nozzle collides and mixes with each other. Optimal atomization is thus achieved, and the injected fuel is prevented from adhering to the inner wall of the exhaust pipe.

複数個の燃料噴射ノズルは、排気管の周方向に略等間隔に配設されることが望ましい。複数個の燃料噴射ノズルを排気管の周方向に略等間隔に配設するにことにより、これらの燃料噴射ノズルから噴射された燃料の衝突及び混合が排気管内で一様に行われ、燃料蒸気が触媒へ均一に供給される。   It is desirable that the plurality of fuel injection nozzles be disposed at substantially equal intervals in the circumferential direction of the exhaust pipe. By arranging a plurality of fuel injection nozzles at substantially equal intervals in the circumferential direction of the exhaust pipe, the fuel injected from these fuel injection nozzles is uniformly collided and mixed in the exhaust pipe, and the fuel vapor Is uniformly supplied to the catalyst.

複数個の燃料噴射ノズルは、噴射軸線が略1点で交差するように配設されることが望ましい。複数個の燃料噴射ノズルを、噴射軸線が略1点で交差するように配設することにより、各ノズルから噴射された燃料の衝突及び混合がより確実に行われ、噴射燃料が排気管の内壁に付着することがさらに防止される。   The plurality of fuel injection nozzles are preferably arranged so that the injection axes intersect at substantially one point. By arranging the plurality of fuel injection nozzles so that the injection axes intersect at substantially one point, the fuel injected from each nozzle can be more reliably collided and mixed, and the injected fuel is connected to the inner wall of the exhaust pipe. It is further prevented from adhering to.

燃料噴射ノズルは、1個又は2個の噴射孔を有するホール型燃料噴射ノズル又はスリット型燃料噴射ノズルから成ることが望ましい。本手段は、各燃料噴射ノズルから噴射された燃料を相互に衝突及び混合させて、噴射燃料が排気管の内壁に付着することを防止するものであるから、ノズル形状は、燃料が直線的に噴射されるホール型燃料噴射ノズル又はスリット型燃料噴射ノズルであり、また、噴射孔の数も、従来のように多数(8個)ではなく、少数(1個又は2個)である方が、より有効にこの衝突及び混合を行なうことができる。   The fuel injection nozzle is preferably composed of a hole type fuel injection nozzle or a slit type fuel injection nozzle having one or two injection holes. In this means, the fuel injected from each fuel injection nozzle collides and mixes with each other to prevent the injected fuel from adhering to the inner wall of the exhaust pipe. It is a hole type fuel injection nozzle or a slit type fuel injection nozzle to be injected, and the number of injection holes is not a large number (8) as in the prior art, but a small number (1 or 2). This collision and mixing can be performed more effectively.

燃料噴射ノズルは、噴射軸線がノズル本体中心線から後方へ傾斜するように形成されていることが望ましい。本手段の場合、各燃料噴射ノズルは、排気管に対しその噴射軸線が排ガスの流れ方向である後方へ傾斜するように取り付けられることが想定される。この場合、噴射軸線をノズル本体中心線から後方へ傾斜させることにより、排気管に対する各噴射ノズルの取付角度を大きく取ることができ、構造的にその取り付けが容易になる。   The fuel injection nozzle is preferably formed such that the injection axis is inclined backward from the center line of the nozzle body. In the case of this means, it is assumed that each fuel injection nozzle is attached to the exhaust pipe so that its injection axis is inclined rearward in the exhaust gas flow direction. In this case, by inclining the injection axis backward from the center line of the nozzle body, the attachment angle of each injection nozzle with respect to the exhaust pipe can be increased, and the attachment thereof is structurally easy.

例えば、燃料噴射ノズルは、ディーゼルエンジンのフィードポンプから燃料が供給される。本ディーゼルエンジンの排気管燃料添加方式は、フィードポンプからの比較的低圧の燃料を噴射する場合に特に好適である。   For example, the fuel injection nozzle is supplied with fuel from a feed pump of a diesel engine. The exhaust pipe fuel addition method of the present diesel engine is particularly suitable when relatively low pressure fuel is injected from the feed pump.

以上詳細に説明したように、本発明のディーゼルエンジンの排気管燃料添加方式は、ディーゼルエンジンの排気管内に燃料噴射ノズルを備え、この燃料噴射ノズルから燃料を噴射して排気管内に配設された排ガス浄化触媒の還元再生を行なうディーゼルエンジンの排気管燃料添加方式において、燃料噴射ノズルは、複数個から成ると共に噴射軸線が相互に交差するように配設されるから、噴射燃料の排気管内壁への付着を防止して、排気管内における燃料蒸気濃度を理論燃料蒸気濃度に近づけ、これにより排ガス浄化触媒の還元再生を充分に行うことができると共に、燃費を著しく向上させることができるという優れた効果を奏する。   As described above in detail, the diesel engine exhaust pipe fuel addition system of the present invention includes a fuel injection nozzle in the exhaust pipe of the diesel engine, and fuel is injected from the fuel injection nozzle and disposed in the exhaust pipe. In an exhaust pipe fuel addition system for a diesel engine that performs reduction regeneration of an exhaust gas purifying catalyst, a plurality of fuel injection nozzles are arranged and their injection axes intersect each other. The fuel vapor concentration in the exhaust pipe is brought close to the theoretical fuel vapor concentration, and the exhaust gas purification catalyst can be sufficiently reduced and regenerated, and the fuel efficiency can be remarkably improved. Play.

本発明に係るディーゼルエンジンの排気管燃料添加方式を実施するための最良の形態を、図1ないし図7を参照して詳細に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out an exhaust pipe fuel addition system for a diesel engine according to the present invention will be described in detail with reference to FIGS.

図1は、本発明のディーゼルエンジンの排気管燃料添加方式を示す模試図、図2は、 図1の燃料噴射ノズルを示す側面断面図、図3は、図2の燃料噴射ノズルを示す底面図、図4は、別の燃料噴射ノズルを示す底面図、図5は、さらに別の燃料噴射ノズルを示す底面図、図6は、図1の燃料噴射ノズルの取付状態を示す側面断面図、図7は、図1の燃料噴射ノズルの作動を示すグラフである。   1 is a schematic diagram showing an exhaust pipe fuel addition method of a diesel engine according to the present invention, FIG. 2 is a side sectional view showing a fuel injection nozzle of FIG. 1, and FIG. 3 is a bottom view showing the fuel injection nozzle of FIG. 4 is a bottom view showing another fuel injection nozzle, FIG. 5 is a bottom view showing still another fuel injection nozzle, and FIG. 6 is a side sectional view showing a mounting state of the fuel injection nozzle of FIG. 7 is a graph showing the operation of the fuel injection nozzle of FIG.

図1に示すように、ディーゼルエンジン1には、エンジン1内の燃料噴射ノズルに燃料を供給するコモンレール2、コモンレール2に高圧の燃料を供給するサプライポンプ3、サプライポンプ3に燃料タンク5からの燃料を供給するフィードポンプ4、サプライポンプ3とフィードポンプ4との間に介装されるフュエルフィルタ6、ディーゼルエンジン1の燃料制御を行なうECU7等が配設される。   As shown in FIG. 1, a diesel engine 1 includes a common rail 2 that supplies fuel to a fuel injection nozzle in the engine 1, a supply pump 3 that supplies high-pressure fuel to the common rail 2, and a fuel tank 5 to the supply pump 3. A feed pump 4 that supplies fuel, a fuel filter 6 that is interposed between the supply pump 3 and the feed pump 4, an ECU 7 that performs fuel control of the diesel engine 1, and the like are disposed.

排気管10内には、例えば2個の燃料噴射ノズル20、還元再生型触媒の一例であるNOX 吸蔵還元型触媒11、マフラ12等が配設される。ECU7は、エンジン1の燃料噴射ノズル、サプライポンプ3、フィードポンプ4、排気管10内の燃料噴射ノズル20等と、電気的に接続される。 In the exhaust pipe 10, for example, two fuel injection nozzles 20, an NO x storage reduction catalyst 11 that is an example of a reduction regeneration catalyst, a muffler 12, and the like are disposed. The ECU 7 is electrically connected to the fuel injection nozzle of the engine 1, the supply pump 3, the feed pump 4, the fuel injection nozzle 20 in the exhaust pipe 10, and the like.

NOX 吸蔵還元型触媒11は、排気管10内を流れる排ガス中のNOX を吸蔵する一方、排ガス中のHC,CO,CO2 又はH2 を増加させることにより、吸蔵したNOX を再生処理する、いわゆるNOX 吸蔵還元型の触媒である。触媒11は、排ガスの流れ方向に格子状の通路が形成されたモノリス担体と、このモノリス担体上に形成されると共に貴金属及びNOX 吸蔵剤が担持されたコート層とを有する。貴金属としては、例えば、Pt等があり、NOX 吸蔵剤としては、例えば、Li,Na,K,Cs等のアルカリ金属、Mg,Ca,Ba等のアルカリ土類金属、Y,La,Ce,Pr,Nd,Eu,Gd,Dy等の希土類金属等がある。また、コート層としては、アルミナ等が使用される。 The NO X storage reduction type catalyst 11, while absorbing the NO X in the exhaust gas flowing through the exhaust pipe 10, by increasing HC in exhaust gas, CO, a CO 2 or H 2, regeneration processes occluded NO X This is a so-called NO x storage reduction catalyst. The catalyst 11 has a monolith support having a grid-like passage formed in the flow direction of the exhaust gas, and a coat layer formed on the monolith support and supporting a noble metal and a NO x storage agent. Examples of the noble metal include Pt, and examples of the NO x storage agent include alkali metals such as Li, Na, K, and Cs, alkaline earth metals such as Mg, Ca, and Ba, Y, La, Ce, and the like. There are rare earth metals such as Pr, Nd, Eu, Gd, and Dy. As the coating layer, alumina or the like is used.

図2に示すように、燃料噴射ノズル20は、例えばホール型燃料噴射ノズルから成る。燃料噴射ノズル20は、円筒状のノズル本体21と、ノズル本体21内に軸方向に移動可能に挿入された、円柱状の弁軸30とを有する。ノズル本体21は、燃料供給孔22と、弁軸30の先端の円錐状のシート部31がシートする弁座23と、弁座23から延びる誘導孔24と、誘導孔24から周方向へ延びる噴射孔25とを有する。図3に示すように、燃料噴射ノズル20には、小円孔から成る噴射孔25が1個だけ配設される。図2に示すように、燃料噴射ノズル20は、その噴射軸線20aがノズル本体中心線21aから後方へ傾斜するように形成される。ここで、噴射軸線20aとは、各ノズル20の噴射方向を示す噴射の中心線である。   As shown in FIG. 2, the fuel injection nozzle 20 is composed of, for example, a hole-type fuel injection nozzle. The fuel injection nozzle 20 includes a cylindrical nozzle body 21 and a columnar valve shaft 30 that is inserted into the nozzle body 21 so as to be movable in the axial direction. The nozzle body 21 includes a fuel supply hole 22, a valve seat 23 seated by a conical seat portion 31 at the tip of the valve shaft 30, a guide hole 24 extending from the valve seat 23, and an injection extending in the circumferential direction from the guide hole 24. Hole 25. As shown in FIG. 3, the fuel injection nozzle 20 is provided with only one injection hole 25 composed of a small circular hole. As shown in FIG. 2, the fuel injection nozzle 20 is formed such that its injection axis 20a is inclined backward from the nozzle body center line 21a. Here, the injection axis 20 a is a center line of injection indicating the injection direction of each nozzle 20.

弁軸30は、ECU7によって制御される図示しない電磁ソレノイドによって開閉される。また、燃料噴射ノズルは、図4に示すように、2個の噴射孔37を有するホール型燃料噴射ノズル36や、図5に示すように、1個のスリット状の噴射孔39を有するスリット型燃料噴射ノズル38から成るものでもよい。この場合、ホール型燃料噴射ノズル36の噴射孔37、及び、スリット型燃料噴射ノズル38の噴射孔39は、上述の燃料噴射ノズル20と同様に、いずれもその噴射軸線がノズル本体中心線から後方へ傾斜するように形成されている。   The valve shaft 30 is opened and closed by an electromagnetic solenoid (not shown) controlled by the ECU 7. Further, the fuel injection nozzle includes a hole type fuel injection nozzle 36 having two injection holes 37 as shown in FIG. 4, and a slit type having one slit-like injection hole 39 as shown in FIG. The fuel injection nozzle 38 may be used. In this case, both the injection hole 37 of the hole type fuel injection nozzle 36 and the injection hole 39 of the slit type fuel injection nozzle 38 have their injection axes rearward from the center line of the nozzle body in the same manner as the fuel injection nozzle 20 described above. It is formed so as to be inclined.

なお、上述の燃料噴射ノズルは、必ずしもホール型燃料噴射ノズルやスリット型燃料噴射ノズルに限定されるものではなく、また、噴射孔の数も1個又は2個に限定されるものではない。   The fuel injection nozzle described above is not necessarily limited to a hole type fuel injection nozzle or a slit type fuel injection nozzle, and the number of injection holes is not limited to one or two.

図6に示すように、2個の燃料噴射ノズル20は、排気管10の周方向に等間隔に、すなわち、排気管10の直径位置に配設される。また、2個の噴射ノズル20は、その噴射軸線20aが排ガスの流れ方向である後方へ傾斜するように、かつ、略1点で交差するように取り付けられる。上述のように、燃料噴射ノズル20は、その噴射軸線20aがノズル本体中心線21aから後方へ傾斜するように形成されているから、排気管10に対する各燃料噴射ノズル20の取付角度を大きく取ることができ、構造的にその取り付けが容易となる。ただし、2個の燃料噴射ノズル20のなす角度、及びそれらと排気管10の軸線とがなす角度等の取付条件は、排気管10の直径、排ガスの流速、触媒11までの距離等により適切に設定される。   As shown in FIG. 6, the two fuel injection nozzles 20 are arranged at equal intervals in the circumferential direction of the exhaust pipe 10, that is, at a diameter position of the exhaust pipe 10. Further, the two injection nozzles 20 are attached so that their injection axes 20a are inclined rearward in the exhaust gas flow direction and intersect at substantially one point. As described above, since the fuel injection nozzle 20 is formed so that the injection axis 20a is inclined rearward from the nozzle body center line 21a, a large attachment angle of each fuel injection nozzle 20 to the exhaust pipe 10 is taken. Can be installed structurally. However, the mounting conditions such as the angle formed by the two fuel injection nozzles 20 and the angle formed by the axis of the exhaust pipe 10 are appropriately determined depending on the diameter of the exhaust pipe 10, the exhaust gas flow velocity, the distance to the catalyst 11, and the like. Is set.

次に、本ディーゼルエンジンの排気管燃料添加方式の作動について説明する。   Next, the operation of the exhaust pipe fuel addition method of the diesel engine will be described.

エンジン1からのNOX 排出量は、エンジン回転速度やアクセル開度等によって変化する。図1に示したECU7には、このように運転状態によって変化するエンジン1からのNOX 排出量についてのNOX 排出量マップが記憶されている。ECU7は、このNOX 排出量マップに基づいて、エンジン1のNOX 排出量を算出し、触媒11に吸蔵されたNOX 吸蔵量を積算する。 The NO x emission amount from the engine 1 varies depending on the engine speed, the accelerator opening, and the like. The ECU7 shown in FIG. 1, NO X emission map for NO X emissions from the engine 1 to vary by such a driving state is stored. The ECU 7 calculates the NO x emission amount of the engine 1 based on this NO x emission amount map, and integrates the NO x occlusion amount occluded in the catalyst 11.

触媒11のコート層に担持されるNOX 吸蔵剤として、例えばBaを用いた場合には、エンジン1から排出されたNOX は、触媒11において排ガス中のO2 と反応し、さらに触媒11中のBaO,BaCO3 と反応してBa(NO3 2 が生成され、この状態で触媒11に吸蔵される。これにより、排ガスは、NOX 濃度が極めて低くなった状態で、マフラ12等を通して大気中へ排出される。 As the NO X storage agent carried on the coat layer of the catalyst 11, for example in the case of using Ba, the NO X discharged from the engine 1 is reacted with O 2 in the exhaust gas in the catalyst 11, further catalyst 11 in Ba (NO 3 ) 2 is produced by reacting with BaO and BaCO 3, and is stored in the catalyst 11 in this state. Thus, the exhaust gas is discharged into the atmosphere through the muffler 12 and the like in a state where the NO x concentration is extremely low.

ECU7は、触媒11によるNOX 吸蔵量が所定量を越え、かつ、触媒温度が触媒還元可能温度(例えば、200〜450°C)以上になっていると判断すると、排気管10内の燃料噴射ノズル20の電磁ソレノイドを作動させる。電磁ソレノイドが作動すると、燃料噴射ノズル20においては、図2に示した弁軸30が引き上げられ、弁軸30のシート部31がノズル本体21の弁座23から離れる。これにより、フィードポンプ4からの加圧燃料が、燃料供給孔22から誘導孔24を通って、噴出孔25から排気管10内へ噴射される。フィードポンプ4は、燃料を燃料タンク5からサプライポンプ3に供給するためのものであるから、燃料圧は比較的低圧である。 When the ECU 7 determines that the NO x storage amount by the catalyst 11 exceeds a predetermined amount and the catalyst temperature is equal to or higher than the catalyst reducible temperature (for example, 200 to 450 ° C.), the fuel injection in the exhaust pipe 10 is performed. The electromagnetic solenoid of the nozzle 20 is activated. When the electromagnetic solenoid is activated, the valve shaft 30 shown in FIG. 2 is pulled up in the fuel injection nozzle 20, and the seat portion 31 of the valve shaft 30 is separated from the valve seat 23 of the nozzle body 21. As a result, the pressurized fuel from the feed pump 4 is injected from the fuel supply hole 22 through the guide hole 24 into the exhaust pipe 10 through the ejection hole 25. Since the feed pump 4 is for supplying fuel from the fuel tank 5 to the supply pump 3, the fuel pressure is relatively low.

この排気管10内への燃料添加により、排ガス中の酸素濃度が低下すると共に、還元剤としての排ガス中のHC,CO,CO2 又はH2 が増加する。この結果、触媒11に吸蔵されていたBa(NO3 2 が、上記還元剤と反応してN2 まで還元される。また、触媒11が選択性の良い還元触媒として作用し、上記NO3 が排ガス中のHC,COと反応して無害なN2 ,CO2 ,H2 Oとなり、大気中へ排出される。このように、ECU7が、燃料噴射ノズル20の電磁ソレノイドを作動させて、排気管10内の燃料噴射の噴射量及び噴射時期を適切に制御する。そして、触媒11の還元再生がほぼ完了したと推定したときに、燃料噴射ノズル20からの燃料噴射を停止させる。 By adding fuel into the exhaust pipe 10, the oxygen concentration in the exhaust gas decreases, and HC, CO, CO 2 or H 2 in the exhaust gas as a reducing agent increases. As a result, Ba (NO 3 ) 2 stored in the catalyst 11 reacts with the reducing agent and is reduced to N 2 . Further, the catalyst 11 acts as a highly selective reduction catalyst, and the NO 3 reacts with HC and CO in the exhaust gas to become harmless N 2 , CO 2 and H 2 O, and is discharged into the atmosphere. In this way, the ECU 7 operates the electromagnetic solenoid of the fuel injection nozzle 20 to appropriately control the injection amount and injection timing of the fuel injection in the exhaust pipe 10. When it is estimated that the reduction regeneration of the catalyst 11 is almost completed, the fuel injection from the fuel injection nozzle 20 is stopped.

本ディーゼルエンジンの排気管燃料添加方式は、図6に示すように、2個の燃料噴射ノズル20が、その噴射軸線20aが交差するように配設されているから、各噴射ノズル20から噴射された燃料が相互に衝突及び混合して最適な霧化がなされ、噴射燃料が排気管の内壁に付着することが防止される。したがって、燃料噴射ノズル20から噴射した燃料の大部分が、排ガス内で瞬時に蒸気化される。このため、図7に示すように、少ない燃料であっても、排気管10内における燃料蒸気濃度が理論燃料濃度近くまで急激に上昇し、排ガスの空燃比は瞬時にリッチ状態となり、排ガス浄化触媒の還元再生を充分に行うことができる。このように、少ない燃料で充分な還元再生ができるから、燃費が著しく改善される。   As shown in FIG. 6, the exhaust pipe fuel addition method of the diesel engine is such that two fuel injection nozzles 20 are arranged so that their injection axes 20 a intersect each other, so that they are injected from each injection nozzle 20. The fuels collide and mix with each other to achieve optimal atomization, and the injected fuel is prevented from adhering to the inner wall of the exhaust pipe. Therefore, most of the fuel injected from the fuel injection nozzle 20 is instantly vaporized in the exhaust gas. For this reason, as shown in FIG. 7, even with a small amount of fuel, the fuel vapor concentration in the exhaust pipe 10 suddenly rises to near the theoretical fuel concentration, the air-fuel ratio of the exhaust gas instantaneously becomes rich, and the exhaust gas purification catalyst Can be sufficiently reduced and regenerated. As described above, since sufficient reduction regeneration can be performed with a small amount of fuel, the fuel consumption is remarkably improved.

また、2個の燃料噴射ノズル20が、排気管10の周方向に等間隔に配設されるから、噴射燃料の衝突及び混合が一様に行われ、燃料蒸気が触媒11へ均一に供給される。なお、燃料噴射ノズル20は、必ずしも周方向に略等間隔に配設される必要はない。さらに、2個の燃料噴射ノズル20の噴射軸線20aが略1点で交差するように配設されるから、噴射燃料の衝突及び混合がより確実に行われ、噴射燃料が排気管の内壁に付着することがさらに防止される。なお、噴射軸線20aは、必ずしも略1点で交差するように配設される必要はない。   Further, since the two fuel injection nozzles 20 are arranged at equal intervals in the circumferential direction of the exhaust pipe 10, the collision and mixing of the injected fuel are performed uniformly, and the fuel vapor is uniformly supplied to the catalyst 11. The Note that the fuel injection nozzles 20 do not necessarily need to be disposed at substantially equal intervals in the circumferential direction. Further, since the injection axes 20a of the two fuel injection nozzles 20 are arranged so as to intersect at substantially one point, the injected fuel collides and mixes more reliably, and the injected fuel adheres to the inner wall of the exhaust pipe. This is further prevented. The injection axis 20a is not necessarily arranged so as to intersect at substantially one point.

上述のディーゼルエンジンの排気管燃料添加方式においては、排気管10に2個の燃料噴射ノズル20が配設される。これら2個の燃料噴射ノズル20によっても、噴射燃料が排気管の内壁に付着することが極めて高い確率で防止される。しかしながら、燃料噴射ノズル20は必ずしも2個に限定されるものではなく、3個以上とすることもできる。   In the above-described diesel engine exhaust pipe fuel addition system, two fuel injection nozzles 20 are disposed in the exhaust pipe 10. These two fuel injection nozzles 20 also prevent the injected fuel from adhering to the inner wall of the exhaust pipe with a very high probability. However, the fuel injection nozzle 20 is not necessarily limited to two, and may be three or more.

また、燃料噴射ノズル20に対して、ディーゼルエンジン1のフィードポンプ4から燃料が供給される。しかしながら、燃料供給源は、必ずしもフィードポンプに限定されるものではなく、例えば、ホール型燃料噴射ノズルに高圧噴射用の改良を加える等により、コモンレール2から供給される高圧燃料を用いることもできる。   Further, fuel is supplied from the feed pump 4 of the diesel engine 1 to the fuel injection nozzle 20. However, the fuel supply source is not necessarily limited to the feed pump, and for example, high-pressure fuel supplied from the common rail 2 can be used by adding improvements for high-pressure injection to the hall type fuel injection nozzle.

なお、上述のディーゼルエンジンの排気管燃料添加方式は、NOX 吸蔵還元型触媒11に対して実施するものであったが、これに限定されるものではなく、DPNR等の他の還元再生型の触媒に対しても、同様に実施できることは勿論である。また、上述のディーゼルエンジンの排気管燃料添加方式は一例にすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。 Although the above-described diesel engine exhaust pipe fuel addition method is implemented for the NO x storage reduction catalyst 11, it is not limited to this, but other reduction regeneration type such as DPNR. Of course, the same can be applied to the catalyst. Moreover, the above-described diesel engine exhaust pipe fuel addition system is merely an example, and various modifications are possible based on the spirit of the present invention, which are not excluded from the scope of the present invention.

本発明のディーゼルエンジンの排気管燃料添加方式を示す模試図である。It is a trial figure which shows the exhaust pipe fuel addition system of the diesel engine of this invention. 図1の燃料噴射ノズルを示す側面断面図である。It is side surface sectional drawing which shows the fuel-injection nozzle of FIG. 図2の燃料噴射ノズルを示す底面図である。It is a bottom view which shows the fuel-injection nozzle of FIG. 別の燃料噴射ノズルを示す底面図である。It is a bottom view which shows another fuel injection nozzle. さらに別の燃料噴射ノズルを示す底面図である。It is a bottom view which shows another fuel injection nozzle. 図1の燃料噴射ノズルの取付状態を示す側面断面図である。It is side surface sectional drawing which shows the attachment state of the fuel-injection nozzle of FIG. 図1の燃料噴射ノズルの作動を示すグラフである。It is a graph which shows the action | operation of the fuel-injection nozzle of FIG. 従来のホール型燃料噴射ノズルを示す側面断面図である。It is side surface sectional drawing which shows the conventional hall | hole type fuel injection nozzle. 図8のホール型燃料噴射ノズルを示す底面図である。It is a bottom view which shows the hall | hole type fuel injection nozzle of FIG. 従来のスリット型燃料噴射ノズルを示す側面断面図である。It is side surface sectional drawing which shows the conventional slit type fuel injection nozzle. 図10のスリット型燃料噴射ノズルを示す底面図である。It is a bottom view which shows the slit type fuel injection nozzle of FIG. 従来の燃料噴射ノズルの取付状態を示すグラフである。It is a graph which shows the attachment state of the conventional fuel injection nozzle. 従来の燃料噴射ノズルの作動を示すグラフである。It is a graph which shows the action | operation of the conventional fuel injection nozzle.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 コモンレール
3 サプライポンプ
4 フィードポンプ
5 燃料タンク
6 フュエルフィルタ
7 ECU
10 排気管
11 触媒
12 マフラ
20 燃料噴射ノズル
20a 噴射軸線
21 ノズル本体
21a ノズル本体中心線
22 燃料供給孔
23 弁座
24 誘導孔
25 噴射孔
30 弁軸
31 シート部
36 燃料噴射ノズル
37 噴射孔
38 燃料噴射ノズル
39 噴射孔
50 ホール型燃料噴射ノズル
50a 噴射孔
51 スリット型燃料噴射ノズル
51a 噴射孔
52 排気管
53 内壁
1 Diesel engine 2 Common rail 3 Supply pump 4 Feed pump 5 Fuel tank 6 Fuel filter 7 ECU
DESCRIPTION OF SYMBOLS 10 Exhaust pipe 11 Catalyst 12 Muffler 20 Fuel injection nozzle 20a Injection axis 21 Nozzle body 21a Nozzle body center line 22 Fuel supply hole 23 Valve seat 24 Guide hole 25 Injection hole 30 Valve shaft 31 Seat part 36 Fuel injection nozzle 37 Injection hole 38 Fuel Injection nozzle 39 Injection hole 50 Hall type fuel injection nozzle 50a Injection hole 51 Slit type fuel injection nozzle 51a Injection hole 52 Exhaust pipe 53 Inner wall

Claims (6)

ディーゼルエンジン(1)の排気管(10)内に燃料噴射ノズル(20,36,38)を備え、前記燃料噴射ノズルから燃料を噴射して前記排気管内に配設された排ガス浄化触媒(11)の還元再生を行なうディーゼルエンジンの排気管燃料添加方式において、前記燃料噴射ノズルは、複数個から成ると共に噴射軸線(20a)が相互に交差するように配設されたことを特徴とするディーゼルエンジンの排気管燃料添加方式。   An exhaust gas purification catalyst (11) provided with a fuel injection nozzle (20, 36, 38) in an exhaust pipe (10) of a diesel engine (1), and injecting fuel from the fuel injection nozzle and disposed in the exhaust pipe In the diesel engine exhaust pipe fuel addition system for performing regenerative regeneration of the diesel engine, the fuel injection nozzle comprises a plurality of fuel injection nozzles and the injection axes (20a) are arranged to cross each other. Exhaust pipe fuel addition method. 前記複数個の燃料噴射ノズル(20,36,38)は、前記排気管(10)の周方向に略等間隔に配設されたことを特徴とする請求項1に記載のディーゼルエンジンの排気管燃料添加方式。   2. The exhaust pipe of a diesel engine according to claim 1, wherein the plurality of fuel injection nozzles (20, 36, 38) are arranged at substantially equal intervals in a circumferential direction of the exhaust pipe (10). Fuel addition method. 前記複数個の燃料噴射ノズル(20,36,38)は、前記噴射軸線(20a)が略1点で交差するように配設されたことを特徴とする請求項1又は2に記載のディーゼルエンジンの排気管燃料添加方式。   The diesel engine according to claim 1 or 2, wherein the plurality of fuel injection nozzles (20, 36, 38) are arranged so that the injection axis (20a) intersects at substantially one point. Exhaust pipe fuel addition method. 前記燃料噴射ノズルは、1個又は2個の噴射孔(25,37,39)を有するホール型燃料噴射ノズル(20,36)又はスリット型燃料噴射ノズル(38)から成ることを特徴とする請求項1ないし3のいずれかに記載のディーゼルエンジンの排気管燃料添加方式。   The fuel injection nozzle comprises a hole type fuel injection nozzle (20, 36) or a slit type fuel injection nozzle (38) having one or two injection holes (25, 37, 39). Item 4. An exhaust pipe fuel addition system for a diesel engine according to any one of Items 1 to 3. 前記燃料噴射ノズル(20,36,38)は、前記噴射軸線(20a)がノズル本体中心線(21a)から後方へ傾斜するように形成されていることを特徴とする請求項4に記載のディーゼルエンジンの排気管燃料添加方式。   The diesel fuel according to claim 4, wherein the fuel injection nozzle (20, 36, 38) is formed such that the injection axis (20a) is inclined rearward from the nozzle body center line (21a). Engine exhaust pipe fuel addition method. 前記燃料噴射ノズル(20,36,38)は、前記ディーゼルエンジン(1)のフィードポンプ(4)から燃料が供給されることを特徴とする請求項1ないし5のいずれかに記載のディーゼルエンジンの排気管燃料添加方式。
The diesel engine according to any one of claims 1 to 5, wherein the fuel injection nozzle (20, 36, 38) is supplied with fuel from a feed pump (4) of the diesel engine (1). Exhaust pipe fuel addition method.
JP2004013747A 2004-01-22 2004-01-22 System for fuel addition in exhaust pipe of diesel engine Pending JP2005207289A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004013747A JP2005207289A (en) 2004-01-22 2004-01-22 System for fuel addition in exhaust pipe of diesel engine
PCT/JP2005/000507 WO2005071235A1 (en) 2004-01-22 2005-01-18 In-exhaust pipe fuel adding method for diesel engine
US11/459,520 US20060248881A1 (en) 2004-01-22 2006-07-24 System for Injecting Fuel into Diesel Engine Exhaust Pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013747A JP2005207289A (en) 2004-01-22 2004-01-22 System for fuel addition in exhaust pipe of diesel engine

Publications (1)

Publication Number Publication Date
JP2005207289A true JP2005207289A (en) 2005-08-04

Family

ID=34805396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013747A Pending JP2005207289A (en) 2004-01-22 2004-01-22 System for fuel addition in exhaust pipe of diesel engine

Country Status (3)

Country Link
US (1) US20060248881A1 (en)
JP (1) JP2005207289A (en)
WO (1) WO2005071235A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154822A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010138783A (en) * 2008-12-11 2010-06-24 Shin Ace:Kk Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same
WO2017064878A1 (en) * 2015-10-16 2017-04-20 ヤンマー株式会社 Exhaust gas purification device for ship

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031202B1 (en) * 2003-09-30 2010-12-22 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7552584B2 (en) 2006-03-31 2009-06-30 Caterpillar Inc. Common engine and exhaust treatment fuel system
FR2900964A3 (en) 2006-05-15 2007-11-16 Renault Sas Internal combustion engine, has blowing line injecting air into exhaust line at pressure greater than pressure of gas circulating in exhaust line and provided between compressor of turbocompressor and air distributor
US8109077B2 (en) * 2006-10-11 2012-02-07 Tenneco Automotive Operating Company Inc. Dual injector system for diesel emissions control
KR20080102106A (en) * 2007-05-18 2008-11-24 에스케이에너지 주식회사 An injector for regeneration of an exhaust gas purifying device
EP2075428B1 (en) * 2007-12-25 2011-11-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Emission control system
US8141353B2 (en) * 2008-04-25 2012-03-27 Tenneco Automotive Operating Company Inc. Exhaust gas additive/treatment system and mixer for use therein
GB2476827A (en) * 2010-01-11 2011-07-13 Gm Global Tech Operations Inc Aftertreatment arrangement with an injection device distributed around the periphery of the exhaust
JP2013002336A (en) * 2011-06-15 2013-01-07 Toyota Industries Corp Reducing agent injection nozzle and nitrogen oxide purification system with reducing agent injection nozzle
EP2816205B1 (en) * 2012-02-14 2021-08-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
DE102019207697A1 (en) * 2019-05-27 2020-12-03 Robert Bosch Gmbh Injection module for a reducing agent

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406790A (en) * 1992-12-11 1995-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5522218A (en) * 1994-08-23 1996-06-04 Caterpillar Inc. Combustion exhaust purification system and method
DE19806265C5 (en) * 1998-02-16 2004-07-22 Siemens Ag dosing
DE19855384A1 (en) * 1998-12-01 2000-06-08 Bosch Gmbh Robert Device for the aftertreatment of exhaust gases from an internal combustion engine
US6182444B1 (en) * 1999-06-07 2001-02-06 Ford Global Technologies, Inc. Emission control system
US6293097B1 (en) * 1999-08-16 2001-09-25 Ford Global Technologies, Inc. On-board reductant delivery system
JP4446366B2 (en) * 2001-03-22 2010-04-07 東京瓦斯株式会社 Exhaust gas purification method and apparatus for lean combustion gas engine
JP3888519B2 (en) * 2001-09-12 2007-03-07 株式会社デンソー Exhaust purification device
JP3984834B2 (en) * 2001-12-28 2007-10-03 株式会社日本自動車部品総合研究所 Exhaust catalyst fuel supply system
US6895747B2 (en) * 2002-11-21 2005-05-24 Ford Global Technologies, Llc Diesel aftertreatment systems
US6761025B1 (en) * 2002-12-19 2004-07-13 Caterpillar Inc. Enhanced ammonia feed control for selective catalytic reduction
DE102004015805B4 (en) * 2004-03-29 2007-07-26 J. Eberspächer GmbH & Co. KG Device for introducing a liquid into an exhaust gas line
US7062904B1 (en) * 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154822A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4687431B2 (en) * 2005-12-07 2011-05-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2010138783A (en) * 2008-12-11 2010-06-24 Shin Ace:Kk Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same
WO2017064878A1 (en) * 2015-10-16 2017-04-20 ヤンマー株式会社 Exhaust gas purification device for ship
JP2017075579A (en) * 2015-10-16 2017-04-20 ヤンマー株式会社 Exhaust emission control device for vessel
CN108138622A (en) * 2015-10-16 2018-06-08 洋马株式会社 The waste gas purification apparatus of ship
CN108138622B (en) * 2015-10-16 2020-07-21 洋马动力科技有限公司 Exhaust gas purification device for ship

Also Published As

Publication number Publication date
US20060248881A1 (en) 2006-11-09
WO2005071235A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP1882834B1 (en) Exhaust gas purification method and system
US8209965B2 (en) Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
US20060248881A1 (en) System for Injecting Fuel into Diesel Engine Exhaust Pipe
CN102454453B (en) There is the SO of reduction 3the discharge SCR NO of the durability produced and improve xafter-treatment system
EP2626529B1 (en) Exhaust purification device for internal combustion engine
CN102388207A (en) HC-SCR system for lean burn engines
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
CN101818674A (en) Exhaust gas clean-up device for internal combustion engine
JP2009156078A (en) Exhaust emission control device for internal combustion engine
JP4784761B2 (en) Exhaust purification device
JP2010019239A (en) Exhaust emission control device
JP4461973B2 (en) Diesel engine exhaust purification system
JP4830570B2 (en) Exhaust gas purification system
KR20180068808A (en) Exhaust gas purification system and controlling method thereof
JP2005201158A (en) System of adding fuel to exhaust pipe of diesel engine
JP5004308B2 (en) Engine exhaust purification system
JP4622903B2 (en) Additive supply device
JP2008151039A (en) Exhaust emission control device
JP2014114714A (en) Exhaust emission control method and exhaust emission control system for diesel engine
JP2011038458A (en) Exhaust emission control device of engine
JP2007205308A (en) Exhaust emission control method and exhaust emission control system
US20080261801A1 (en) Methods of Regenerating a Nox Absorbent
JP2010116803A (en) Exhaust emission control system and exhaust emission control method
JP2006266129A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309