JP3321190B2 - Ammonia decomposition catalyst with denitration function and exhaust gas purification method - Google Patents

Ammonia decomposition catalyst with denitration function and exhaust gas purification method

Info

Publication number
JP3321190B2
JP3321190B2 JP31230891A JP31230891A JP3321190B2 JP 3321190 B2 JP3321190 B2 JP 3321190B2 JP 31230891 A JP31230891 A JP 31230891A JP 31230891 A JP31230891 A JP 31230891A JP 3321190 B2 JP3321190 B2 JP 3321190B2
Authority
JP
Japan
Prior art keywords
catalyst
component
ammonia
denitration
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31230891A
Other languages
Japanese (ja)
Other versions
JPH05146634A (en
Inventor
泰良 加藤
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP31230891A priority Critical patent/JP3321190B2/en
Priority to US07/980,182 priority patent/US5409681A/en
Priority to AT92120185T priority patent/ATE129437T1/en
Priority to DE69205669T priority patent/DE69205669T2/en
Priority to EP92120185A priority patent/EP0544282B1/en
Publication of JPH05146634A publication Critical patent/JPH05146634A/en
Application granted granted Critical
Publication of JP3321190B2 publication Critical patent/JP3321190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排ガス浄化用触媒に係
り、特に排ガスに含有される窒素酸化物(NOx)をア
ンモニア(NH3)で接触還元する際に発生する未反応
アンモニアの流出が少ない脱硝とアンモニア分解用触
媒、および未反応アンモニアを低減するのに好適な触媒
および当該触媒を用いる排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas, and in particular, a small amount of unreacted ammonia generated when catalytically reducing nitrogen oxides (NOx) contained in exhaust gas with ammonia (NH 3 ). The present invention relates to a catalyst for denitration and ammonia decomposition, a catalyst suitable for reducing unreacted ammonia, and an exhaust gas purification method using the catalyst.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法として、アンモニ
ア(NH3)を還元剤とした選択的接触還元による排煙
脱硝法が火力発電所を中心に幅広く用いられている。触
媒にはバナジウム(V)、モリブデン(Mo)あるいは
タングステン(W)を活性成分にした酸化チタン(Ti
2)系触媒が使用されており、特に活性成分の一つと
してバナジウムを含むものは活性が高いだけでなく、排
ガス中に含まれている不純物による劣化が小さいこと、
より低温から使用できることなどから、現在の脱硝触媒
の主流になっている(特開昭50−128681号公報
など)。
2. Description of the Related Art NOx in flue gas emitted from power plants, various factories, automobiles, and the like is a substance that causes photochemical smog and acid rain. As an effective method for removing NOx, ammonia (NH 3 ) is reduced. The flue gas denitration method by selective catalytic reduction as an agent has been widely used mainly in thermal power plants. As a catalyst, titanium oxide (Ti) containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used.
O 2 ) -based catalysts are used. In particular, those containing vanadium as one of the active components have not only high activity but also little degradation by impurities contained in exhaust gas.
Because it can be used at lower temperatures, it has become the mainstream of current denitration catalysts (Japanese Patent Laid-Open No. 50-128681, etc.).

【0003】ところで、近年の電力需要増加、特に夏期
電力需要の増加に対応するためガスタービンの建設ある
いはガスタービン等を利用したコージェネレーションシ
ステムの建設が都心部を中心に増加している。これらの
設備は人工密集地域に隣接して設置されることが多いこ
とと窒素酸化物(NOx)の排出規制が総量規制である
ことから、設備から排出される排ガス中のNOx量を極
めて低いレベルに抑えることが望まれている。このた
め、触媒の充填量を増加し、アンモニア注入量を増加さ
せて脱硝装置を高脱硝率で運転する等の方法が検討され
ている。
Meanwhile, in order to cope with the increase in power demand in recent years, especially in summer, the construction of a gas turbine or the construction of a cogeneration system using a gas turbine or the like is increasing mainly in the city center. Since these facilities are often installed adjacent to artificially crowded areas and the regulations on the emission of nitrogen oxides (NOx) are total, the amount of NOx in the exhaust gas discharged from the facilities is extremely low. It is hoped that it will be suppressed. For this reason, a method of operating the denitration apparatus at a high denitration rate by increasing the amount of catalyst and increasing the amount of injected ammonia has been studied.

【0004】この様な高度の脱硝に対する需要に伴っ
て、脱硝反応に使用されなかった未反応アンモニア(以
下リークアンモニアという)もNOxレベル以下にする
ことが必須になってきており、リークアンモニアを低減
するため、脱硝触媒の後流部にアンモニア分解触媒の設
置が検討されている。このリークアンモニアを分解する
触媒についても従来より研究が進められており、アンモ
ニアの酸化活性に優れた銅(Cu)、鉄(Fe)等を活
性成分にした触媒等が知られている(特開昭52−43
767号公報等)。
[0004] With the demand for such advanced denitration, it has become essential that unreacted ammonia (hereinafter referred to as "leakage ammonia") not used in the denitrification reaction be reduced to the NOx level or less, and the leakage ammonia is reduced. Therefore, installation of an ammonia decomposition catalyst in a downstream part of the denitration catalyst is being studied. Research on catalysts for decomposing this leaked ammonia has been conducted in the past, and catalysts using copper (Cu), iron (Fe), or the like as an active component having excellent ammonia oxidation activity have been known (Japanese Patent Application Laid-Open (JP-A) No. 2002-110572). Showa 52-43
767, etc.).

【0005】[0005]

【発明が解決しようとする課題】上記従来技術の内、単
に脱硝触媒を増加する方法は、未反応アンモニアが増加
するという問題がある。これは、脱硝装置をNH3/N
Ox比を変化させて運転した場合の触媒層出口における
NOx濃度とリークアンモニア濃度の挙動を示した図5
の実線で示す様に、NH3/NOx比を1近くで運転すれ
ば高脱硝率が得られるもののリークアンモニアもNH3
/NOxが1近辺から急に増大するためである。
Among the above prior arts, the method of simply increasing the denitration catalyst has a problem that unreacted ammonia increases. This is because the denitration equipment is NH 3 / N
FIG. 5 shows the behavior of the NOx concentration and the leak ammonia concentration at the catalyst layer outlet when the operation was performed while changing the Ox ratio.
As shown in solid lines, NH 3 / if operated NOx ratio 1 near those high denitration ratio can be obtained leakage ammonia also NH 3
This is because / NOx suddenly increases from around 1.

【0006】このリークアンモニアを低減するために触
媒層を二層にし、前流部に従来の脱硝触媒を設置し、後
流部に従来のアンモニア分解触媒を設置する図6のよう
な装置の場合には、NH3/NOx比を増加した場合のリ
ークアンモニアは確かに減少するものの、NH3の酸化
分解によって次式のようなNO生成反応が併発し、図7
に示すように高脱硝率が得られないという問題があっ
た。 NH3+5/4O2 → NO+3/2H2O (1)
In order to reduce the leakage ammonia, the catalyst layer is divided into two layers, a conventional denitration catalyst is installed in the upstream part, and a conventional ammonia decomposition catalyst is installed in the downstream part as shown in FIG. FIG. 7 shows that although the leaked ammonia when the NH 3 / NOx ratio is increased certainly decreases, the oxidative decomposition of NH 3 causes a NO generation reaction as shown in the following equation.
As described above, there is a problem that a high denitration rate cannot be obtained. NH 3 + 5 / 4O 2 → NO + 3 / 2H 2 O (1)

【0007】そこで、本発明の目的は、脱硝触媒にリー
クアンモニアの分解機能と酸化分解機能を持たせ、脱硝
機能を持つと同時にリークアンモニアを極めて低い値に
低減することができる脱硝機能を備えたアンモニア分解
触媒を提供し、また、この触媒を用いて排ガスを浄化す
る方法を提供することである。
Accordingly, an object of the present invention is to provide a denitration catalyst with a function of decomposing a leaked ammonia and an oxidative decomposition function to provide a denitration function and a denitration function capable of reducing the leaked ammonia to an extremely low value. An object of the present invention is to provide an ammonia decomposition catalyst and a method for purifying exhaust gas using the catalyst.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は次の
基本構成によって構成される。すなわち、チタン(T
i)、バナジウム(V)、タングステン(W)、モリブ
デン(Mo)の中から選ばれる一種以上の元素のTi−
V、Ti−Mo、Ti−W、Ti−V−WまたはTi−
Mo−Vのいずれかの組み合わせからなる酸化物または
銅(Cu)または鉄(Fe)を担持したゼオライトから
なる組成物を第一成分とし、ゼオライト、アルミナ、シ
リカから選ばれる多孔体にあらかじめ担持された白金
(Pt)、パラジウム(Pd)、ロジウム(Rh)から
選ばれる貴金属を含有する組成物を第二成分とした組成
物から成り、窒素酸化物を接触還元すると同時に還元剤
として注入された未反応状態のアンモニアを分解する脱
硝機能を備えたアンモニア分解触媒
The above object of the present invention is constituted by the following basic structure. That is, titanium (T
i), vanadium (V), tungsten (W), of one or more elements selected from among molybdenum <br/> Den (Mo) Ti-
V, Ti-Mo, Ti-W, Ti-V-W or Ti-
An oxide comprising any combination of Mo-V or
From zeolite carrying copper (Cu) or iron (Fe)
The composed composition as the first component, Ze zeolite, previously platinum supported porous body selected alumina, silica
(Pt), palladium (Pd), rhodium (Rh)
An ammonia decomposition catalyst comprising a composition containing a selected noble metal-containing composition as a second component, and having a denitration function for catalytically reducing nitrogen oxides and decomposing unreacted ammonia injected as a reducing agent .

【0009】排ガス中の窒素酸化物と該窒素酸化物の還
元剤として排ガス中に注入されたアンモニアの内、未反
応状態のアンモニアを分解する触媒として前記脱硝機能
を備えたアンモニア分解触媒を用いる排ガス浄化方法で
ある。
Exhaust gas using the ammonia decomposition catalyst having the denitration function as a catalyst for decomposing unreacted ammonia among nitrogen oxides in the exhaust gas and ammonia injected into the exhaust gas as a reducing agent for the nitrogen oxide. It is a purification method.

【0010】さらに具体的には、第一成分および第二成
分は次のようなものを用い、貴金属元素の濃度が0を越
えて1000ppm以下の範囲になるように両者を混合
し、水を加えて混練後、公知の方法により板状、ハニカ
ム状、粒状に成形後所定温度で焼成したものを触媒にす
ることにより達成することができる。
More specifically, the following components are used as the first component and the second component. The two components are mixed so that the concentration of the noble metal element is in the range of more than 0 to 1000 ppm or less, and water is added. After kneading, the mixture is formed into a plate, honeycomb, or granule by a known method, and then calcined at a predetermined temperature to obtain a catalyst.

【0011】(A)第一成分としてはTi−V、Ti−
Mo、Ti−W、Ti−V−WまたはTi−Mo−Vの
いずれかの組み合わせの酸化物または銅(Cu)または
鉄(Fe)を担持したモルデナイト等のゼオライトを用
いる。
(A) As the first component, Ti-V, Ti-
An oxide of any combination of Mo, Ti-W, Ti-V-W or Ti-Mo-V, or a zeolite such as mordenite supporting copper (Cu) or iron (Fe) is used.

【0012】(B)第二成分としては塩化白金酸、硝酸
パラジウム、塩化ロジウム等の貴金属の塩類またはゼオ
ライト、多孔質シリカ、多孔質アルミナにあらかじめ上
記貴金属元素をイオン交換含浸等により担持させた組成
物を用いる。
(B) As the second component, a salt of a noble metal such as chloroplatinic acid, palladium nitrate or rhodium chloride or a composition in which the above noble metal element is previously supported on zeolite, porous silica or porous alumina by ion exchange impregnation or the like. Use things.

【0013】[0013]

【作用】図1は本発明になる触媒の有する細孔のモデル
を示したものである。脱硝触媒成分(第一成分)が形成
するマクロポアの所々にゼオライト等の多孔質が形成す
るミクロポアが存在する構造になっており、そのミクロ
ポア内に貴金属元素含有第二成分が担持された状態にあ
る。この様な構造にすると脱硝触媒成分に吸着され易い
アンモニアはマクロポア入り口部の脱硝触媒成分に選択
的に吸着され、図2のように拡散してくるNOxと反応
して消費されてしまう。このため拡散抵抗の大きいミク
ロポア内の貴金属にまでは到達することがなく、通常の
脱硝触媒の場合と同様の高いNOx除去率を示す。
FIG. 1 shows a model of pores of the catalyst according to the present invention. It has a structure in which micropores such as zeolite are formed in places of macropores formed by the denitration catalyst component (first component), and the noble metal element-containing second component is supported in the micropores. . With such a structure, the ammonia that is easily adsorbed by the denitration catalyst component is selectively adsorbed by the denitration catalyst component at the entrance of the macropore, and is consumed by reacting with the diffused NOx as shown in FIG. For this reason, it does not reach the noble metal in the micropore having a large diffusion resistance, and shows a high NOx removal rate similar to that of a normal denitration catalyst.

【0014】一方、NOxが減少し、吸着アンモニアが
消費されなくなるとアンモニアはミクロポア内にまで拡
散するようになり貴金属にまで到達し、(1)と(2)
式で示される酸素による酸化反応が進行するようにな
る。 NH3+5/4O2 → NO+3/2H2O (1) NH3+3/4O2 → 1/2N2+3/2H2O (2)
On the other hand, when the NOx decreases and the adsorbed ammonia is no longer consumed, the ammonia diffuses into the micropores and reaches the noble metal, and (1) and (2)
The oxidation reaction by oxygen represented by the formula proceeds. NH 3 + 5 / 4O 2 → NO + 3 / 2H 2 O (1) NH 3 + 3 / 4O 2 → 1 / 2N 2 + 3 / 2H 2 O (2)

【0015】ここで生成したNOは、図3の様に、ミク
ロポアからマクロポアへと触媒の外内に拡散していく過
程でマクロポア内面に吸着しているアンモニアに衝突し
て(3)式の脱硝反応により窒素に還元される。 NO+NH3+1/4O2 → N2+3/2H2O (3) このためNOを生成することが無く脱硝率の低下を生じ
ない。
The NO generated here collides with the ammonia adsorbed on the inner surface of the macropores in the process of diffusing from the micropores to the macropores as shown in FIG. It is reduced to nitrogen by the reaction. NO + NH 3 + / O 2 → N 2 + 3 / 2H 2 O (3) For this reason, NO is not generated, and the denitration rate does not decrease.

【0016】以上に示したように本発明になる触媒は、
NOの存在する場合には通常の脱硝触媒と同様に作用
し、NOxが消費されてアンモニアが余剰になると、貴
金属の触媒作用によるアンモニアの酸化作用と脱硝触媒
の作用の協奏作用でアンモニアを窒素に添加できる新規
な触媒である。
As shown above, the catalyst according to the present invention comprises:
When NO is present, it acts in the same way as a normal denitration catalyst, and when NOx is consumed and ammonia becomes excessive, ammonia is converted to nitrogen by the concerted action of the oxidation of ammonia by the catalytic action of the noble metal and the action of the denitration catalyst. It is a new catalyst that can be added.

【0017】したがって、本発明の触媒を単独で使用し
た場合には、従来技術で問題となったNH3/NO比を
高くすると生じる図5の実線のようなリークアンモニア
量を同図破線のように極めて低い値に押えることができ
る。
[0017] Therefore, when using the catalyst of the present invention alone, as a leakage amount of ammonia FIG dashed shown by the solid line in FIG. 5 that occurs with increasing the NH 3 / NO ratio in question in the prior art Can be kept very low.

【0018】また、本発明になる触媒を図6の二層式反
応器の後流部に設置して(前流部には通常の脱硝触媒を
設置する)リークアンモニアの酸化分解に用いれば、N
Oxを生成することがないので、図7の実線の様な従来
のアンモニア分解触媒で問題となる脱硝率の悪化を生じ
ることなく、同図破線の様に高脱硝率が得られる。
If the catalyst according to the present invention is installed in the downstream part of the two-layer reactor shown in FIG. 6 (an ordinary denitration catalyst is installed in the upstream part) and used for oxidative decomposition of leaked ammonia, N
Since Ox is not generated, a high denitration rate can be obtained as shown by the broken line in FIG. 7 without causing deterioration of the denitration rate which is a problem in the conventional ammonia decomposition catalyst as shown by the solid line in FIG.

【0019】さらに、従来技術では脱硝触媒と同程度の
多量のアンモニア分解触媒が必要であるのに対し、本発
明の触媒を用いる場合にはNOxが存在する時には脱硝
触媒として作用するため脱硝触媒を少なくでき、ひいて
は全体の触媒量を非常に少なくすることができる。
Furthermore, in the prior art, a large amount of ammonia decomposition catalyst is required, which is almost the same as that of the denitration catalyst. On the other hand, when the catalyst of the present invention is used, the catalyst acts as a denitration catalyst when NOx is present. The amount of catalyst can be reduced, and thus the total amount of catalyst can be significantly reduced.

【0020】この様に本発明になる触媒は、単独で使用
するか、あるいは従来の脱硝触媒の後流部に設置して高
脱硝率を維持しつつ、リークアンモニアの少ないシステ
ムを構成することを可能にするものである。
As described above, the catalyst according to the present invention may be used alone or may be installed in the downstream of a conventional denitration catalyst to constitute a system having a small amount of leaked ammonia while maintaining a high denitration rate. Is what makes it possible.

【0021】本発明の触媒は前述したような触媒の構成
に特徴があり、その調製法もその様な構造を実現できる
ものであればどのような調製法であっても採用できるこ
とは言うまでもない。しかし、次のような方法を用いれ
ばより優れた触媒を得ることができる。
The catalyst of the present invention is characterized by the constitution of the catalyst as described above, and it goes without saying that any preparation method can be adopted as long as such a structure can be realized. However, a better catalyst can be obtained by using the following method.

【0022】触媒成分の内、まず第一成分は、前記した
ような各種のものを使用することができるが、特に触媒
成分としてTi−V、Ti−V−Mo、Ti−W−V等
の元素からなる酸化物触媒を用いた場合に好結果をもた
らす。これらは、メタチタン酸等の含水酸化チタンのス
ラリにバナジウム、モリブデン、タングステンの酸素酸
塩をはじめとする塩類を添加し、加熱ニーダを用いて水
を蒸発させながらペースト状にし、乾燥後、400℃か
ら700℃で焼成、必要に応じて粉砕することによって
得られる。
Among the catalyst components, the first component may be any one of the various components described above. Particularly, as the catalyst component, Ti-V, Ti-V-Mo, Ti-W-V, etc. Good results are obtained when an elemental oxide catalyst is used. These are prepared by adding salts such as vanadium, molybdenum, and oxyacid salts of tungsten to a slurry of hydrous titanium oxide such as metatitanic acid, forming a paste while evaporating water using a heating kneader, drying, and then drying at 400 ° C. To 700 ° C., and if necessary, pulverized.

【0023】また第二成分の添加は、予めゼオライト、
シリカ、アルミナ等の多孔体のミクロポア内にイオン交
換や混練により担持したものを調製し、第一成分に添加
するのが良い。第二成分に用いられるゼオライトはモル
デナイト、クリノプチロライト、エリオナイト、Y型ゼ
オライト等の中から選ばれるゼオライトの水素置換型、
ナトリウム型、カルシウム型のものを用いることができ
る。また、シリカ、アルミナは含水酸化物を低温で焼成
した表面積が100m2/gから500m2/gのものが
用いられる。これら粒径は1〜10μm程度であり、ゼ
オライト等の構造が破壊されない程度に粉砕して用いる
こともできる。これらに貴金属をその酸化物、硝酸塩、
あるいはアンミン錯体の形で溶解した水溶液中に浸漬し
てイオン交換するか、水溶液と共に蒸発乾固し、貴金属
を0.01wt%〜0.1wt%担持した粉末を得て、
第二成分として用いる。
Further addition of the second component is pre-Me zeolite,
It is preferable to prepare a porous material such as silica or alumina supported by ion exchange or kneading in a micropore, and to add it to the first component. The zeolite used for the second component is mordenite, clinoptilolite, erionite, a hydrogen-substituted zeolite selected from among Y-type zeolites,
Sodium type and calcium type can be used. Further, silica and alumina having a surface area of 100 m 2 / g to 500 m 2 / g obtained by calcining a hydrated oxide at a low temperature are used. These particles have a particle size of about 1 to 10 μm, and can be used after being ground to such an extent that the structure of zeolite or the like is not destroyed. These are precious metals with their oxides, nitrates,
Alternatively, the powder is immersed in an aqueous solution dissolved in the form of an ammine complex for ion exchange, or is evaporated to dryness together with the aqueous solution to obtain a powder carrying 0.01 wt% to 0.1 wt% of a noble metal,
Used as the second component.

【0024】得られた第一、第二成分は第二成分/第一
成分重量比(以下第二成分/第一成分比)として20/
80〜0.5/99.5、望ましくは10/90〜1/
99の範囲に混合され、これに水、無機バインダ、成形
助剤、無機繊維等周知の成形性向上剤が添加されてニー
ダにより混練されてペースト状触媒混合物にされる。得
られたペースト状触媒は無機繊維製網状基材、溶射等に
より粗面化した金属基板等に塗布され、板状触媒に成形
されるか、押し出し成形機により柱状あるいはハニカム
状に成形される。
The obtained first and second components have a weight ratio of the second component / the first component (hereinafter, the ratio of the second component / the first component) of 20 /
80 to 0.5 / 99.5, preferably 10/90 to 1 /
99, and water, an inorganic binder, a molding aid, an inorganic fiber, and other well-known moldability improvers are added, and the mixture is kneaded by a kneader to form a paste-like catalyst mixture. The obtained paste catalyst is applied to a network substrate made of inorganic fibers, a metal substrate roughened by thermal spraying or the like, and formed into a plate catalyst, or formed into a column shape or a honeycomb shape by an extruder.

【0025】第二成分/第一成分比は本発明では特に重
要であり、第二成分/第一成分比が前述した範囲より大
きい場合にはNOxを生成して、脱硝率の低下を生じ、
小さい場合にはアンモニアの分解率を高くできないとい
う不具合がある。特に、前述した範囲のうち、貴金属担
持量の大きいゼオライト、シリカ、アルミナ等を用いて
第二成分/第一成分比が小さくなるように選定し、かつ
触媒全体の貴金属担持量が1から1000ppm望まし
くは10から100ppmの範囲にすることが好結果を
与える。これは図1のモデルで示したように、第二成分
の形成するミクロポアが第一成分の形成するマクロポア
内にまばらに存在させて、NH3が選択的に第一成分に
吸着し脱硝反応に用いられ易くするためである。
The second component / first component ratio is particularly important in the present invention, and when the second component / first component ratio is larger than the above-mentioned range, NOx is generated and the denitration rate is reduced,
When it is small, there is a problem that the decomposition rate of ammonia cannot be increased. Particularly, in the above-mentioned range, zeolite, silica, alumina or the like having a large noble metal loading is selected so that the second component / first component ratio is small, and the noble metal loading of the entire catalyst is desirably 1 to 1000 ppm. A range of 10 to 100 ppm gives good results. This is because, as shown in the model of FIG. 1, the micropores formed by the second component are sparsely present in the macropores formed by the first component, and NH 3 is selectively adsorbed on the first component to cause a denitration reaction. This is to make it easy to use.

【0026】また、貴金属量を小さくすることで、触媒
単価を低くできるという経済的効果以外に、脱硝反応と
アンモニアの酸化反応をNOの存在の有無によって分離
され易くする効果もある。
In addition to the economical effect that the unit price of the catalyst can be reduced by reducing the amount of the noble metal, there is also an effect that the denitration reaction and the oxidation reaction of ammonia are easily separated depending on the presence or absence of NO.

【0027】さらに、単一触媒で用いる場合には第二成
分/第一成分比を小さくなるように選定し、図6に示す
ような二層式の反応器に使用する場合は第二成分/第一
成分比を大きくとり、貴金属含有量も大きい方が好結果
を得易い。
Further, when using a single catalyst, the ratio of the second component / first component is selected to be small, and when using a two-layer reactor as shown in FIG. It is easy to obtain a good result if the first component ratio is large and the noble metal content is large.

【0028】[0028]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。 実施例1 メタチタン酸スラリ(TiO2含有量:30wt%、S
4含有量:8wt%)67kgにパラタングステン酸
アンモニウム((NH41010・W1246・6H2O)
を3.59kg及びメタバナジン酸アンモン1.29k
gを加え、加熱ニーダを用いて水を蒸発させながら混練
し、水分約36%のペーストを得た。これを3mmφの
柱状に押し出し、造粒後、流動乾燥機で乾燥し、次に大
気中550℃で2時間焼成した。得られた顆粒をハンマ
ーミルで1μmの粒径が60%以上に粉砕し、第一成分
である脱硝触媒粉末を得た。このときの組成は V/W/Ti=4/5/91(原子比)である。
The present invention will be described below in detail with reference to examples. Example 1 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4 content: 8 wt%) 67 kg of ammonium paratungstate ((NH 4) 10 H 10 · W 12 O 46 · 6H 2 O)
To 3.59 kg and 1.29 k of ammonium metavanadate
g was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a column of 3 mmφ, granulated, dried with a fluidized drier, and then fired at 550 ° C. in the atmosphere for 2 hours. The obtained granules were pulverized with a hammer mill to a particle size of 1 μm to 60% or more to obtain a denitration catalyst powder as a first component. The composition at this time is V / W / Ti = 4/5/91 (atomic ratio).

【0029】一方、塩化白金酸(H2[PtC16]・6
2O)0.665gを水1リットルに溶解したもの
に、Si/Al原子比が約21、平均粒径約10μmの
H型モルデナイト500gを加え、砂浴上で蒸発乾固し
てPtを担持した。これを180℃で2時間乾燥後、空
気中で500℃で2時間焼成し、0.05wt%Pt−
モルデナイトを調製し第二成分とした。
On the other hand, chloroplatinic acid (H 2 [PtC 16 ] .6
To a solution of 0.665 g of H 2 O) in 1 liter of water, 500 g of H-type mordenite having an Si / Al atomic ratio of about 21 and an average particle size of about 10 μm was added, and evaporated to dryness on a sand bath to remove Pt. Carried. This was dried at 180 ° C. for 2 hours, and calcined in air at 500 ° C. for 2 hours to obtain 0.05 wt% Pt-.
Mordenite was prepared and used as the second component.

【0030】これとは別に繊維径9μmのEガラス性繊
維1400本からなる撚糸を10本/インチの粗さで平
織りした網状物にチタニア40%、シリカゾル20%、
ポリビニールアルコール1%のスラリーを含浸し、15
0℃で乾燥して剛性を持たせ触媒基材を得た。
Separately, a net obtained by plain weaving a twisted yarn consisting of 1400 E glass fibers having a fiber diameter of 9 μm with a roughness of 10 yarns / inch was used to obtain 40% of titania, 20% of silica sol,
Impregnated with 1% polyvinyl alcohol slurry, 15
It was dried at 0 ° C. to give rigidity, and a catalyst substrate was obtained.

【0031】第一成分20kgと第二成分408gにシ
リカ・アルミナ系無機繊維5.3kg、水17kgを加
えてニーダで混練し、触媒ペーストを得た。上記触媒基
材2枚の間に調製したペースト状触媒混合物を置き、加
圧ローラを通過させることにより基材の編目間および表
面に触媒を圧着して厚さ約1mmの板状触媒を得た。得
られた触媒は、180℃で2時間乾燥後、大気中で50
0℃で2時間焼成した。本触媒中の第一成分と第二成分
の第二成分/第一成分比は2/98で有り、Pt含有量
は触媒基材・無機繊維を除いて10ppmに相当する。
To 20 kg of the first component and 408 g of the second component, 5.3 kg of silica-alumina-based inorganic fiber and 17 kg of water were added and kneaded with a kneader to obtain a catalyst paste. The prepared paste-form catalyst mixture was placed between the two catalyst substrates, and the catalyst was pressed between the stitches and the surface of the substrate by passing through a pressure roller to obtain a plate-like catalyst having a thickness of about 1 mm. . The obtained catalyst was dried at 180 ° C. for 2 hours, and then dried in air at 50 ° C.
It was baked at 0 ° C. for 2 hours. The second component / first component ratio of the first component and the second component in the present catalyst is 2/98, and the Pt content corresponds to 10 ppm excluding the catalyst base material and inorganic fibers.

【0032】比較例1 実施例1において第二成分を添加しないで同様に触媒を
調製した。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that the second component was not added.

【0033】比較例2 実施例1の第一成分に替えて塩素法で製造されたチタニ
ア(石原産業(株)製、商品名:CR50)を用いて触
媒を得た。
Comparative Example 2 A catalyst was obtained by using titania (manufactured by Ishihara Sangyo Co., Ltd., trade name: CR50) produced by a chlorine method in place of the first component of Example 1.

【0034】試験例1 実施例1および比較例1および比較例2の触媒を幅20
mm×長さ100mmに切断したものを3mm間隔で反
応器に3枚充填し、表1に示した条件でアンモニア量を
変化させた場合の脱硝率と反応器出口における未反応ア
ンモニアを測定した。
Test Example 1 The catalysts of Example 1 and Comparative Examples 1 and 2 were
Three reactors cut into 100 mm × length 100 mm were filled into the reactor at intervals of 3 mm, and the denitration rate and the unreacted ammonia at the reactor outlet were measured when the amount of ammonia was changed under the conditions shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】また、得られた結果を図4に示した。図4
に示されるように実施例1の触媒はアンモニア注入量を
増加させ、NH3/NO比を大きくした場合、脱硝率は
比較例1の脱硝触媒成分単独のものと同等であるにもか
かわらず反応器出口におけるアンモニア濃度は数ppm
と低い。これに対し比較例1はNH3/NO比が増加す
るにつれ、高濃度のアンモニアが反応器出口に検出され
る。一方、比較例2の第二成分は含むが脱硝活性を持た
ないチタニアを用いたものでは、反応器出口のNH3
度は低いものの多量のNOxを生成し脱硝率が負になっ
た。
FIG. 4 shows the obtained results. FIG.
As shown in the above, when the catalyst of Example 1 was increased in the amount of injected ammonia and the NH 3 / NO ratio was increased, although the denitration rate was the same as that of the denitration catalyst component of Comparative Example 1 alone, the reaction did not proceed. The ammonia concentration at the outlet of the vessel is several ppm
And low. On the other hand, in Comparative Example 1, as the NH 3 / NO ratio increases, high-concentration ammonia is detected at the reactor outlet. On the other hand, in the case of using titania containing the second component of Comparative Example 2 but having no denitration activity, although the NH 3 concentration at the reactor outlet was low, a large amount of NOx was generated, and the denitration rate became negative.

【0037】この結果からも判るように本実施例になる
触媒は前述した如く第一成分と第二成分の協奏作用によ
り、NH3/NO比が低い場合は通常の脱硝触媒と同様
高い脱硝率を示し、脱硝反応でNOxが消費されてしま
うと余剰のアンモニアをNOxを生成することなく減少
できる極めて優れた触媒である。
As can be seen from the results, the catalyst according to the present embodiment has the same high denitration rate as the ordinary denitration catalyst when the NH 3 / NO ratio is low due to the concerted action of the first component and the second component as described above. This shows that when NOx is consumed in the denitration reaction, excess ammonia can be reduced without generating NOx.

【0038】実施例2および3 実施例1におけるH型モルデナイトに替えて微粒シリカ
粉末(富田製薬(株)製、商品名:マイコンF)(実施
例2)およびγ−アルミナ粉末(実施例3)を用いて同
様に第二成分を調製し、これと実施例1における第一成
分とを第二成分/第一成分比1/9で使用して触媒調製
した。
Examples 2 and 3 In place of H-type mordenite in Example 1, fine silica powder (Microcomputer F, manufactured by Tomita Pharmaceutical Co., Ltd.) (Example 2) and γ-alumina powder (Example 3) A second component was prepared in the same manner as described above, and a catalyst was prepared using the second component and the first component in Example 1 at a ratio of the second component / first component of 1/9.

【0039】実施例4 実施例1における第二成分に替えて塩化白金酸水溶液
(Pt濃度:1.2mg/ml)833mlを用い他は
実施例1と同様の方法で触媒した。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that 833 ml of an aqueous solution of chloroplatinic acid (Pt concentration: 1.2 mg / ml) was used instead of the second component in Example 1.

【0040】実施例5 実施例1の第一成分調製法におけるパラタングステン酸
アンモニウムに替えてパラモリブデン酸アンモン((N
46・Mo724・4H2O)を用いて他は実施例1と
同様に触媒調製した。
Example 5 In place of ammonium paratungstate in the first component preparation method of Example 1, ammonium paramolybdate ((N
Other using H 4) 6 · Mo 7 O 24 · 4H 2 O) was similarly catalyst preparation as in Example 1.

【0041】実施例6および7 実施例1における塩化白金酸を硝酸パラジウム(Pd
(NO33)(実施例6)および硝酸ロジウム(Rh
(NO33)(実施例7)の硝酸溶解液に変更し、パラ
ジウムもしくはロジウム担持量0.05wt%のモルデ
ナイトを調製した。これをPt−モルデナイトの場合と
同様の方法で実施例1の第一成分に添加して触媒調製し
た。
Examples 6 and 7 The chloroplatinic acid in Example 1 was replaced with palladium nitrate (Pd
(NO 3 ) 3 ) (Example 6) and rhodium nitrate (Rh)
(NO 3 ) 3 ) A mordenite having a supported amount of palladium or rhodium of 0.05 wt% was prepared by changing to the nitric acid solution of (Example 7). This was added to the first component of Example 1 in the same manner as in the case of Pt-mordenite to prepare a catalyst.

【0042】実施例8〜10 実施例1における第二成分/第一成分比を2/98から
0.5/99.5(実施例8)、1/9(実施例9)、
2/8(実施例10)にそれぞれ変更し、他は実施例1
と同様に触媒を調製した。
Examples 8 to 10 The ratio of the second component / first component in Example 1 was from 2/98 to 0.5 / 99.5 (Example 8), 1/9 (Example 9),
2/8 (Embodiment 10), and the others were changed to Embodiment 1
A catalyst was prepared in the same manner as described above.

【0043】実施例11〜13 実施例1における塩化白金酸の添加量を2.66に変
えて第二成分を調製し、これを用いて実施例8〜10と
同じ第二成分/第一成分比でそれぞれ触媒を調製した。
Examples 11 to 13 The second component was prepared in the same manner as in Examples 8 to 10 except that the amount of chloroplatinic acid added in Example 1 was changed to 2.66 g . Catalysts were prepared at respective component ratios.

【0044】比較例3 実施例5において第二成分を添加せず、第一成分単独で
触媒を調製した。
Comparative Example 3 In Example 5, a catalyst was prepared using only the first component without adding the second component.

【0045】比較例4〜7 実施例2、3、6および7における第一成分を替えて比
較例3で用いたと同様のチタニアを使用しそれぞれ触媒
を調製した。
Comparative Examples 4 to 7 Catalysts were prepared using the same titania as used in Comparative Example 3 except that the first component in Examples 2, 3, 6 and 7 was replaced.

【0046】試験例2 実施例1〜13、および比較例1〜7の触媒について表
1の条件下でアンモニア濃度を280ppm一定にし、
脱硝率と未反応アンモニアの分解率を測定した。得られ
た結果を表2にまとめて示した。なお、ここで未反応ア
ンモニアの分解率は次式で求めた。 アンモニア分解率(%)={反応器出口のNH3濃度/
(反応器入口NH3濃度−脱硝反応で消費されたNH3
度)}×100
Test Example 2 For the catalysts of Examples 1 to 13 and Comparative Examples 1 to 7, the ammonia concentration was kept constant at 280 ppm under the conditions shown in Table 1.
The denitration rate and the decomposition rate of unreacted ammonia were measured. Table 2 summarizes the obtained results. Here, the decomposition rate of unreacted ammonia was determined by the following equation. Ammonia decomposition rate (%) = {NH 3 concentration at reactor outlet /
(Reactor inlet NH 3 concentration - NH 3 concentration was consumed by denitration reaction)} × 100

【0047】[0047]

【表2】 [Table 2]

【0048】表2から明らかなように本発明の実施例触
媒は比較例のそれに比べて、いずれも高い脱硝率と未反
応アンモニアの分解率を示し、本発明になる触媒が未反
応アンモニアのリークを防止できる優れた触媒であるこ
とが判る。
As is clear from Table 2, the catalysts of the present invention all show higher denitration rates and decomposition rates of unreacted ammonia than those of the comparative examples. It can be seen that the catalyst is an excellent catalyst capable of preventing the occurrence of odor.

【0049】[0049]

【発明の効果】本発明の触媒を単独で使用することによ
り、高NH3/NOx比で脱硝装置を運転した場合の未反
応アンモニアの流出を極めて低くできる。
By using the catalyst of the present invention alone, the outflow of unreacted ammonia when the denitration apparatus is operated at a high NH 3 / NOx ratio can be extremely reduced.

【0050】また本発明の触媒を他の高活性脱硝触媒の
後流部に設置し、未反応アンモニア(リークアンモニ
ア)の分解に使用すれば、アンモニア注入量のアンバラ
ンスなどによる未反応アンモニアの流出をなくすことが
可能になり、都市近郊で望まれている脱硝装置の高脱硝
率での運転が可能になる。
If the catalyst of the present invention is installed downstream of another highly active denitration catalyst and is used to decompose unreacted ammonia (leakage ammonia), the flow of unreacted ammonia due to imbalance in the amount of injected ammonia and the like can be reduced. Can be eliminated, and the operation of a denitration apparatus desired in the suburbs of a city at a high denitration rate becomes possible.

【0051】さらに、本発明の触媒はNOxの存在する
場合は脱硝触媒として働き、NOxが無い場合にはアン
モニア分解触媒として働く。その上、アンモニアの分解
によってもNOxが生成し難いので、脱硝触媒と従来の
アンモニア分解触媒とを二層にした場合に比し、使用す
る触媒量を大幅に少なくできるという特徴もある。
Further, the catalyst of the present invention functions as a denitration catalyst when NOx is present, and functions as an ammonia decomposition catalyst when NOx is not present. In addition, NOx is not easily generated even by decomposition of ammonia, so that there is a feature that the amount of catalyst to be used can be significantly reduced as compared with a case where a denitration catalyst and a conventional ammonia decomposition catalyst are formed in two layers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になる触媒の特色を示すための触媒断
面の模式図である。
FIG. 1 is a schematic view of a cross section of a catalyst showing characteristics of the catalyst according to the present invention.

【図2】 本発明の触媒の作用を示す概念図である。FIG. 2 is a conceptual diagram showing the operation of the catalyst of the present invention.

【図3】 本発明の触媒の作用を示す概念図である。FIG. 3 is a conceptual diagram showing the operation of the catalyst of the present invention.

【図4】 実施例1および比較例1および2の触媒の脱
硝性能と未反応アンモニア量を比較して示した図であ
る。
FIG. 4 is a diagram showing a comparison between the denitration performance and the amount of unreacted ammonia of the catalysts of Example 1 and Comparative Examples 1 and 2.

【図5】 従来触媒と本発明の触媒を用いた脱硝装置出
口におけるNOxと未反応アンモニアの挙動を示す図で
ある。
FIG. 5 is a diagram showing the behavior of NOx and unreacted ammonia at the outlet of a denitration apparatus using a conventional catalyst and the catalyst of the present invention.

【図6】 脱硝触媒とアンモニア分解触媒を二層にして
用いる場合の構成図である。
FIG. 6 is a configuration diagram when a denitration catalyst and an ammonia decomposition catalyst are used in two layers.

【図7】 脱硝触媒とアンモニア分解触媒を二層にして
用いる場合の問題点を示す図である。
FIG. 7 is a diagram showing a problem when a denitration catalyst and an ammonia decomposition catalyst are used in two layers.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86 B01D 53/94

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タン(Ti)、バナジウム(V)、
タングステン(W)、モリブデン(Mo)の中から選ば
れる一種以上の元素のTi−V、Ti−Mo、Ti−
W、Ti−V−WまたはTi−Mo−Vのいずれかの組
み合わせからなる酸化物または銅(Cu)または鉄(F
e)を担持したゼオライトからなる組成物を第一成分と
し、ゼオライト、アルミナ、シリカから選ばれる多孔体
にあらかじめ担持された白金(Pt)、パラジウム(P
d)、ロジウム(Rh)から選ばれる貴金属を含有する
組成物を第二成分とした組成物から成り、窒素酸化物を
接触還元すると同時に還元剤として注入された未反応状
態のアンモニアを分解する脱硝機能を備えたアンモニア
分解触媒。
1. A titanium (Ti), vanadium (V),
Ti-V, Ti-Mo, Ti- of at least one element selected from tungsten (W) and molybdenum (Mo)
An oxide or copper (Cu) or iron (F) composed of any combination of W, Ti-V-W or Ti-Mo-V
e) as a first component, a platinum (Pt) and a palladium (P) previously supported on a porous body selected from zeolite, alumina and silica.
d) a denitration process comprising a composition containing a composition containing a noble metal selected from rhodium (Rh) as a second component, which catalytically reduces nitrogen oxides and simultaneously decomposes unreacted ammonia injected as a reducing agent. Ammonia decomposition catalyst with function.
【請求項2】 多孔体が水素置換型モルデナイトである
ことを特徴とする請求項1記載の脱硝機能を備えたアン
モニア分解触媒。
2. The ammonia decomposition catalyst having a denitration function according to claim 1, wherein the porous body is a hydrogen-substituted mordenite.
【請求項3】 第二成分と第一成分の混合重量比が1/
99〜10/90の範囲にあることを特徴とする請求項
1または請求項2記載の脱硝機能を備えたアンモニア分
解触媒。
3. The mixing weight ratio of the second component and the first component is 1/1.
The ammonia decomposition catalyst having a denitration function according to claim 1 or 2, wherein the catalyst is in a range of 99 to 10/90.
【請求項4】 排ガス中の窒素酸化物と該窒素酸化物の
還元剤として排ガス中に注入されたアンモニアの内、未
反応状態のアンモニアを分解する触媒として請求項1な
いし請求項3いずれかに記載の触媒を用いることを特徴
とする排ガス浄化方法。
4. A catalyst for decomposing ammonia in an unreacted state among nitrogen oxides in exhaust gas and ammonia injected into the exhaust gas as a reducing agent for the nitrogen oxides. An exhaust gas purification method comprising using the catalyst described in the above.
JP31230891A 1991-11-27 1991-11-27 Ammonia decomposition catalyst with denitration function and exhaust gas purification method Expired - Fee Related JP3321190B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31230891A JP3321190B2 (en) 1991-11-27 1991-11-27 Ammonia decomposition catalyst with denitration function and exhaust gas purification method
US07/980,182 US5409681A (en) 1991-11-27 1992-11-23 Catalyst for purifying exhaust gas
AT92120185T ATE129437T1 (en) 1991-11-27 1992-11-26 CATALYST FOR PURIFYING EXHAUST GASES.
DE69205669T DE69205669T2 (en) 1991-11-27 1992-11-26 Catalytic converter for cleaning exhaust gases.
EP92120185A EP0544282B1 (en) 1991-11-27 1992-11-26 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31230891A JP3321190B2 (en) 1991-11-27 1991-11-27 Ammonia decomposition catalyst with denitration function and exhaust gas purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33681198A Division JP3321423B2 (en) 1991-11-27 1998-11-27 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH05146634A JPH05146634A (en) 1993-06-15
JP3321190B2 true JP3321190B2 (en) 2002-09-03

Family

ID=18027690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31230891A Expired - Fee Related JP3321190B2 (en) 1991-11-27 1991-11-27 Ammonia decomposition catalyst with denitration function and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3321190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202481B2 (en) 2007-08-22 2012-06-19 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst and exhaust gas treatment system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727668B2 (en) * 1993-09-17 2005-12-14 三菱重工業株式会社 Exhaust gas boiler
JP2002052379A (en) * 2000-08-09 2002-02-19 Babcock Hitachi Kk Method and apparatus for cleaning ammonia-containing wastewater
TW200518825A (en) 2003-11-14 2005-06-16 Babcock Hitachi Kk Method for apparatus for treating ammonia-containing gas
DK2363194T3 (en) * 2006-08-01 2013-02-11 Cormetech Inc Nitrous oxide removal system from an exhaust gas
CN101711185A (en) * 2007-02-27 2010-05-19 巴斯夫催化剂公司 bifunctional catalysts for selective ammonia oxidation
EP1994982A1 (en) 2007-03-30 2008-11-26 Fujifilm Corporation Catalyst body which uses an anodized layer
JP5005050B2 (en) * 2010-01-22 2012-08-22 中国電力株式会社 Ammonia gas purification catalyst
US9101877B2 (en) * 2012-02-13 2015-08-11 Siemens Energy, Inc. Selective catalytic reduction system and process for control of NOx emissions in a sulfur-containing gas stream
GB2510284B (en) * 2012-08-17 2016-01-06 Johnson Matthey Plc Zeolite promoted v/ti/w catalysts
WO2014160292A1 (en) * 2013-03-14 2014-10-02 Basf Corporation Selective catalytic reduction catalyst system
BR112016001465A2 (en) * 2013-07-26 2017-08-29 Johnson Matthey Plc CATALYST ARTICLE FOR TREATMENT OF AN EXHAUST GAS, AND METHODS FOR TREATMENT OF AN EXHAUST GAS AND FOR REGENERATING A CATALYTIC ARTICLE
EP3088080B1 (en) 2013-12-26 2018-04-25 Nikki-Universal Co., Ltd. Ammonia decomposition catalyst
JP2016035410A (en) * 2014-08-01 2016-03-17 株式会社東芝 Gas analysis device and gas analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202481B2 (en) 2007-08-22 2012-06-19 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst and exhaust gas treatment system

Also Published As

Publication number Publication date
JPH05146634A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US5409681A (en) Catalyst for purifying exhaust gas
JP4897669B2 (en) Ammonia decomposition method
EP0686423B1 (en) Use of ammonia decomposition catalysts
JP3321190B2 (en) Ammonia decomposition catalyst with denitration function and exhaust gas purification method
US5294419A (en) Method for removing nitrogen oxides and organic chlorine compounds from combustion waste gas
JP3321423B2 (en) Exhaust gas purification method
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JPH09884A (en) Method and device for removing nitrous oxide or the like in exhaust gas and catalyst
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JPH0623274A (en) Structure of catalyst for cleaning waste gas
JP4994008B2 (en) Purification equipment for exhaust gas containing nitrogen oxides and metallic mercury
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3337498B2 (en) Method for producing catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP3285206B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3833731B2 (en) Ammonia decomposition method
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JPH08141398A (en) Catalyst for decomposing ammonia
TWI361103B (en)
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JPH06319951A (en) Method and apparatus for cleaning exhaust gas
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH09150061A (en) Catalyst for ammonia decomposition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees