JP3793283B2 - Exhaust gas purification catalyst and exhaust gas purification apparatus using the same - Google Patents

Exhaust gas purification catalyst and exhaust gas purification apparatus using the same Download PDF

Info

Publication number
JP3793283B2
JP3793283B2 JP15978996A JP15978996A JP3793283B2 JP 3793283 B2 JP3793283 B2 JP 3793283B2 JP 15978996 A JP15978996 A JP 15978996A JP 15978996 A JP15978996 A JP 15978996A JP 3793283 B2 JP3793283 B2 JP 3793283B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
component
activity
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15978996A
Other languages
Japanese (ja)
Other versions
JPH105591A (en
Inventor
泰良 加藤
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP15978996A priority Critical patent/JP3793283B2/en
Publication of JPH105591A publication Critical patent/JPH105591A/en
Application granted granted Critical
Publication of JP3793283B2 publication Critical patent/JP3793283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒に係り、特に排ガス中の窒素酸化物(NOx)と一酸化炭素(CO)とを同時に除去することが可能なアンモニア(NH3)還元脱硝触媒、および未反応なままリークするNH3(リークNH3)の分解活性と脱硝反応活性とを合わせ持つ高活性な多元機能脱硝触媒とその製造法および該触媒を排ガス流路に配置した排ガス浄化装置に関する。
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法としてNH3を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)、タングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が使用されており、特に活性成分の一つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから現在の脱硝触媒に主流になっている。
【0003】
近年、環境の保全に関する気運が高まり、排ガス中のNOx、硫黄酸化物(SOx)だけでなく、COや接触還元脱硝法の還元剤に用いる未反応NH3の排出をも抑えることが望まれてきている。本発明者らはこうした社会的ニーズに対応すべく、白金(Pt),イリジウム(Ir)等の金属を多孔体に担持したものと脱硝活性を有する酸化チタン系触媒成分とを混合して前者を触媒内に不均質に存在させることによる触媒(多元機能脱硝触媒)を発明している(特願平3−312308号、特願平7−95107号等)。これらの触媒は、アンモニアを還元剤とする脱硝活性に優れるだけでなく、NOxと同時にCOも除去できる他、未反応NH3を水と窒素に酸化分解して脱硝装置からの未反応NH3リーク量を大幅に低減できるものであり、多元機能触媒と呼べるものであった。
【0004】
【発明が解決しようとする課題】
しかしながら、従来上記技術になる多元機能触媒を使用した装置では、還元剤として注入するNH3の消費量が増大する傾向があり、その防止という点では充分対策されているとはいえなかった。また、同一の注入NH3対処理ガス中NOx比(以下NH3/NO比)では脱硝率が低く、改善すべき余地があった。
【0005】
この点を具体的に示したものが図6と図7である。図6は上記従来技術になる触媒の脱硝率とCO酸化率との関係を示したものであり、図7は脱硝率とリークNH3分解活性との関係を示したものである。
【0006】
従来技術のなかでCO酸化活性またはリークNH3分解活性を有する触媒(多元機能脱硝触媒)では、それらの活性を持たない他の従来触媒(単機能脱硝触媒)に比べ脱硝率が低く、同一脱硝率を得るためには図7に示したようにNH3/NO比を増大する必要がある。このように、従来技術ではCO酸化活性またはNH3の分解活性を脱硝触媒に合わせ持たせようとすると高い脱硝率が得られなかったり、同一脱硝率を得るためにNH3の消費量が増大したりする。この傾向は、より高いCO酸化率やNH3分解率を得ようとすると顕著になり、上記従来の多元機能脱硝触媒の欠点となっていた。
【0007】
本発明の課題は、上記した従来型の多元機能脱硝触媒の有する排ガス中の脱硝率の低下やNH3の消費量の増大を防止できる排ガス処理技術を提供し、脱硝活性はもとよりCO酸化活性およびリークNH3分解活性の高い触媒を得ることにある。
【0008】
【課題を解決するための手段】
本発明の上記課題は次の構成により達成できる。
すなわち、COの酸化活性およびNH3の酸化分解活性を有する成分を含む成形体表面に、COとNH3の酸化活性を有しない1m 2 当たり0を超えて100g/m 2 以下の量の脱硝活性成分からなる被覆層が存在する排ガス浄化用触媒、またはNOxの分解活性を有する成分とCOの酸化活性およびNH3の酸化分解活性を有する成分を含む成形体の表面に、COとNH3の酸化活性を有しない1m 2 当たり0を超えて100g/m 2 以下の量の脱硝活性成分からなる被覆層を有する排ガス浄化用触媒である。
【0009】
また、上記本発明の排ガス浄化用触媒を触媒層の一部または全部に充填し、排ガス中に還元剤を添加後排ガス中のNOxの還元除去と同時にCOの酸化除去を行う排ガス浄化方法および排ガス浄化装置も本発明の範囲内である。
【0010】
また、上記本発明の排ガス浄化用触媒の層をNH3還元法脱硝触媒の後流部に設置し、上流触媒層から流出する未反応NH3を酸化分解して除去する排ガス浄化方法および排ガス浄化装置も本発明の範囲内である。
【0011】
上記本発明をより具体的に説明すると次のような構成の触媒などを用いる。
(a)酸化チタン(TiO2)、酸化チタンとモリブデン(Mo)酸化物、酸化チタンとタングステン(W)酸化物またはこれらの酸化物とバナジウム(V)酸化物を主成分とする脱硝活性を有する触媒成分を第1成分、
(b)白金(Pt)、イリジウム(Ir)、パラジウム(Pd)あるいはロジウム(Rh)を担持したシリカ、アルミナ、ゼオライトなどの多孔体粉末を第2成分
とする触媒成形体の表面にV含有量の高い触媒成分などの脱硝触媒層を形成させるものである。
【0012】
すなわち、例えば図1に示すようにTi、Mo、WまたはVの酸化物を主成分とする第1成分にPt、Ir、PdまたはRhを担持したシリカ等の上記第2成分の混合物を金属基板やセラミック製網状物、織布等の基板に塗布してなる触媒成形体層2の表面にTiO2、TiO2とMo酸化物、TiO2とW酸化物またはこれらの酸化物とV酸化物を主成分とする触媒成分を被覆してなる被覆層1を新たに形成したことを特徴とするものである。
【0013】
ここで触媒成形体層2は通常の方法により成形されたハニカム状または板状の成形体であり、
(1)脱硝活性を有する触媒成分と上記した各種貴金属を単独または複数担持したシリカ、アルミナ、ゼオライト等からなる組成物成形体、または
(2)Pt−ゼオライト、Pt−Ir−シリカなどの貴金属担持無機多孔体の成形体等である。
【0014】
前記触媒成形体層2の表面の被覆層1はTi、Mo、WあるいはVとからなる触媒成分であり、基材となるハニカムまたは板状体が成形された後、粉末状または水を分散媒とするスラリの形でTi、Mo、WあるいはVとからなる触媒成分を付着させて被覆層1は形成され、被覆層1の触媒成分の付着量は小さく、5〜100g/m2であり、被覆層1の厚みは0.1mm以下と薄い。
【0015】
表面被覆層1の組成はその内部の触媒成形体層2の脱硝活性成分のそれと同一であってもよいが、触媒成形体層2の脱硝活性成分よりV成分の含有量を高くした方が一般に表面被覆による触媒特性改善効果が大きい。
【0016】
被覆層は、具体的にはハニカムあるいは板状の湿式成形体がまだ湿った状態の時点で、上記した例えばV成分の量を多く含有する触媒成分の粉末やそのスラリと接することにより付着させるか、乾燥状態もしくはいったん焼成したものに触媒スラリを塗布または転着することにより形成することができる。
【0017】
ここで重要なことは、触媒成形体層2と表面に形成する被覆層1が分離されている方が良く、その点、触媒成形体層2が乾燥される前の湿った状態で、被覆する触媒成分のスラリをローラ等で塗布転着する方法が好結果を与える。
【0018】
表面に触媒の被覆層1を形成された触媒成形体層2は必要に応じて成形、乾燥、焼成工程等公知の触媒製造工程を経て、排ガス浄化に供される。
【0019】
図2は従来の単機能触媒について反応時におけるNOx、COおよびNH3濃度の表面から内部への分布(反応速度に基づく理論的計算図)を示したものである。
【0020】
図2において、NOxとNH3は脱硝活性成分の作用により窒素(N2)と水(H2O)に変換されるため、触媒表面から触媒内部に向かってその濃度は急激に減少する。これとは別に第2成分である貴金属成分の触媒作用により、COおよびNH3は酸化分解され、触媒表面から触媒内部に向かってその濃度が順次減少していく。このように2つの触媒作用を利用して触媒内部に各成分が拡散する過程で図2のような分布を持つようにすることにより、同一触媒で脱硝−CO酸化、脱硝−NH3分解、あるいは脱硝−CO酸化−NH3分解を可能にしているのが従来型の多元機能触媒である。
【0021】
ここでNH3に注目すると、NH3は脱硝反応と酸化分解反応との両者に使われるため、次に示す脱硝反応の反応NH3/反応NH3量論比=1以上に消費され、触媒内部でのNH3濃度がNO濃度を下回るようになる。このように従来型の多元機能触媒では、触媒内部で一部分NH3の不足状態のゾーンが形成され、NOが一定濃度以下にならない。この現象が脱硝率の低下、あるいは一定の脱硝率を得るためのNH3注入量の増大を引き起こしている原因となっている。
【0022】
図3は図2と同様にNO、NH3およびCOについて、本発明になる触媒の表面と内部での分布を示したものである。本発明になる触媒では、脱硝活性のみを有する触媒層が表面層に薄く形成されており、その層内部で脱硝反応がまず進行し、大半のNOとNH3は脱硝反応に利用される。そして残存したNH3とNOが触媒内部に拡散し、脱硝活性と酸化活性とを有する触媒層に達する。触媒内部の層(内層)内にはNH3はNOに対して大過剰に存在するので、内層でNH3の酸化分解に加え、脱硝反応も高速で進行させることができる。
【0023】
脱硝反応の大半は直ちに完結し、余剰となるNH3のみが内層の貴金属担持成分で酸化分解されることになり、脱硝率の低下を招くことがない。一方COの酸化分解に関しては触媒成形体の表面層は拡散抵抗として作用するが、その厚みが薄いのでCOの酸化分解性能にほとんど影響することがない。
【0024】
このように、触媒成形体表面に脱硝活性のみを有する触媒成分層を形成することにより脱硝反応の低下をほとんど招くことなく、COもしくは余剰NH3の分解を行うことが可能になる。
【0025】
さらに、上記した原理から明らかなように、表面の被覆層を活性成分であるV化合物の増量などによって脱硝活性に優れるようにすれば、表面層の厚みは極めて薄くでき、CO酸化活性や余剰NH3の分解活性はほとんど低下することがないようにできる。
【0026】
また、内層における脱硝反応はほとんど生じないので次のような実用上優れた特徴を持った触媒を得ることが可能になる。
(1)内層の第1成分に相当する脱硝触媒成分の活性が低くても全体として高い脱硝活性が得られるため安価な触媒成分が使用できる。
(2)内層の貴金属成分濃度を増大する方法等によりCOあるいは余剰NH3の分解活性を高くしても脱硝性能への影響がほとんどないため、高い脱硝−CO酸化−余剰NH3分解活性共に優れた触媒を実現できる。
【0027】
【発明の実施の形態】
以下、具体例を用いて本発明を詳細に説明する。
実施例1
メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにパラタングステン酸アンモニウム((NH41010・W1246・6H2O)3.75kgおよびメタバナジン酸アンモン1.46kgを加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36%のペーストを得た。これを3φの柱状に押し出し、造粒後、流動層乾燥機で乾燥し、次に大気中550℃で2時間焼成した。得られた顆粒をハンマーミルで1μmの粒径が60%以上になるように粉砕し、第1成分である脱硝触媒粉末を得た。このときの組成はV/W/Ti=4.5/5/90.5(原子比)である。
【0028】
また、塩化白金酸(H2[PtCl6]・6H2O)0.332gと塩化イリジウム(IrCl4)0.217gとを水1リットルに溶解したものに、高表面積微粒シリカ(富田製薬製マイコンF)500gを加えて砂浴上で蒸発乾固して貴金属塩を担持した。これを180℃で2時間乾燥後、500℃で2時間焼成し、0.025wt%Pt−0.025wt%Ir−シリカを調製し、第2成分にした。このときのIr−Pt重量比は1である。
【0029】
これとは別に、繊維径9μmのEガラス性繊維1,400本の捻糸を10本/インチの粗さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニルアルコール1%のスラリを含浸させ、150℃で乾燥して剛性を持たせ触媒基材を得た。
【0030】
第1成分19.6kgと第2成分400gとに、シリカ・アルミナ系無機繊維5.3kg、水17kgを加えてニーダで混練し、触媒ペーストを得た。上記基材2枚の間に前記調製したペースト状触媒混合物を置き、加圧ローラを通過させることにより、基材の編目間及び表面に触媒を圧着して厚さ約1mmの板状の触媒成形体を得た。
【0031】
一方、酸化チタン粉末20kgにモリブデン酸アンモニウム((NH46・Mo724・4H2O)2.5kg、メタバナジン酸アンモニウム2.33kg、しゅう酸3.0kgおよび水を加えてニーダで混練してペースト状にしたものを3φの柱状に造粒後、流動層乾燥器で乾燥し、さらに500℃で2時間焼成し、続いてハンマーミルで粉砕して粒径1μm以下のものが50%以上存在する脱硝触媒粉末を得た(V含有量:3.56wt%)。得られた粉末100gに水を加えてスラリにし、本スラリをゴムローラに薄くつけ、これを前記触媒成形体の表面に転がすことにより、上記板状の触媒成形体表面に触媒成分が1m2当たり35gになるように塗布し、その後150℃で乾燥後、500℃で2時間焼成して触媒を得た。
【0032】
本実施例の触媒成形体表面の脱硝触媒被覆層の厚みは0.1mm以下であり、密度から計算した被覆層の厚みは0.035mmに相当する。
【0033】
比較例1
実施例1における触媒成形体表面に脱硝触媒スラリを塗布しない触媒を調製した。
実施例1および比較例1の触媒について、表1の条件で脱硝活性とCO酸化活性を測定し、結果を図4に示した。
【0034】
本発明になる実施例1の触媒は高いCO除去率であるにもかかわらず、脱硝率も高い結果が得られている。これに対し、比較例1の触媒はCO除去率が高い点は実施例1と同様であるが、図4に示したCO酸化成分の脱硝率への悪影響が顕著に現れ、極めて低い脱硝率しか得られていない。
【0035】
また、図5には実施例1と比較例1の触媒について表2の条件でNH3注入量を変えることによりNH3/NO比を変化させて脱硝率と未反応NH3の分解率を測定し、その結果を示す。
【0036】
なお、リークNH3分解率(未反応NH3分解率)は次の関係式で求めた。

Figure 0003793283
【0037】
実施例1および比較例1の触媒ともNH3分解率が高いことは同じであるが、同一NH3/NO比における脱硝率を比較すると、比較例1の触媒に比べて実施例1の触媒は非常に高く、量論線に近い脱硝率が得られ、NH3のロスが極めて少ないことが分かる。
【0038】
一方、比較例1は同一NH3/NO比における脱硝率が低いだけでなく、NH3/NO比をいくら高くしても高脱硝率が得られなかった。
【0039】
このように本発明になる触媒は、NH3分解成分あるいはCO酸化成分による脱硝性能の悪化を大幅に軽減し、多元機能触媒でありながら脱硝単機能触媒と同等の高い脱硝活性を得ることができる極めて優れた特徴を有するものである。
【0040】
【表1】
Figure 0003793283
【0041】
【表2】
Figure 0003793283
【0042】
実施例2〜6
実施例1における第2成分の製法における塩化白金酸を0.664gに代えると共に塩化イリジウムを用いないで第2成分を調製した。これを用いて他は実施例1と同様に板状の触媒成形体を得、この表面へ実施例1と同一の脱硝触媒スラリを1m2当たり、5、10、30、50、100gになるようにそれぞれ転着し、他は実施例1と同様にして触媒を得た。
【0043】
本触媒の被覆層の厚みはいずれも0.1mm以下であり、密度から計算した被覆層の厚みはそれぞれ約0.005、0.01、0.03、0.05、0.1mmに相当する。
【0044】
実施例7
実施例1の触媒において、第1成分のパラタングステン酸アンモニウムを等モルのモリブデン酸アンモニウム((NH46・Mo724・4H2O)に代え、逆に実施例1の板状の触媒成形体表面に転着する脱硝触媒成分の調製におけるモリブデン酸アンモニウムを等モルのパラタングステン酸アンモニウムに変更して触媒を調製した。
【0045】
実施例8
実施例1の第1成分と第2成分の混合比を0/100、すなわち第2成分のみを用いて、板状の触媒成形体を調製し、この表面に脱硝触媒成分スラリを実施例1と同様に転着して触媒を得た。
【0046】
比較例2
実施例2の触媒調製における板状触媒成形体への脱硝触媒スラリの転着を行わないことを除いて実施例2と同様の方法で本比較例の触媒を得た。
【0047】
比較例3
実施例7の調製法における触媒スラリの転着を行わないことを除いて実施例7と同様の方法で本比較例の触媒を得た。
【0048】
比較例4
実施例1において第2成分を用いないことを除いて実施例1と同様にして触媒を調製した。
【0049】
比較例5
実施例8の調製法において脱硝触媒成分の表面転着を行わないことを除いて実施例8と同様にして触媒を調製した。
実施例1〜8および比較例1〜5の各触媒について表1の条件で350℃における脱硝率とCOの酸化率を測定し、また表2の条件で注入NH3/NO比が1.2mol/molにおける脱硝率とリークNH3分解率を測定した。
【0050】
得られた結果を表3にまとめて示した。
【表3】
Figure 0003793283
【0051】
表3から本発明の実施例になる触媒は、脱硝活性およびCO酸化活性、リークNH3の分解率がいずれも高いことが解る。一方、表面に脱硝活性のみを有する触媒成分の転着を行わなかった比較例1〜3の触媒では脱硝率が極めて低かった。
【0052】
このことから、本発明の触媒における表面への脱硝触媒成分の転着がCO酸化活性やNH3の分解活性を高く維持したまま脱硝率を高くするのに極めて大きな効果があることは明らかである。
【0053】
また、NH3やCOの酸化成分である第2成分を含まない比較例4ではCO酸化活性、NH3分解活性が共に低く、第2成分のみの比較例5ではCO酸化活性とNH3分解活性は高い値を示したもののNH3酸化によるNOx生成のため脱硝率はマイナスを示した。
【0054】
これらの結果は、脱硝−CO酸化−リークNH3分解に共に高い性能を得るために、図1に示す触媒の構成が極めて有効であることを示しているものである。
【0055】
【発明の効果】
本発明によれば、脱硝率、CO酸化率、未反応NH3の分解率共に高い触媒が容易に得られる。これにより、各種発生源から放出されるNOxの他COをも除去できるシステムが実現できるだけでなく、脱硝反応で使用されなかった未反応NH3の大気への放出を大幅に低減できる。
また、上記用途に用いる従来触媒に比べ、同一脱硝率を得るためのNH3注入量を少なくでき経済的にも有利になる。
【図面の簡単な説明】
【図1】 本発明の触媒の概要を示す図である。
【図2】 本発明の要点を説明するための従来触媒および本発明の触媒における触媒内部の反応成分の分布を示す図である。
【図3】 本発明の要点を説明するための従来触媒および本発明の触媒における触媒内部の反応成分の分布を示す図である。
【図4】 本発明の効果を示す図である。
【図5】 本発明の効果を示す図である。
【図6】 従来触媒の問題点を明らかにするための図である。
【図7】 従来触媒の問題点を明らかにするための図である。
【符号の説明】
1 脱硝活性のみを有する被覆層
2 脱硝活性、CO酸化活性、NH3の酸化分解活性を有する触媒成形体層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst, and in particular, an ammonia (NH 3 ) reduction denitration catalyst capable of simultaneously removing nitrogen oxide (NOx) and carbon monoxide (CO) in exhaust gas, and an unreacted catalyst. The present invention relates to a highly active multi-functional denitration catalyst having both decomposition activity and denitration reaction activity of NH 3 (leak NH 3 ) that leaks as it is, a manufacturing method thereof, and an exhaust gas purification device in which the catalyst is arranged in an exhaust gas flow path.
[0002]
[Prior art]
NOx in flue gas emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, NOx is emitted by selective catalytic reduction using NH 3 as a reducing agent. Smoke denitration is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo), and tungsten (W) as active components is used, and those containing vanadium as one of the active components are particularly active. In addition to being high, the deterioration due to impurities contained in the exhaust gas is small, and it can be used from a lower temperature.
[0003]
In recent years, there has been an increase in the mood for environmental conservation, and it has been desired to suppress not only NOx and sulfur oxide (SOx) in exhaust gas but also emission of unreacted NH 3 used as a reducing agent in CO and catalytic reduction denitration. ing. In order to respond to such social needs, the present inventors mixed a porous body with a metal such as platinum (Pt) and iridium (Ir) and a titanium oxide catalyst component having denitration activity to A catalyst (multi-functional denitration catalyst) by inhomogeneously existing in the catalyst has been invented (Japanese Patent Application No. 3-31308, Japanese Patent Application No. 7-95107, etc.). These catalysts not only have excellent denitration activity using ammonia as a reducing agent, but also can remove CO simultaneously with NOx, and oxidatively decompose unreacted NH 3 into water and nitrogen to cause unreacted NH 3 leakage from the denitration device. The amount can be greatly reduced, and it can be called a multi-functional catalyst.
[0004]
[Problems to be solved by the invention]
However, in the conventional apparatus using the multi-functional catalyst as described above, the consumption of NH 3 to be injected as a reducing agent tends to increase, and it cannot be said that sufficient measures have been taken in terms of prevention thereof. In addition, the NOx ratio in the same injected NH 3 to the processing gas (hereinafter referred to as NH 3 / NO ratio) has a low denitration rate, and there is room for improvement.
[0005]
FIG. 6 and FIG. 7 specifically show this point. FIG. 6 shows the relationship between the NOx removal rate and the CO oxidation rate of the catalyst according to the prior art, and FIG. 7 shows the relationship between the NOx removal rate and the leakage NH 3 decomposition activity.
[0006]
Among conventional technologies, catalysts that have CO oxidation activity or leak NH 3 decomposition activity (multifunctional denitration catalysts) have a lower denitration rate than other conventional catalysts (single function denitration catalysts) that do not have these activities, and the same denitration In order to obtain the rate, it is necessary to increase the NH 3 / NO ratio as shown in FIG. As described above, in the prior art, if the CO oxidation activity or NH 3 decomposition activity is combined with the denitration catalyst, a high denitration rate cannot be obtained, or the consumption of NH 3 increases to obtain the same denitration rate. Or This tendency becomes conspicuous when trying to obtain a higher CO oxidation rate and NH 3 decomposition rate, which has been a drawback of the conventional multi-functional denitration catalyst.
[0007]
An object of the present invention is to provide an exhaust gas treatment technology capable of preventing a decrease in the denitration rate in an exhaust gas and an increase in NH 3 consumption in the exhaust gas possessed by the above-described conventional multi-functional denitration catalyst. The object is to obtain a catalyst with high leak NH 3 decomposition activity.
[0008]
[Means for Solving the Problems]
The said subject of this invention can be achieved by the following structure.
That is, denitration activity in an amount of more than 0 and less than 100 g / m 2 per m 2 not having CO and NH 3 oxidation activity on the surface of the molded article containing a component having CO oxidation activity and NH 3 oxidation decomposition activity CO and NH 3 oxidation on the surface of a molded article containing an exhaust gas purification catalyst having a coating layer composed of components, or a component having NOx decomposition activity and CO oxidation activity and NH 3 oxidation decomposition activity activity is a catalyst for exhaust gas purification having the coating layer exceeds the no 1 m 2 per 0 consisting denitration active components of 100 g / m 2 or less of the amount of.
[0009]
Further, an exhaust gas purification method and exhaust gas in which the catalyst for exhaust gas purification of the present invention is filled in a part or all of the catalyst layer, and after the addition of the reducing agent in the exhaust gas, the NOx in the exhaust gas is reduced and removed simultaneously with oxidation of CO. A purification device is also within the scope of the present invention.
[0010]
Further, the exhaust gas purification catalyst layer of the present invention is installed in the downstream portion of the NH 3 reduction denitration catalyst, and the unreacted NH 3 flowing out from the upstream catalyst layer is oxidized and removed to remove the exhaust gas purification method and exhaust gas purification. Devices are also within the scope of the present invention.
[0011]
More specifically, the present invention uses a catalyst having the following structure.
(A) Denitration activity mainly composed of titanium oxide (TiO 2 ), titanium oxide and molybdenum (Mo) oxide, titanium oxide and tungsten (W) oxide, or these oxides and vanadium (V) oxide The catalyst component is the first component,
(B) V content on the surface of the catalyst molded body containing a porous powder of silica, alumina, zeolite or the like carrying platinum (Pt), iridium (Ir), palladium (Pd) or rhodium (Rh) as a second component. A denitration catalyst layer such as a high catalyst component is formed.
[0012]
That is, for example, as shown in FIG. 1, a mixture of the second component such as silica supporting Pt, Ir, Pd or Rh as a first component mainly composed of an oxide of Ti, Mo, W or V is used as a metal substrate. TiO 2 , TiO 2 and Mo oxide, TiO 2 and W oxide, or these oxide and V oxide on the surface of the catalyst molded body layer 2 applied to a substrate such as a ceramic network or woven fabric. The coating layer 1 formed by coating a catalyst component as a main component is newly formed.
[0013]
Here, the catalyst molded body layer 2 is a honeycomb-shaped or plate-shaped molded body formed by a normal method,
(1) A molded composition composed of silica, alumina, zeolite or the like on which a catalyst component having denitration activity and the above-mentioned various noble metals are supported alone, or (2) Noble metal support such as Pt-zeolite or Pt-Ir-silica. An inorganic porous body molded body or the like.
[0014]
The coating layer 1 on the surface of the catalyst molded body layer 2 is a catalyst component made of Ti, Mo, W, or V. After the honeycomb or plate-like body serving as the base material is molded, powder or water is used as a dispersion medium. The coating layer 1 is formed by adhering a catalyst component composed of Ti, Mo, W or V in the form of a slurry, and the coating amount of the catalyst component of the coating layer 1 is small, being 5 to 100 g / m 2 . The thickness of the coating layer 1 is as thin as 0.1 mm or less.
[0015]
The composition of the surface coating layer 1 may be the same as that of the denitration active component of the catalyst molded body layer 2 inside, but generally the content of the V component is higher than the denitration active component of the catalyst molded body layer 2. The effect of improving catalyst properties by surface coating is great.
[0016]
Specifically, when the honeycomb or plate-like wet molded body is still wet, the coating layer is attached by contacting the catalyst component powder containing a large amount of the above-described V component, for example, or its slurry. It can be formed by applying or transferring a catalyst slurry to a dry state or once fired.
[0017]
What is important here is that the catalyst molded body layer 2 and the coating layer 1 formed on the surface should be separated, and the catalyst molded body layer 2 is coated in a wet state before being dried. A method of applying and transferring the slurry of the catalyst component with a roller or the like gives a good result.
[0018]
The catalyst molded body layer 2 having the catalyst coating layer 1 formed on the surface is subjected to exhaust gas purification through known catalyst manufacturing processes such as molding, drying, and firing processes as necessary.
[0019]
FIG. 2 shows the distribution of NOx, CO and NH 3 concentrations from the surface to the inside (theoretical calculation diagram based on the reaction rate) during the reaction of the conventional monofunctional catalyst.
[0020]
In FIG. 2, since NOx and NH 3 are converted into nitrogen (N 2 ) and water (H 2 O) by the action of the denitration active component, their concentrations rapidly decrease from the catalyst surface toward the inside of the catalyst. Apart from this, CO and NH 3 are oxidatively decomposed by the catalytic action of the precious metal component, which is the second component, and the concentration thereof gradually decreases from the catalyst surface toward the inside of the catalyst. In this way, by using the two catalytic actions to have the distribution as shown in FIG. 2 in the process of diffusion of each component inside the catalyst, denitration-CO oxidation, denitration-NH 3 decomposition, or It is the conventional multi-functional catalyst that enables denitration-CO oxidation-NH 3 decomposition.
[0021]
Here, paying attention to NH 3 , since NH 3 is used for both the denitration reaction and the oxidative decomposition reaction, the following denitration reaction reaction NH 3 / reaction NH 3 stoichiometric ratio = 1 or more is consumed, and the catalyst inside The NH 3 concentration at this point becomes lower than the NO concentration. Thus, in the conventional multi-functional catalyst, a zone in which NH 3 is partially deficient is formed inside the catalyst, and NO does not fall below a certain concentration. This phenomenon causes a decrease in the denitration rate or an increase in the amount of NH 3 injection for obtaining a constant denitration rate.
[0022]
FIG. 3 shows the distribution on the surface and inside of the catalyst according to the present invention for NO, NH 3 and CO as in FIG. In the catalyst according to the present invention, the catalyst layer having only the denitration activity is formed thinly on the surface layer, the denitration reaction first proceeds inside the layer, and most of NO and NH 3 are utilized for the denitration reaction. Then, the remaining NH 3 and NO diffuse into the catalyst and reach a catalyst layer having denitration activity and oxidation activity. Since NH 3 exists in a large excess with respect to NO in the inner layer (inner layer) of the catalyst, denitration reaction can proceed at a high speed in addition to oxidative decomposition of NH 3 in the inner layer.
[0023]
Most of the denitration reaction is completed immediately, and only the excess NH 3 is oxidatively decomposed by the noble metal-supported component in the inner layer, so that the denitration rate is not lowered. On the other hand, regarding the oxidative decomposition of CO, the surface layer of the catalyst molded body acts as a diffusion resistance, but since the thickness thereof is thin, the oxidative decomposition performance of CO is hardly affected.
[0024]
Thus, by forming the catalyst component layer having only the denitration activity on the surface of the catalyst molded body, it is possible to decompose CO or excess NH 3 with almost no decrease in the denitration reaction.
[0025]
Further, as apparent from the above principle, if the surface coating layer is made to have excellent denitration activity by increasing the amount of the active compound V, etc., the thickness of the surface layer can be extremely reduced, and the CO oxidation activity and excess NH can be reduced. The degradation activity of 3 can be made to hardly decrease.
[0026]
Further, since almost no denitration reaction occurs in the inner layer, it is possible to obtain a catalyst having the following practically excellent characteristics.
(1) Even if the activity of the denitration catalyst component corresponding to the first component of the inner layer is low, a high denitration activity is obtained as a whole, so that an inexpensive catalyst component can be used.
(2) Even if the decomposition activity of CO or surplus NH 3 is increased by increasing the concentration of noble metal components in the inner layer, etc., there is almost no influence on the denitration performance, so both high denitration-CO oxidation-surplus NH 3 decomposition activity is excellent. Catalyst can be realized.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail using specific examples.
Example 1
Metatitanic acid slurry (TiO 2 content: 30wt%, SO 4 content: 8 wt%) of ammonium paratungstate to 67kg ((NH 4) 10 H 10 · W 12 O 46 · 6H 2 O) 3.75kg and metavanadate 1.46 kg of Ammon was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into 3φ columnar shapes, granulated, dried in a fluidized bed dryer, and then baked at 550 ° C. for 2 hours in the atmosphere. The obtained granule was pulverized with a hammer mill so that the particle size of 1 μm was 60% or more to obtain a denitration catalyst powder as the first component. The composition at this time is V / W / Ti = 4.5 / 5 / 90.5 (atomic ratio).
[0028]
In addition, 0.332 g of chloroplatinic acid (H 2 [PtCl 6 ] · 6H 2 O) and 0.217 g of iridium chloride (IrCl 4 ) dissolved in 1 liter of water are mixed with a high surface area fine silica (Tomita Pharmaceutical microcomputer). F) 500 g was added and evaporated to dryness on a sand bath to carry a noble metal salt. This was dried at 180 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to prepare 0.025 wt% Pt-0.025 wt% Ir-silica as a second component. The Ir—Pt weight ratio at this time is 1.
[0029]
Separately, a mesh of 1,400 twisted E glass fibers with a fiber diameter of 9 μm and plain weave with a roughness of 10 / inch is impregnated with a slurry of 40% titania, 20% silica sol, and 1% polyvinyl alcohol. And dried at 150 ° C. to give rigidity to obtain a catalyst substrate.
[0030]
To 19.6 kg of the first component and 400 g of the second component, 5.3 kg of silica / alumina inorganic fiber and 17 kg of water were added and kneaded with a kneader to obtain a catalyst paste. Placing the prepared paste-like catalyst mixture between the two substrates and passing it through a pressure roller, the catalyst is pressure-bonded between the stitches and the surface of the substrate to form a plate-shaped catalyst having a thickness of about 1 mm. Got the body.
[0031]
On the other hand, 20 kg of titanium oxide powder, 2.5 kg of ammonium molybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O), 2.33 kg of ammonium metavanadate, 3.0 kg of oxalic acid and water were added and kneaded with a kneader. The pasty product is granulated into a 3φ columnar shape, dried in a fluidized bed dryer, further baked at 500 ° C. for 2 hours, and then pulverized with a hammer mill to have a particle size of 1 μm or less. The present denitration catalyst powder was obtained (V content: 3.56 wt%). Water is added to 100 g of the obtained powder to make a slurry, and this slurry is thinly attached to a rubber roller, and this is rolled onto the surface of the catalyst molded body, whereby 35 g of catalyst component per 1 m 2 is formed on the surface of the plate-shaped catalyst molded body. the coating is in, then dried at 0.99 ° C., to obtain a catalyst was calcined for 2 hours at 500 ° C..
[0032]
The thickness of the denitration catalyst coating layer on the surface of the catalyst molded body of this example is 0.1 mm or less, and the thickness of the coating layer calculated from the density corresponds to 0.035 mm.
[0033]
Comparative Example 1
A catalyst in which the denitration catalyst slurry was not applied to the surface of the catalyst molded body in Example 1 was prepared.
The catalyst of Example 1 and Comparative Example 1 were measured for denitration activity and CO oxidation activity under the conditions shown in Table 1, and the results are shown in FIG.
[0034]
Although the catalyst of Example 1 according to the present invention has a high CO removal rate, a high denitration rate is obtained. In contrast, the catalyst of Comparative Example 1 is similar to Example 1 in that the CO removal rate is high, but the adverse effect of the CO oxidation component shown in FIG. Not obtained.
[0035]
FIG. 5 also shows the NOx removal rate and the unreacted NH 3 decomposition rate by changing the NH 3 / NO ratio by changing the NH 3 injection amount for the catalysts of Example 1 and Comparative Example 1 under the conditions shown in Table 2. And show the results.
[0036]
The leak NH 3 decomposition rate (unreacted NH 3 decomposition rate) was determined by the following relational expression.
Figure 0003793283
[0037]
Although the catalyst of Example 1 and Comparative Example 1 have the same NH 3 decomposition rate, the NOx removal rate at the same NH 3 / NO ratio is the same as that of the catalyst of Example 1 compared to the catalyst of Comparative Example 1. It can be seen that the denitration rate is very high and close to the stoichiometric line, and the loss of NH 3 is extremely small.
[0038]
On the other hand, Comparative Example 1 not only had a low denitration rate at the same NH 3 / NO ratio, but could not obtain a high denitration rate no matter how high the NH 3 / NO ratio was.
[0039]
As described above, the catalyst according to the present invention greatly reduces the deterioration of the denitration performance due to the NH 3 decomposition component or the CO oxidation component, and can obtain a high denitration activity equivalent to that of the denitration monofunctional catalyst while being a multi-functional catalyst. It has extremely excellent characteristics.
[0040]
[Table 1]
Figure 0003793283
[0041]
[Table 2]
Figure 0003793283
[0042]
Examples 2-6
The second component was prepared by replacing chloroplatinic acid in the production method of the second component in Example 1 with 0.664 g and without using iridium chloride. Using this, a plate-shaped catalyst molded body was obtained in the same manner as in Example 1, and the same denitration catalyst slurry as in Example 1 was applied to this surface at 5, 10, 30, 50, 100 g per m 2. The catalyst was obtained in the same manner as in Example 1 except for the above.
[0043]
The thickness of the coating layer of this catalyst is 0.1 mm or less, and the thickness of the coating layer calculated from the density corresponds to about 0.005, 0.01, 0.03, 0.05, and 0.1 mm, respectively. .
[0044]
Example 7
In the catalyst of Example 1, the ammonium paratungstate as the first component was replaced with an equimolar ammonium molybdate ((NH 4 ) 6 .Mo 7 O 24 .4H 2 O). A catalyst was prepared by changing the ammonium molybdate in the preparation of the denitration catalyst component transferred to the surface of the catalyst molded body to equimolar ammonium paratungstate.
[0045]
Example 8
A mixing ratio of the first component and the second component of Example 1 was 0/100, that is, a plate-shaped catalyst molded body was prepared using only the second component, and a denitration catalyst component slurry was applied to this surface as in Example 1. Transfer was carried out in the same manner to obtain a catalyst.
[0046]
Comparative Example 2
A catalyst of this comparative example was obtained in the same manner as in Example 2 except that the denitration catalyst slurry was not transferred to the plate-shaped catalyst molded body in the catalyst preparation of Example 2.
[0047]
Comparative Example 3
A catalyst of this comparative example was obtained in the same manner as in Example 7 except that the catalyst slurry was not transferred in the preparation method of Example 7.
[0048]
Comparative Example 4
A catalyst was prepared in the same manner as in Example 1 except that the second component was not used in Example 1.
[0049]
Comparative Example 5
A catalyst was prepared in the same manner as in Example 8 except that surface transfer of the denitration catalyst component was not performed in the preparation method of Example 8.
For each of the catalysts of Examples 1 to 8 and Comparative Examples 1 to 5, the NOx removal rate and CO oxidation rate at 350 ° C. were measured under the conditions shown in Table 1, and the injected NH 3 / NO ratio was 1.2 mol under the conditions shown in Table 2. The denitration rate and leak NH 3 decomposition rate at / mol were measured.
[0050]
The results obtained are summarized in Table 3.
[Table 3]
Figure 0003793283
[0051]
It can be seen from Table 3 that the catalyst according to the example of the present invention has high denitration activity, CO oxidation activity, and decomposition rate of leaked NH 3 . On the other hand, in the catalysts of Comparative Examples 1 to 3 in which the catalyst component having only the denitration activity on the surface was not transferred, the denitration rate was extremely low.
[0052]
From this, it is clear that transfer of the denitration catalyst component to the surface of the catalyst of the present invention has a very large effect in increasing the denitration rate while maintaining high CO oxidation activity and NH 3 decomposition activity. .
[0053]
In Comparative Example 4 which does not include the second component which is an oxidation component of NH 3 or CO, both CO oxidation activity and NH 3 decomposition activity are low, and in Comparative Example 5 having only the second component, CO oxidation activity and NH 3 decomposition activity are low. Was high, but the NOx removal rate due to NH 3 oxidation was negative.
[0054]
These results show that the structure of the catalyst shown in FIG. 1 is extremely effective in order to obtain high performance for both denitration-CO oxidation-leak NH 3 decomposition.
[0055]
【The invention's effect】
According to the present invention, a catalyst having high denitration rate, CO oxidation rate, and decomposition rate of unreacted NH 3 can be easily obtained. This not only realizes a system capable of removing CO in addition to NOx released from various generation sources, but also significantly reduces the release of unreacted NH 3 that has not been used in the denitration reaction to the atmosphere.
Further, compared with the conventional catalyst used for the above-mentioned application, the NH 3 injection amount for obtaining the same denitration rate can be reduced, which is economically advantageous.
[Brief description of the drawings]
FIG. 1 is a view showing an outline of a catalyst of the present invention.
FIG. 2 is a diagram showing the distribution of reaction components in the catalyst in the conventional catalyst and the catalyst of the present invention for explaining the essential points of the present invention.
FIG. 3 is a diagram showing the distribution of reaction components in the catalyst in the conventional catalyst and the catalyst of the present invention for explaining the essential points of the present invention.
FIG. 4 is a diagram showing the effect of the present invention.
FIG. 5 is a diagram showing the effect of the present invention.
FIG. 6 is a diagram for clarifying problems of a conventional catalyst.
FIG. 7 is a diagram for clarifying problems of a conventional catalyst.
[Explanation of symbols]
1 Coating layer having only denitration activity 2 Catalyst molded body layer having denitration activity, CO oxidation activity, and NH 3 oxidative decomposition activity

Claims (15)

一酸化炭素の酸化活性およびアンモニアの酸化分解活性を有する成分を含む成形体表面に、一酸化炭素とアンモニアの酸化活性を有しない1m 2 当たり0を超えて100g/m 2 以下の量の脱硝活性成分からなる被覆層を有することを特徴とする排ガス浄化用触媒。Denitration activity in an amount of more than 0 and less than 100 g / m 2 per m 2 having no oxidation activity of carbon monoxide and ammonia on the surface of the molded body containing a component having oxidation activity of carbon monoxide and oxidative decomposition activity of ammonia An exhaust gas purifying catalyst comprising a coating layer made of components. 一酸化炭素酸化活性もしくはアンモニア酸化分解活性を有する成分の成形体が貴金属を担持した多孔体の成形体であることを特徴とする請求項1記載の排ガス浄化用触媒。 2. The exhaust gas purifying catalyst according to claim 1, wherein the molded body of a component having carbon monoxide oxidation activity or ammonia oxidative decomposition activity is a molded body of a porous body supporting a noble metal. 一酸化炭素とアンモニアの酸化活性を有しない脱硝活性成分からなる被覆層がチタン、タングステン、モリブデン、バナジウムの内の1種以上の酸化物を含むことを特徴とする請求項1または2記載の排ガス浄化用触媒。 The exhaust gas according to claim 1 or 2, wherein the coating layer made of a denitration active component having no oxidation activity of carbon monoxide and ammonia contains one or more oxides of titanium, tungsten, molybdenum, and vanadium. Purification catalyst. 請求項1ないしのいずれかに記載の排ガス浄化用触媒における表面に形成される被覆層が、湿式形成された一酸化炭素の酸化活性およびアンモニアの酸化分解活性を有する成分を含む成形体の成形直後における湿潤状態の表面に該被覆層成分のスラリで覆われることにより形成されることを特徴とする排ガス浄化用触媒の製造方法。Molding of a molded body, wherein the coating layer formed on the surface of the exhaust gas purifying catalyst according to any one of claims 1 to 3 comprises a wet-formed component having carbon monoxide oxidation activity and ammonia oxidative decomposition activity. A method for producing an exhaust gas purifying catalyst, characterized in that the exhaust gas purifying catalyst is formed by covering a wet surface immediately after that with a slurry of the coating layer component. ローラに付着された被覆層成分スラリを成形体表面に転着することにより前記被覆層成分スラリを成形体表面へ被覆することを特徴とする請求項記載の排ガス浄化用触媒の製造方法。The method for producing an exhaust gas purifying catalyst according to claim 4, wherein the coating layer component slurry adhered to the roller is transferred onto the surface of the molded body to coat the coating layer component slurry on the surface of the molded body. 請求項1ないしのいずれかに記載の排ガス浄化用触媒を触媒層の一部または全部に充填し、排ガス中に還元剤を添加後、排ガス中の窒素酸化物の還元除去および/または一酸化炭素の酸化除去を行うことを特徴とする排ガス浄化方法。A catalyst for purifying exhaust gas according to any one of claims 1 to 3 is filled in part or all of the catalyst layer, a reducing agent is added to the exhaust gas, and then reduction and / or oxidation of nitrogen oxides in the exhaust gas is performed. An exhaust gas purification method comprising removing carbon by oxidation. 請求項1ないしのいずれかに記載の排ガス浄化用触媒を収納した触媒層をアンモニア還元法脱硝触媒層の後流部に設置したことを特徴とする排ガス浄化装置。An exhaust gas purification apparatus, wherein a catalyst layer containing the exhaust gas purification catalyst according to any one of claims 1 to 3 is installed in a downstream portion of an ammonia reduction denitration catalyst layer. 窒素酸化物の分解活性を有する成分と一酸化炭素の酸化活性およびアンモニアの酸化分解活性を有する成分を含む成形体の表面に、一酸化炭素とアンモニアの酸化活性を有しない1m 2 当たり0を超えて100g/m 2 以下の量の脱硝活性成分からなる被覆層を有することを特徴とする排ガス浄化用触媒。The surface of the molded article containing a component having nitrogen oxide decomposition activity, carbon monoxide oxidation activity, and ammonia oxidative decomposition activity exceeds 0 per 1 m 2 having no carbon monoxide and ammonia oxidation activity. A catalyst for exhaust gas purification comprising a coating layer comprising a denitration active component in an amount of 100 g / m 2 or less . 窒素酸化物の分解活性を有する成分と一酸化炭素酸化活性およびアンモニア酸化分解活性を有する成分とからなる成形体が、チタン、タングステン、モリブデン、バナジウムの内の1種以上の酸化物と貴金属担持多孔体とを含むことを特徴とする請求項記載の排ガス浄化用触媒。A molded body comprising a component having nitrogen oxide decomposition activity and a component having carbon monoxide oxidation activity and ammonia oxidation decomposition activity is formed of one or more oxides of titanium, tungsten, molybdenum, and vanadium and a noble metal-supported porous material. The exhaust gas-purifying catalyst according to claim 8 , comprising a body. 一酸化炭素とアンモニアの酸化活性を有しない脱硝活性成分からなる被覆層がチタン、タングステン、モリブデン、バナジウムの内の1種以上の酸化物を含むことを特徴とする請求項または記載の排ガス浄化用触媒。The exhaust gas according to claim 8 or 9 , wherein the coating layer made of a denitration active component having no oxidation activity of carbon monoxide and ammonia contains one or more oxides of titanium, tungsten, molybdenum, and vanadium. Purification catalyst. 請求項ないし10のいずれかに記載の排ガス浄化用触媒における表面に形成される被覆層が、湿式形成された窒素酸化物の分解活性を有する成分と一酸化炭素の酸化活性およびアンモニアの酸化分解活性を有する成分を含む成形体の成形直後における湿潤状態の表面に該被覆層成分のスラリで覆われることにより形成されることを特徴とする排ガス浄化用触媒の製造方法。The coating layer formed on the surface of the exhaust gas purifying catalyst according to any one of claims 8 to 10, wherein the component having a wet activity of decomposing nitrogen oxides, the oxidation activity of carbon monoxide, and the oxidative decomposition of ammonia A method for producing an exhaust gas purifying catalyst, characterized in that it is formed by covering a wet surface immediately after molding of a molded body containing an active component with a slurry of the coating layer component. ローラに付着された被覆層成分スラリを成形体表面に転着することにより前記被覆層成分スラリを成形体表面へ被覆することを特徴とする請求項11記載の排ガス浄化用触媒の製造方法。12. The method for producing an exhaust gas purifying catalyst according to claim 11, wherein the coating layer component slurry adhered to the roller is transferred onto the surface of the molded body to coat the coating layer component slurry on the surface of the molded body. 請求項ないし10のいずれかに記載の排ガス浄化用触媒を触媒層の一部または全部に充填し、排ガス中に還元剤を添加後排ガス中の窒素酸化物の還元除去と同時に一酸化炭素の酸化除去を行うことを特徴とする排ガス浄化方法。 The exhaust gas-purifying catalyst according to any one of claims 8 to 10 is filled in a part or all of the catalyst layer, and after adding a reducing agent to the exhaust gas, the reduction and removal of nitrogen oxides in the exhaust gas are simultaneously performed. exhaust gas purification how, characterized in that an oxidation removal. 請求項ないし10のいずれかに記載の排ガス浄化用触媒を触媒層の一部または全部に充填し、排ガス中に還元剤を注入後含有される窒素酸化物の還元除去を行うことを特徴とする排ガス浄化方法。A catalyst for purifying exhaust gas according to any one of claims 8 to 10 is filled in a part or all of a catalyst layer, and nitrogen oxides contained therein are reduced and removed after injecting a reducing agent into the exhaust gas. Exhaust gas purification method. 請求項ないし10のいずれかに記載の排ガス浄化用触媒を収納した触媒層をアンモニア還元法脱硝触媒層の後流部に設置することを特徴とする排ガス浄化装置。Exhaust gas purifying device, characterized in that installed in the flow portion after the ammonia reduction method denitration catalyst layer a catalyst layer catalyst has an accommodating exhaust gas purification according to any one of claims 8 to 10.
JP15978996A 1996-06-20 1996-06-20 Exhaust gas purification catalyst and exhaust gas purification apparatus using the same Expired - Lifetime JP3793283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15978996A JP3793283B2 (en) 1996-06-20 1996-06-20 Exhaust gas purification catalyst and exhaust gas purification apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15978996A JP3793283B2 (en) 1996-06-20 1996-06-20 Exhaust gas purification catalyst and exhaust gas purification apparatus using the same

Publications (2)

Publication Number Publication Date
JPH105591A JPH105591A (en) 1998-01-13
JP3793283B2 true JP3793283B2 (en) 2006-07-05

Family

ID=15701309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15978996A Expired - Lifetime JP3793283B2 (en) 1996-06-20 1996-06-20 Exhaust gas purification catalyst and exhaust gas purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP3793283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120645A1 (en) * 2013-01-29 2014-08-07 Johnson Matthey Public Limited Company Ammonia oxidation catalyst
WO2018065353A1 (en) 2016-10-03 2018-04-12 Umicore Ag & Co. Kg Catalyst article and method for the abatement of ammonia and nitrogen oxides

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959218B2 (en) * 2006-04-28 2012-06-20 バブコック日立株式会社 Method for producing plate-shaped denitration catalyst
US8636959B2 (en) 2007-05-09 2014-01-28 N.E. Chemcat Corporation Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
JP5110954B2 (en) 2007-05-09 2012-12-26 エヌ・イーケムキャット株式会社 Exhaust gas purification catalyst apparatus using selective reduction catalyst and exhaust gas purification method
JP5004084B2 (en) * 2007-09-06 2012-08-22 独立行政法人産業技術総合研究所 Method for catalytic reduction and removal of nitrogen oxides in exhaust gas
WO2012002052A1 (en) 2010-06-30 2012-01-05 エヌ・イー ケムキャット株式会社 Flue gas-cleaning device and flue gas-cleaning method that use selective catalytic reduction catalyst
EP2692437B1 (en) 2011-03-31 2023-09-20 N.E. Chemcat Corporation Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
JP5732297B2 (en) 2011-03-31 2015-06-10 エヌ・イーケムキャット株式会社 Ammonia oxidation catalyst, exhaust gas purification device, and exhaust gas purification method
JP5755160B2 (en) * 2012-02-17 2015-07-29 田中貴金属工業株式会社 Ammonia decomposition catalyst and method for producing the same
DE112013005743T5 (en) * 2012-11-30 2015-09-10 Johnson Matthey Public Limited Company Ammonia oxidation catalyst
CN104936679B (en) * 2013-02-14 2017-08-18 托普索公司 Method and catalyst for removing carbon monoxide and nitrogen oxides simultaneously from flue gas or waste gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120645A1 (en) * 2013-01-29 2014-08-07 Johnson Matthey Public Limited Company Ammonia oxidation catalyst
WO2018065353A1 (en) 2016-10-03 2018-04-12 Umicore Ag & Co. Kg Catalyst article and method for the abatement of ammonia and nitrogen oxides
WO2018065354A1 (en) 2016-10-03 2018-04-12 Umicore Ag & Co. Kg Catalyst article and method for the abatement of ammonia and nitrogen oxides

Also Published As

Publication number Publication date
JPH105591A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP5192754B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment system
US7833932B1 (en) Compositions and methods for treating exhaust gases
US5409681A (en) Catalyst for purifying exhaust gas
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP2008188542A (en) Catalyst for treating exhaust gas, manufacturing method thereof and exhaust gas treatment method
JP2019505370A (en) Catalyst bed and method for reducing nitric oxide
JP3321190B2 (en) Ammonia decomposition catalyst with denitration function and exhaust gas purification method
JPH05293385A (en) Catalyst structural body and its production
JP2019505372A (en) Catalyst bed and method for reducing nitric oxide
JP2006192365A (en) Catalyst for cleaning exhaust gas from internal-combustion engine, method for manufacturing the catalyst, and exhaust gas-cleaning apparatus
JP3321423B2 (en) Exhaust gas purification method
JPH09108570A (en) Oxidation catalyst for cleaning exhaust gas and preparation thereof
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JP3285206B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3337498B2 (en) Method for producing catalyst for purifying exhaust gas and method for purifying exhaust gas
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
KR20220145935A (en) Catalyst for ammonia oxidation, and method for producing the same
EP2659968B1 (en) Use of a particulate combustion catalyst and a particulate filter, production methods therefor
JP4303799B2 (en) Method for producing lean NOx purification catalyst
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JP2004066126A (en) Catalyst for purification of exhaust gas containing silicon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term