JP4959218B2 - Method for producing plate-shaped denitration catalyst - Google Patents

Method for producing plate-shaped denitration catalyst Download PDF

Info

Publication number
JP4959218B2
JP4959218B2 JP2006125406A JP2006125406A JP4959218B2 JP 4959218 B2 JP4959218 B2 JP 4959218B2 JP 2006125406 A JP2006125406 A JP 2006125406A JP 2006125406 A JP2006125406 A JP 2006125406A JP 4959218 B2 JP4959218 B2 JP 4959218B2
Authority
JP
Japan
Prior art keywords
component
catalyst
oxide
plate
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006125406A
Other languages
Japanese (ja)
Other versions
JP2007296449A (en
Inventor
良憲 永井
和典 伊藤
晃広 山田
博之 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006125406A priority Critical patent/JP4959218B2/en
Publication of JP2007296449A publication Critical patent/JP2007296449A/en
Application granted granted Critical
Publication of JP4959218B2 publication Critical patent/JP4959218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、板状脱硝触媒およびその製造方法に係り、特に被処理排ガス中に煤塵を含んだ場合においても、長寿命で、かつ効率よく被処理ガスを処理可能にした耐摩耗性の脱硝触媒、およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a plate-shaped denitration catalyst and a method for producing the same, and in particular, even when dust to be treated is contained in dusts to be treated, it has a long life and can effectively treat the gas to be treated. And a manufacturing method thereof.

発電所、各種工場、自動車などから排出される排煙中の窒素酸化物(NOx)は、光化学スモック゛や酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)等を還元剤とした選択的接触還元による排煙脱硝法が、火力発電所を中心に幅広く用いられている。この場合の脱硝触媒には、バナジウム(V)、モリブデン(Mo)又はタングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が使用されており、特に活性成分の1つとしてバナジウムを含むものは、活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどの特長を有することから、現在の脱硝触媒の主流になっている(特許文献1)。触媒の形状としては、通常、ハニカム状、板状に成形されたものが用いられている。 Nitrogen oxides (NOx) in flue gas emitted from power plants, various factories, automobiles, etc. are the causative substances of photochemical smock and acid rain. As an effective removal method, ammonia (NH 3 ) is used. A flue gas denitration method using selective catalytic reduction as a reducing agent is widely used mainly in thermal power plants. In this case, a denitration catalyst is a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component. In particular, vanadium is used as one of the active components. The inclusions are not only highly active, but also have features such as low deterioration due to impurities contained in the exhaust gas, and the ability to be used from a lower temperature. Reference 1). As the shape of the catalyst, those formed into a honeycomb shape or a plate shape are usually used.

特に煤塵が存在する石炭焚きボイラの排ガス中で触媒を長時間使用すると、経年的な性能低下が大きく、これは煤塵中のアルカリ金属やアルカリ土類金属が触媒の活性点を覆うこと、また煤塵により触媒表面が摩耗し、触媒自身が減肉、消失するためであることが知られている。その一例として油焚きボイラ排ガス煙道に触媒装置を設置した場合の性能低下(劣化)は煤塵中の水溶性アルカリ金属が触媒活性サイトに付着するためであり、また石炭焚きボイラでは、煤塵中の酸化カルシウム(CaO)が排ガス中の硫黄酸化物(SO3)と反応して触媒細孔の閉塞を引き起こすためであることが述べられている(非特許文献1)。 In particular, if the catalyst is used for a long time in the exhaust gas of a coal fired boiler in which soot is present, the performance deteriorates over time.This is because the alkali metal or alkaline earth metal in the soot covers the active point of the catalyst, and the dust It is known that the catalyst surface wears due to the above, and the catalyst itself becomes thin and disappears. As an example, performance degradation (deterioration) when a catalytic device is installed in an oil-fired boiler flue gas flue is due to water-soluble alkali metals in the dust adhering to the catalytically active sites, and in a coal-fired boiler, It is described that calcium oxide (CaO) reacts with sulfur oxide (SO 3 ) in exhaust gas to cause clogging of catalyst pores (Non-patent Document 1).

一方、近年、石炭焚きボイラ排ガスの脱硝触媒に求められる機能も多様化、複雑化しつつある。米国で使用されている石炭は東部瀝青炭とPRB(Powder River Basin)炭に大別されるが、東部瀝青炭は、硫黄含有量が高く、排ガス中の硫黄酸化物(SOx)濃度が高いため、後流機器での酸性硫安の析出を防止するために、脱硝触媒にはSO2からSO3への酸化能の低い触媒が求められる。他方、PRB炭はCa濃度が高く上述のようにCaSO4の細孔閉塞或いは触媒活性表面のマスキングを引き起こす。また、PRB炭の場合、ボイラ燃焼状況によっては多量にP2O5が発生し、触媒毒となるケースもある。 On the other hand, in recent years, the functions required for a denitration catalyst for coal-fired boiler exhaust gas have been diversified and complicated. Coal used in the United States is broadly divided into eastern bituminous coal and PRB (Powder River Basin) coal. Eastern bituminous coal has a high sulfur content and high sulfur oxide (SOx) concentration in the exhaust gas. In order to prevent the precipitation of acidic ammonium sulfate in the flow equipment, a catalyst having a low oxidizing ability from SO 2 to SO 3 is required for the denitration catalyst. On the other hand, PRB charcoal has a high Ca concentration and causes CaSO 4 pore blockage or masking of the catalytically active surface as described above. In addition, in the case of PRB charcoal, a large amount of P 2 O 5 is generated depending on the boiler combustion situation, which may be a catalyst poison.

一方、石炭焚きボイラ等の排ガス中には水銀が含まれ、その多くが金属水銀(Hg)であり、そのままでは煙突から排出されてしまうので、これらの水銀の除去が要求されている。そこで、脱硝触媒を用いて水銀(Hg)を酸化し、HgCl2のような可溶性化合物にして電気集塵機(EP)や脱硫装置(FGD)で除去するシステムが提案されている。しかし、PRB炭燃焼排ガスの場合、排ガス中のHCl濃度が低いため、水銀酸化反応が遅くなるという課題がある。 On the other hand, mercury is contained in exhaust gas such as coal-fired boilers, most of which is metallic mercury (Hg), which is discharged from the chimney as it is, so removal of these mercury is required. In view of this, a system has been proposed in which mercury (Hg) is oxidized using a denitration catalyst to form a soluble compound such as HgCl 2 and removed with an electrostatic precipitator (EP) or a desulfurizer (FGD). However, in the case of PRB charcoal combustion exhaust gas, there is a problem that the mercury oxidation reaction becomes slow because the HCl concentration in the exhaust gas is low.

また脱硝反応速度はSO2酸化反応速度より一桁速く、このために高脱硝性能を示す触媒の表面にコーティングする技術は、高脱硝性能で、かつ低SO2酸化性能を満足する方法であることが知られている(特許文献2)。しかし、このような触媒を実用機で使用する場合、長時間の使用において多量に存在する石炭灰(ダスト)により摩耗してしまうという欠点がある。芯材を有する板状触媒であっても、表面に一定の厚みの触媒コーティング層を設けると、その部分の摩耗が優先的に生じ、経時的には大きな性能低下を免れない。これはハニカム触媒の場合も同様である。
特開昭50−128681号公報 特開平9-220468号公報 火力原子力発電Vol.39 No.3(1988.3)
In addition, the denitration reaction rate is an order of magnitude faster than the SO 2 oxidation reaction rate. Therefore, the technology to coat the surface of the catalyst that exhibits high denitration performance is a method that satisfies high SOx oxidation performance and low SO 2 oxidation performance. Is known (Patent Document 2). However, when such a catalyst is used in a practical machine, there is a drawback in that it is worn out by coal ash (dust) that is present in a large amount when used for a long time. Even in the case of a plate-shaped catalyst having a core material, if a catalyst coating layer having a certain thickness is provided on the surface, wear of that portion occurs preferentially, and a large performance deterioration cannot be avoided over time. The same applies to the honeycomb catalyst.
Japanese Patent Laid-Open No. 50-128681 JP-A-9-220468 Thermal Power Generation Vol. 39 No.3 (1988.3)

本発明の課題は、排ガス中の石炭灰などのダストにより脱硝触媒に摩耗を生じにくく、高寿命の排ガス浄化用脱硝触媒およびその製造方法を提供することにある。   An object of the present invention is to provide a denitration catalyst for purifying exhaust gas having a long life and a method for producing the same, in which the denitration catalyst is hardly worn by dust such as coal ash in the exhaust gas.

本発明者らは、石炭排ガス処理での脱硝触媒の摩耗は、触媒表面の凹凸により大きく異なり、支持体により表面に突起部を形成し、その隣接する突起部間のくぼみに活性成分をコーティングすることにより、経時的に耐摩耗性の高い触媒が得られることに着目し、本発明に到達した。   The present inventors show that the wear of a denitration catalyst in coal exhaust gas treatment varies greatly depending on the unevenness of the catalyst surface, and a protrusion is formed on the surface by the support, and the active component is coated in the recess between the adjacent protrusions. Thus, the present invention has been achieved by paying attention to the fact that a catalyst having high wear resistance can be obtained over time.

すなわち、本願で特許請求される発明は以下の通りである。
(1)網状基材に、その網目を充填するように触媒成分を担持してなる排ガス浄化用板状脱硝触媒であって、該触媒成分は、酸化チタン、酸化珪素、酸化バナジウムおよび/または酸化モリブデンを含む第一成分の層と、該第一成分の層の上に被覆された、酸化モリブデンおよび酸化バナジウムを含む第二成分の層からなり、前記充填された第一成分の厚みは前記網状基材の厚みよりも薄く、かつ前記第二成分の層は、前記第一成分の層の上で、網状基材の外面以下に被覆されていることを特徴とする排ガス浄化用板状脱硝触媒。
(2)前記第一成分を酸化チタン、酸化珪素、酸化タングステンおよび酸化バナジウムとし、第二成分を酸化チタン、酸化モリブデン、酸化珪素および酸化バナジウムとしたことを特徴とする(1)に記載の板状脱硝触媒。
(3)網状基材に、酸化チタン、酸化珪素、酸化バナジウムおよび、または酸化モリフ゛テ゛ンを含むペーストからなる第一成分をその網目を充填するように塗布またはコーティングした後、乾燥または焼成する工程と、第二成分として酸化モリブデンおよび酸化バナジウムを含むペーストを、前記第一成分の層の上に塗布またはコーティングした後、焼成する工程とからなり、前記充填された第一成分の厚みは前記網状基材の厚みより薄くし、さらにその上に塗布する前記第二成分の厚みを、前記第一成分と前記第二成分とを合わせた厚みが前記網状基材の厚みと同等以下になるようにすることを特徴とする(1)に記載の板状脱硝触媒の製造方法。
(4)前記第一成分は、使用済み脱硝触媒を粉砕した後、所定の水分で混練して得られる触媒ペーストであることを特徴とする(3)に記載の板状脱硝触媒の製造方法。
(5)前記第一成分のみの塗布またはコーティングによって成形される板状触媒の板厚より、第二成分の塗布またはコーティング厚みを薄くすることを特徴とする(3)または(4)に記載の板状脱硝触媒の製造方法。
That is, the invention claimed in the present application is as follows.
(1) A plate-like denitration catalyst for exhaust gas purification, in which a catalyst component is supported on a mesh substrate so as to fill the mesh, the catalyst component comprising titanium oxide, silicon oxide, vanadium oxide and / or oxidation A first component layer containing molybdenum and a second component layer containing molybdenum oxide and vanadium oxide coated on the first component layer, and the thickness of the filled first component is the network A plate-like denitration catalyst for exhaust gas purification, characterized in that the second component layer is thinner than the base material, and the second component layer is coated on the first component layer below the outer surface of the net-like base material. .
(2) The plate according to (1), wherein the first component is titanium oxide, silicon oxide, tungsten oxide, and vanadium oxide, and the second component is titanium oxide, molybdenum oxide, silicon oxide, and vanadium oxide. Catalyst for NOx removal.
(3) A step of applying or coating a first substrate composed of a paste containing titanium oxide, silicon oxide, vanadium oxide and / or molybdenum oxide on a network substrate so as to fill the network, and then drying or firing; A paste containing molybdenum oxide and vanadium oxide as a second component is applied or coated on the first component layer and then fired, and the thickness of the filled first component is the reticulated substrate. And the thickness of the second component applied thereon is set to be equal to or less than the thickness of the net-like base material by combining the first component and the second component. The method for producing a plate-like denitration catalyst according to (1),
(4) The method for producing a plate-like denitration catalyst according to (3), wherein the first component is a catalyst paste obtained by pulverizing a used denitration catalyst and then kneading with predetermined moisture.
(5) The application or coating thickness of the second component is made thinner than the plate thickness of the plate-shaped catalyst formed by the application or coating of only the first component, as described in (3) or (4) A method for producing a plate-shaped denitration catalyst.

本発明によれば、表面にコーティングされた第二触媒成分は、板状触媒の芯材(網状基材)の外面以下、または突起部間にできるくぼみ部分に付着、コートされているため、ダストの衝突は主にこの突起部または外面で生じ、第一成分の表面にコーティングされた第二成分にまでほとんど影響を及ぼさない。このため、煤塵等による高ダスト排ガス処理において、耐摩耗性で、かつ高寿命の板状脱硝触媒を提供することができる。   According to the present invention, the second catalyst component coated on the surface adheres to and is coated on the outer surface of the core material (network base material) of the plate-like catalyst or on the recessed portion formed between the protrusions. Collisions mainly occur at this protrusion or outer surface and have little effect on the second component coated on the surface of the first component. For this reason, it is possible to provide a plate-type denitration catalyst that is wear-resistant and has a long life in high dust exhaust gas treatment using soot dust or the like.

以下、本発明を図面により説明する。図1は、本発明の脱硝触媒の製造方法を模式的に示す板状脱硝触媒の説明図、図2は、石炭焚の煤塵含有排ガスに一定時間暴露された場合の触媒表面の摩耗進行状況を示す模式図である。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a plate-type denitration catalyst schematically showing a method for producing a denitration catalyst of the present invention, and FIG. 2 shows the progress of wear on the catalyst surface when exposed to exhaust gas containing dust from coal soot for a certain period of time. It is a schematic diagram shown.

本発明の板状触媒5は、芯材としての金属製またはセラミックス製の網状基材(この場合はエキスパンドメタルラス)1と、該網状基材1の網目を充填するように担持された第一触媒成分2の層と、網状基材1外面以下、すなわち突起部4の間、および該触媒成分2の層上に被覆された第二触媒成分3の層とから構成される。上記の構成において、石炭焚排ガス中に存在するダストは、図2に示すように、排ガス流れに対して並列に配置された板状触媒5の先端部に衝突後、触媒表面を衝突しながらガス流れに沿って移動し、このダスト粒子は、ガス流れ方向に対してある角度で触媒に衝突しつつ触媒表面を削ってゆくが、触媒に摩耗に強い芯材の突起4があると、ダスト粒子は優先的にこの部位に衝突し、比較的摩耗強度の低い表面コーティング部には当たらないので、摩耗が防止できる。    The plate-like catalyst 5 of the present invention includes a metal or ceramic network substrate (in this case, an expanded metal lath) 1 as a core material and a first catalyst supported so as to fill the mesh of the network substrate 1. The layer of component 2 and the layer of the second catalyst component 3 coated on the outer surface of the reticulated substrate 1, that is, between the protrusions 4 and on the layer of the catalyst component 2. In the above configuration, as shown in FIG. 2, the dust present in the coal-fired exhaust gas collides with the front end of the plate catalyst 5 arranged in parallel with the exhaust gas flow, and then collides with the catalyst surface. The dust particles move along the flow, and the dust particles scrape the catalyst surface while colliding with the catalyst at an angle with respect to the gas flow direction. Preferentially collides with this portion and does not hit the surface coating portion having a relatively low wear strength, so that wear can be prevented.

本発明の板状触媒の製造において、前記第一成分の触媒は、使用済み脱硝触媒を粉砕した後、水分を加えて混練し、ペースト状にしたものを使用してもよい。また使用済板状触媒表面の第二触媒成分のみを塗布することによって、触媒を容易に再生することができる。   In the production of the plate-shaped catalyst of the present invention, the first component catalyst may be a paste obtained by pulverizing a used denitration catalyst and then kneading and adding water. Further, the catalyst can be easily regenerated by applying only the second catalyst component on the surface of the used plate catalyst.

石炭焚のボイラ排ガスで使用する脱硝触媒は、長時間曝した場合の摩耗を抑えるため、なるべく表面を緻密にして形成されるが、求められる脱硝性能を維持するため触媒表面には多くのクラックを有することが望ましい。   The denitration catalyst used in coal-fired boiler exhaust gas is formed with the surface as dense as possible in order to suppress wear when exposed to a long period of time, but many cracks are formed on the catalyst surface in order to maintain the required denitration performance. It is desirable to have.

以下に具体例を用いて本発明を詳細に説明する。
[実施例1]
第一触媒成分として、酸化チタン酸粉末(TiO2含有量:90重量%以上、SO4含有量:3重量%以下)140kgに、三酸化モリブデン((MoO3)を13.5kg、メタバナジン酸アンモニウム(NH4VO3)3.3kgおよびシリカゾル(20重量%)56kgを加え、更にアルミニウム化合物粉末1.7kgとアルミナシリケート繊維28kgを水分調整して混練して触媒原料粉末を得た。これを網状基材としてエキスパンドメタルラスに塗布して所定の形状にプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。このときの触媒組成はV/Mo/Ti=1.5/5/93.5(原子比)であり、得られた触媒の比表面積は70m2/g、細孔容積は0.277cc/gであった。
Hereinafter, the present invention will be described in detail using specific examples.
[Example 1]
As a first catalyst component, a titanium oxide acid powder (TiO 2 content: 90 wt% or more, SO 4 content: 3% by weight or less) to 140 kg, molybdenum trioxide ((MoO 3) and 13.5 kg, ammonium metavanadate ( NH 4 VO 3 ) 3.3 kg and silica sol (20% by weight) 56 kg were added, and 1.7 kg of aluminum compound powder and 28 kg of alumina silicate fiber were mixed and kneaded to obtain a catalyst raw material powder. It was applied to an expanded metal lath and pressed into a predetermined shape to obtain a plate-shaped denitration catalyst, which was calcined at 500 ° C. The catalyst composition at this time was V / Mo / Ti = 1.5 / 5 The specific surface area of the obtained catalyst was 70 m 2 / g, and the pore volume was 0.277 cc / g.

また、 脱硝性能が高く耐久性面で優れる第二触媒成分として酸化チタン粉末90kg、モリブデン酸アンモニウム13.5kg、メタバナジン酸アンモニウム(NH4VO3)6.6kgおよびシリカゾル(20重量%)56kgを加え、アルミナ/シリケート繊維28kgを添加後、水分を調整して混練し得られた触媒ペーストを、上記の触媒第一成分の上に塗布してエキスパンドメタルの突状部の高さまでプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。このときの触媒第二成分の組成はV/Mo/Ti=3/5/92(原子比)であった。なお、このとき、最終的に調製した板状脱硝触媒の板厚は約0.8mmであった。
石炭焚きボイラ試験設備に対して、上記の脱硝触媒をこの順に設置して通ガスし一定期間脱硝性能およびSO2酸化性能の変化を観察した。
In addition, titanium oxide powder 90 kg, ammonium molybdate 13.5 kg, ammonium metavanadate (NH 4 VO 3 ) 6.6 kg and silica sol (20 wt%) 56 kg are added as a second catalyst component with high denitration performance and excellent durability. / After adding 28 kg of silicate fiber, the catalyst paste obtained by adjusting the moisture and kneading is applied onto the first component of the above catalyst and pressed to the height of the protruding metal protrusion to form a plate A denitration catalyst was obtained. The plate catalyst was calcined at 500 ° C. At this time, the composition of the second component of the catalyst was V / Mo / Ti = 3/5/92 (atomic ratio). At this time, the plate thickness of the finally prepared plate-type denitration catalyst was about 0.8 mm.
The above-mentioned denitration catalyst was installed in this order for the coal fired boiler test facility and gas was passed through, and changes in the denitration performance and SO 2 oxidation performance were observed for a certain period.

[実施例2]
実施例1と同様に触媒第一成分をエキスパンドメタルに塗布したのち、 所定の形状にプレス加工して板状の脱硝触媒を得た。次いで、 第2触媒成分として酸化チタン粉末90kg、メタタングステン酸アンモニウム13.5kg、メタバナジン酸アンモニウム(NH4VO3)3.3kgおよびシリカゾル(20重量%)56kgを加え、アルミナ/シリケート繊維28kgを添加後、水分を調整して混練し得られた触媒ペーストを、上記の触媒第一成分の上に塗布してエキスパンドメタルの突状部の高さまでプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。なお、このとき、最終的に調製した板状脱硝触媒の板厚は約0.8mmであった。
[Example 2]
The first catalyst component was applied to the expanded metal in the same manner as in Example 1, and then pressed into a predetermined shape to obtain a plate-like denitration catalyst. Next, 90 kg of titanium oxide powder, 13.5 kg of ammonium metatungstate, 3.3 kg of ammonium metavanadate (NH 4 VO 3 ) and 56 kg of silica sol (20 wt%) were added as the second catalyst component, and 28 kg of alumina / silicate fiber was added. The catalyst paste obtained by kneading with the moisture adjusted was applied onto the first catalyst component and pressed to the height of the protruding portion of the expanded metal to obtain a plate-shaped denitration catalyst. The plate catalyst was calcined at 500 ° C. At this time, the plate thickness of the finally prepared plate-type denitration catalyst was about 0.8 mm.

[比較例1]
実施例1の第一成分のみをエキスパンドメタルに塗布して、実施例1と同様の製造法により調製して触媒を得た。この板状脱硝触媒の板厚は0.8mmであった。
[比較例2]
実施例2の第二成分とする脱硝触媒のみを用いて、 エキスパンドメタルに塗布して、実施例1と同様の製造法により調製して触媒を得た。この板状脱硝触媒の板厚は0.8mmであった。
[Comparative Example 1]
Only the first component of Example 1 was applied to expanded metal and prepared by the same production method as in Example 1 to obtain a catalyst. The plate thickness of this plate-like denitration catalyst was 0.8 mm.
[Comparative Example 2]
Using only the denitration catalyst as the second component of Example 2, it was applied to expanded metal and prepared by the same production method as in Example 1 to obtain a catalyst. The plate thickness of this plate-like denitration catalyst was 0.8 mm.

実施例1〜2および比較例1〜2の板状脱硝触媒を表2に示した実機条件で約8000時間耐久試験後の脱硝性能とSO2酸化性能の経時変化を比較した。その結果を表1に纏めて示す。 The plate-type denitration catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 were compared with time in the denitration performance and SO 2 oxidation performance after an endurance test of about 8000 hours under the actual machine conditions shown in Table 2. The results are summarized in Table 1.

Figure 0004959218
Figure 0004959218

Figure 0004959218
表1の結果より、本発明の板状触媒(実施例1および2)は、比較例1および2の板状触媒と比べて良好な脱硝性能を示すことが分る。
Figure 0004959218
From the results in Table 1, it can be seen that the plate catalysts of the present invention (Examples 1 and 2) show better denitration performance than the plate catalysts of Comparative Examples 1 and 2.

本発明の板状脱硝触媒の製造方法を模式的に示す説明図。Explanatory drawing which shows typically the manufacturing method of the plate-shaped denitration catalyst of this invention. 本発明の板状脱硝触媒の石炭排ガスでの摩耗進行状況を示す模式図。The schematic diagram which shows the abrasion progress situation in the coal exhaust gas of the plate-shaped denitration catalyst of this invention.

符号の説明Explanation of symbols

1:網状基材、2:第一触媒成分、3:第二触媒成分、4:突起部、5:板状触媒。 1: reticulated substrate, 2: first catalyst component, 3: second catalyst component, 4: protrusion, 5: plate catalyst.

Claims (5)

網状基材に、その網目を充填するように触媒成分を担持してなる排ガス浄化用板状脱硝触媒であって、該触媒成分は、酸化チタン、酸化珪素、酸化バナジウムおよび/または酸化モリブデンを含む第一成分の層と、該第一成分の層の上に被覆された、酸化モリブデンおよび酸化バナジウムを含む第二成分の層からなり、前記充填された第一成分の厚みは前記網状基材の厚みよりも薄く、かつ前記第二成分の層は、前記第一成分の層の上で、網状基材の外面以下に被覆されていることを特徴とする排ガス浄化用板状脱硝触媒。 A plate-like denitration catalyst for exhaust gas purification in which a mesh component is supported on a mesh substrate so as to fill the mesh, and the catalyst component contains titanium oxide, silicon oxide, vanadium oxide and / or molybdenum oxide. A layer of a first component and a layer of a second component containing molybdenum oxide and vanadium oxide coated on the layer of the first component; A plate-type denitration catalyst for exhaust gas purification, wherein the second component layer is thinner than the thickness, and is coated on the first component layer below the outer surface of the reticulated substrate. 前記第一成分を酸化チタン、酸化珪素、酸化タングステンおよび酸化バナジウムとし、第二成分を酸化チタン、酸化モリブデン、酸化珪素および酸化バナジウムとしたことを特徴とする請求項1に記載の板状脱硝触媒。 The plate-shaped denitration catalyst according to claim 1, wherein the first component is titanium oxide, silicon oxide, tungsten oxide and vanadium oxide, and the second component is titanium oxide, molybdenum oxide, silicon oxide and vanadium oxide. . 網状基材に、酸化チタン、酸化珪素、酸化バナジウムおよび、または酸化モリブデンを含むペーストからなる第一成分をその網目を充填するように塗布またはコーティングした後、乾燥または焼成する工程と、第二成分として酸化モリブデンおよび酸化バナジウムを含むペーストを、前記第一成分の層の上に塗布またはコーティングした後、焼成する工程とからなり、前記充填された第一成分の厚みは前記網状基材の厚みより薄くし、さらにその上に塗布する前記第二成分の厚みを、前記第一成分と前記第二成分とを合わせた厚みが前記網状基材の厚みと同等以下になるようにすることを特徴とする請求項1に記載の板状脱硝触媒の製造方法。 A step of applying or coating a first component composed of a paste containing titanium oxide, silicon oxide, vanadium oxide and / or molybdenum oxide on a network substrate so as to fill the network, followed by drying or baking, and a second component A paste containing molybdenum oxide and vanadium oxide as a coating on or coating on the first component layer, followed by firing. The thickness of the filled first component is greater than the thickness of the reticulated substrate. Further, the thickness of the second component applied thereon is further reduced so that the combined thickness of the first component and the second component is equal to or less than the thickness of the network substrate. The manufacturing method of the plate-shaped denitration catalyst of Claim 1. 前記第一成分は、使用済み脱硝触媒を粉砕した後、所定の水分で混練して得られる触媒ペーストであることを特徴とする請求項3に記載の板状脱硝触媒の製造方法。 The method for producing a plate-like denitration catalyst according to claim 3, wherein the first component is a catalyst paste obtained by pulverizing a used denitration catalyst and then kneading with predetermined moisture. 前記第一成分のみの塗布またはコーティングによって成形される板状触媒の板厚より、第二成分の塗布またはコーティング厚みを薄くすることを特徴とする請求項3または4に記載の板状脱硝触媒の製造方法。 5. The plate-type denitration catalyst according to claim 3, wherein the thickness of the application or coating of the second component is made thinner than the plate thickness of the plate-like catalyst formed by applying or coating only the first component. Production method.
JP2006125406A 2006-04-28 2006-04-28 Method for producing plate-shaped denitration catalyst Active JP4959218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125406A JP4959218B2 (en) 2006-04-28 2006-04-28 Method for producing plate-shaped denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125406A JP4959218B2 (en) 2006-04-28 2006-04-28 Method for producing plate-shaped denitration catalyst

Publications (2)

Publication Number Publication Date
JP2007296449A JP2007296449A (en) 2007-11-15
JP4959218B2 true JP4959218B2 (en) 2012-06-20

Family

ID=38766394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125406A Active JP4959218B2 (en) 2006-04-28 2006-04-28 Method for producing plate-shaped denitration catalyst

Country Status (1)

Country Link
JP (1) JP4959218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393450B2 (en) * 2012-08-03 2018-09-19 三菱日立パワーシステムズ株式会社 Exhaust gas purification plate catalyst structure
US20230285950A1 (en) 2020-08-04 2023-09-14 Mitsubishi Heavy Industries, Ltd. Denitration catalyst and method for purifying exhaust gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573348A (en) * 1978-11-28 1980-06-03 Babcock Hitachi Kk Plate type catalyst
JPH0299144A (en) * 1988-10-07 1990-04-11 Babcock Hitachi Kk Plate-shaped catalyst and preparation thereof
JP3321423B2 (en) * 1991-11-27 2002-09-03 バブコック日立株式会社 Exhaust gas purification method
JP3432540B2 (en) * 1993-02-26 2003-08-04 バブコック日立株式会社 Method for producing plate-shaped catalyst and treatment liquid for forming acid-resistant and anti-corrosion film used therein
JPH09220468A (en) * 1996-02-19 1997-08-26 Babcock Hitachi Kk Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JPH09308828A (en) * 1996-05-22 1997-12-02 Babcock Hitachi Kk Preparation of tabular catalyst for denitration
JP3793283B2 (en) * 1996-06-20 2006-07-05 バブコック日立株式会社 Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP3853452B2 (en) * 1997-01-20 2006-12-06 バブコック日立株式会社 Method for recovering catalyst components from waste catalyst

Also Published As

Publication number Publication date
JP2007296449A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
TWI412400B (en) Removal device of trace and harmful substances in exhaust gas and its operation method
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP5126718B2 (en) Exhaust gas purification catalyst
JPH105547A (en) Catalyst to remove nitrogen oxide
JP2013091045A (en) Exhaust gas treating method
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
CA2784700A1 (en) Deactivation-resistant catalyst for selective catalytic reduction of nox
JP2004000943A (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
WO2009107729A1 (en) Catalyst for treating discharge gas
JP4994008B2 (en) Purification equipment for exhaust gas containing nitrogen oxides and metallic mercury
WO1999002262A1 (en) Denitration catalyst, process for preparing the same, and exhaust gas purification method
JP4709716B2 (en) Denitration catalyst for coal combustion exhaust gas and exhaust gas purification method
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JP7451195B2 (en) Manufacturing method of regenerated denitrification catalyst
JP3224708B2 (en) DeNOx catalyst
JP5687143B2 (en) Exhaust gas denitration catalyst containing dust and its production method
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP2021121423A5 (en)
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JPH01288338A (en) Catalyst for catalytic reduction of nitrogen oxides
JPH08168641A (en) Plate-shaped catalyst for denitration of exhaust gas, manufacture thereof and exhaust gas denitration method using the plate-shaped catalyst
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP5078958B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350