JP3076421B2 - DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same - Google Patents

DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same

Info

Publication number
JP3076421B2
JP3076421B2 JP03260839A JP26083991A JP3076421B2 JP 3076421 B2 JP3076421 B2 JP 3076421B2 JP 03260839 A JP03260839 A JP 03260839A JP 26083991 A JP26083991 A JP 26083991A JP 3076421 B2 JP3076421 B2 JP 3076421B2
Authority
JP
Japan
Prior art keywords
catalyst
component
sulfur dioxide
oxidation
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03260839A
Other languages
Japanese (ja)
Other versions
JPH0596165A (en
Inventor
泰良 加藤
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP03260839A priority Critical patent/JP3076421B2/en
Publication of JPH0596165A publication Critical patent/JPH0596165A/en
Application granted granted Critical
Publication of JP3076421B2 publication Critical patent/JP3076421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二酸化硫黄の酸化を抑
制した脱硝触媒およびその製造方法に関し、特に排ガス
に含有される二酸化硫黄(SO2 )の三酸化硫黄(SO
3 )への転加率を最小限に抑えて高脱硝率を得ることの
できる脱硝触媒とその製造方法に関する。
The present invention relates to relates to a denitration catalyst and manufacturing method thereof suppress oxidation of the sulfur dioxide, in particular sulfur trioxide (SO sulfur dioxide (SO 2) contained in the exhaust gas
The present invention relates to a denitration catalyst capable of obtaining a high denitration rate by minimizing the conversion rate to 3 ) and a method for producing the same.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法として、アンモニ
ア(NH3 )を還元剤とし、触媒を使用した選択的接触
還元による排煙脱硝法が火力発電所を中心に幅広く用い
られている。触媒には、バナジウム(V)、モリブデン
(Mo)またはタングステン(W)を活性成分にした酸
化チタン(TiO2 )系触媒が使用されており、特に活
性成分の1つとしてバナジウムを含むものは活性が高い
だけでなく、排ガス中に含まれている不純物による劣化
が小さいこと、より低温から使用できることなどから現
在の脱硝触媒の主流になっている(特開昭50−892
91号公報、特開昭49−122473号公報等)。
2. Description of the Related Art NOx in flue gas emitted from power plants, various factories, automobiles, and the like is a causative substance of photochemical smog and acid rain. As an effective method for removing NOx, ammonia (NH 3 ) is reduced. The flue gas denitration method by selective catalytic reduction using a catalyst as a catalyst is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. In particular, those containing vanadium as one of the active components are active. Not only is high, but it is also the mainstream of the current denitration catalysts because it is less deteriorated by impurities contained in the exhaust gas and can be used at lower temperatures (Japanese Patent Laid-Open No. 50-892).
No. 91, JP-A-49-122473, etc.).

【0003】一方、近年排ガス浄化を高度に行おうとす
る傾向にあり、脱硝装置も触媒の充填量を増加して高い
脱硝率で運転する機会が増大している。このような条件
で、上記V含有触媒を用いてSO2 含有排ガスの脱硝を
行わせると、Vの触媒作用によりSO2 が酸化されSO
3 を生成し後続機器の腐食、未反応NH3 との反応によ
る酸性硫安(NH4 HSO4 )析出等の問題を引き起こ
す。さらに、SO3は湿式脱硫装置で除去され難いため
大半が大気中に放出され、新たな公害の原因になる。S
3 はSO2 に比し呼吸器の傷害を起こし易く、またミ
ストになって大気中に浮遊し地球の温暖化にも作用する
と言われている。
On the other hand, in recent years, there has been a tendency to purify exhaust gas at a high level, and the chance of operating a denitration device at a high denitration rate by increasing the amount of catalyst charged has also increased. In such conditions, when to perform denitration of SO 2 containing exhaust gas by using the V-containing catalyst, SO 2 is oxidized by the catalytic action of V SO
3 is generated to cause problems such as corrosion of the subsequent equipment and precipitation of acidic ammonium sulfate (NH 4 HSO 4 ) due to reaction with unreacted NH 3 . Furthermore, since SO 3 is difficult to be removed by a wet desulfurization unit, most of the SO 3 is released into the atmosphere, causing new pollution. S
O 3 is said to be more susceptible to respiratory injury than SO 2 , and also to become a mist and float in the air to act on global warming.

【0004】このため、最近、特に西欧諸国ではSO2
の酸化の低い、かつNOxに対する高活性脱硝触媒に対
する需要が高まっており、V含有量等の触媒組成を最適
化することでSO2 酸化率を低減する試みがなされてい
る。
[0004] For this reason, recently, especially in Western Europe, SO 2
Low oxidation, and there is an increasing demand for high activity denitration catalyst for NOx, attempt to reduce the SO 2 oxidation rate by optimizing the catalyst composition such as a V content it has been made.

【0005】[0005]

【発明が解決しようとする課題】上記した従来技術で示
した触媒中のバナジウム含有量の最適化等でSO2 酸化
率を下げようとすると脱硝率が低下する現象が生じる。
このため、SO2 酸化を低くしようとすると活性の低い
触媒を多量に使用する必要がある。その増加量は、より
高い脱硝率で運用しようとする最近の装置ではさらに顕
著になる。
If the SO 2 oxidation rate is reduced by optimizing the vanadium content in the catalyst shown in the above-mentioned prior art, a phenomenon occurs in which the denitration rate decreases.
For this reason, it is necessary to use a large amount of a catalyst having low activity in order to reduce SO 2 oxidation. The increase is even more pronounced in modern devices that attempt to operate at higher denitration rates.

【0006】これは、SO2 酸化と脱硝がバナジウムの
形成する同一活性点で進行するためであり、均一組成の
V含有触媒を使用する従来触媒では避け難い問題であ
る。本発明の目的は、上記した従来技術の問題点をなく
し、SO2 酸化率の小さい高脱硝率を実現した新規な触
媒とその製造方法を提供することにある。
This is because SO 2 oxidation and denitration proceed at the same active site where vanadium is formed, which is a problem that cannot be avoided with a conventional catalyst using a V-containing catalyst having a uniform composition. An object of the present invention is to provide a novel catalyst which eliminates the above-mentioned problems of the prior art and realizes a high denitration rate with a small SO 2 oxidation rate, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、二酸化硫黄を含有する排ガス中の
窒素酸化物をアンモニアにより接触還元する脱硝触媒に
おいて、モリブデン(Mo)および/またはタングステ
ン(W)とチタン(Ti)の各酸化物からなる第一構成
粒子と、バナジウム(V)およびチタン(Ti)の各酸
化物からなる第二構成粒子とからなり、その両者が物理
的な混合状態を維持したまま成形されていることを特徴
とする二酸化硫黄の酸化を抑制した脱硝触媒に関する。
Means for Solving the Problems To achieve the above object, a first invention of the present application is directed to a denitration catalyst for catalytically reducing nitrogen oxides in an exhaust gas containing sulfur dioxide with ammonia, comprising molybdenum (Mo) and / or molybdenum (Mo). Alternatively, first constituent particles made of tungsten (W) and titanium (Ti) oxides, and second constituent particles made of vanadium (V) and titanium (Ti) oxides, both of which are physically The present invention relates to a denitration catalyst in which the oxidation of sulfur dioxide is suppressed, characterized in that the catalyst is formed while maintaining a proper mixed state.

【0008】本願第2の発明は、二酸化硫黄含有排ガス
中の窒素酸化物をアンモニアにより接触還元する脱硝触
媒の製造方法において、酸化チタンまたはその前駆体と
モリブデンおよび/またはタングステンの酸化物もしく
は加熱することによりそれらの酸化物を生成する化合物
と水とを混合したのち乾燥、焼成した第一成分と、酸化
チタンまたはその前駆体とバナジウム化合物と水とを混
合したのち乾燥、焼成した第二成分とを、それぞれ粉砕
したのち、両者の粉末を水を加えて混練し、成形、乾
燥、焼成することを特徴とする二酸化硫黄の酸化を抑制
した脱硝触媒の製造方法に関する。
The second invention of the present application relates to a method for producing a denitration catalyst for catalytically reducing nitrogen oxides in a sulfur dioxide-containing exhaust gas with ammonia, wherein titanium oxide or a precursor thereof and an oxide of molybdenum and / or tungsten are heated or heated. The first component, which is dried and then baked after mixing the compound and water that produce those oxides, and the second component, which is dried after mixing titanium oxide or its precursor and the vanadium compound and water, and then baked And a method for producing a denitration catalyst in which oxidation of sulfur dioxide is suppressed, characterized in that water and water are added and kneaded, then molded, dried and calcined.

【0009】本願第3の発明は、二酸化硫黄を含有する
排ガス中の窒素酸化物をアンモニアにより接触還元する
脱硝触媒の製造方法において、あらかじめモリブデンお
よび/またはタングステンの化合物と酸化チタンもしく
はその前駆体とから第一構成成分を調製し、これとは別
にあらかじめバナジウム化合物と酸化チタンもしくはそ
の前駆体とから第二構成成分を調製し、両成分を粒径1
00メッシュないし350メッシュ以下に粉砕したの
ち、第一構成成分に対する第二構成成分の重量比を1/
99〜50/50で混練、成形、乾燥、焼成することを
特徴とする二酸化硫黄の酸化を抑制した脱硝触媒の製造
方法に関する。
The third invention of the present application is directed to a method for producing a denitration catalyst for catalytically reducing nitrogen oxides in an exhaust gas containing sulfur dioxide with ammonia, wherein a compound of molybdenum and / or tungsten and titanium oxide or a precursor thereof are prepared in advance. To prepare a second component from a vanadium compound and titanium oxide or a precursor thereof in advance.
After pulverizing to less than 00 mesh to 350 mesh, the weight ratio of the second component to the first component is reduced to 1 /
The present invention relates to a method for producing a denitration catalyst in which oxidation of sulfur dioxide is suppressed, which is characterized by kneading, molding, drying and firing at 99 to 50/50.

【0010】[0010]

【作用】本発明は、次のような触媒反応の特性を巧みに
利用した結果、達成されたものである。発明者らが脱硝
触媒の反応機構およびSO2 酸化反応機構について詳細
に研究した結果、脱硝反応(1)式の速度は触媒体内の
マクロポア(約500オングストローム以上)内面に存
在する活性成分の濃度に比例することを見出した。
The present invention has been achieved as a result of skillful use of the following catalytic reaction characteristics. As a result of detailed studies on the reaction mechanism of the denitration catalyst and the SO 2 oxidation reaction mechanism, the inventors have found that the rate of the denitration reaction (1) depends on the concentration of the active component present on the inner surface of the macropore (about 500 Å or more) in the catalyst. Found to be proportional.

【0011】[0011]

【化1】 NO+NH3 +1/4O2 → N2 +3/2H2 O (1) また、(2)式のSO2 酸化反応の速度はマクロポア内
面のバナジウム濃度に比例して増加するものの直線的に
は増加しないことが判明した。
Embedded image NO + NH 3 + / O 2 → N 2 + 3 / 2H 2 O (1) The rate of the SO 2 oxidation reaction in the equation (2) increases linearly with the vanadium concentration on the inner surface of the macropore. Turned out not to increase.

【0012】[0012]

【化2】 SO2 +1/2O2 → SO3 (2) さらに、図2はTiO2 −V2 5 触媒のみ用いてSO
2 の酸化速度がSO2 濃度に対しどのように影響するか
についてみたものであるが、SO2 濃度の増加に伴いS
3 の生成量は増加するものの酸化率は逆に大きく減少
している。これはSO2 酸化反応の結果生成したSO3
濃度が高くなるとSO3 の脱離する速度が遅くなり、触
媒上に長く吸着されたまま存在して(2)式の反応を阻
害するからである。上述した触媒内のバナジウム濃度を
増加させた場合にSO2 酸化率がバナジウム量に比例し
て直線的には増加しないのはこのためである。
Embedded image SO 2 + 1 / 2O 2 → SO 3 (2) Furthermore, FIG. 2 shows that SO 2 + SO 2 is used only with a TiO 2 -V 2 O 5 catalyst.
2 shows how the oxidation rate of SO 2 affects the SO 2 concentration.
Although the production amount of O 3 increases, the oxidation rate decreases greatly. This is the SO 3 generated as a result of the SO 2 oxidation reaction.
This is because the higher the concentration, the slower the rate at which SO 3 is desorbed, and the longer the SO 3 remains adsorbed on the catalyst, which inhibits the reaction of the formula (2). This is why the SO 2 oxidation rate does not increase linearly in proportion to the amount of vanadium when the vanadium concentration in the catalyst is increased.

【0013】上記知見は、もし触媒内のバナジウムの存
在する部分だけがSO3 濃度の高い状態にできればSO
2 酸化反応を非常に小さく抑えながら脱硝率を向上させ
た触媒を実現できることを示すものである。図3のAお
よびBはそれぞれバナジウム含有量が同一である本発明
の触媒と従来触媒とのマクロポアの状態を模式的に表わ
したものである。本発明になる触媒ではバナジウムを全
く含まない第一成分からなる部分と高濃度で含む第二成
分からなる部分の2種類の部分で触媒細孔内面が構成さ
れている。逆に従来触媒ではバナジウムを低濃度で含む
均一な組成で触媒細孔が構成される。両者で触媒のマク
ロポア内面に存在するバナジウムの量は全体の含有量が
同じであるのでほぼ等しく、脱硝率は両者で大差がな
い。
The above findings indicate that if only the portion where vanadium is present in the catalyst can be made to have a high SO 3 concentration,
This shows that it is possible to realize a catalyst with an improved denitration rate while keeping the oxidation reaction extremely small. FIGS. 3A and 3B schematically show the state of the macropores of the catalyst of the present invention and the conventional catalyst having the same vanadium content, respectively. In the catalyst according to the present invention, the inner surface of the catalyst pores is composed of two types of portions, a portion consisting of the first component containing no vanadium and a portion consisting of the second component containing a high concentration. Conversely, in the conventional catalyst, the catalyst pores have a uniform composition containing vanadium at a low concentration. In both cases, the amount of vanadium present on the inner surface of the macropores of the catalyst is almost the same because the total content is the same, and the denitration rates are not significantly different between the two.

【0014】一方、SO2 酸化反応はバナジウムの存在
するところだけで起こるため様相が異なる。本発明の触
媒では、酸化反応はバナジウムが高濃度で存在する第二
成分の形成する細孔内だけで進行しかつその酸化率が高
いため、細孔内には高濃度のSO3 が存在する状態に保
たれる。このため上記したSO3 によるSO2 酸化反応
阻害作用により酸化速度は大きく抑制される。これに対
し従来触媒ではバナジウム濃度の低い細孔内全体でSO
2 酸化反応が低率で生じるため、バナジウムの存在する
細孔中のSO3 は低濃度のままであり反応抑制はあまり
生じない。このため同一バナジウム含有量であれば反応
抑制の大きく発現できる本発明の触媒は、反応抑制が少
ししか働かない従来触媒に較べると、触媒全体で見たS
2 酸化反応速度を著しく小さくできる。
On the other hand, the SO 2 oxidation reaction is different only in that vanadium is present only. In the catalyst of the present invention, the oxidation reaction proceeds only in the pores formed by the second component in which vanadium is present at a high concentration and the oxidation rate is high, so that a high concentration of SO 3 exists in the pores. Kept in state. For this reason, the oxidation rate is largely suppressed by the above-mentioned action of inhibiting SO 2 oxidation reaction by SO 3 . On the other hand, in the case of the conventional catalyst, SO 2
Since the 2 oxidation reaction occurs at a low rate, SO 3 in the pores where vanadium is present remains at a low concentration, and the reaction is hardly suppressed. For this reason, the catalyst of the present invention, which can express a large amount of reaction inhibition with the same vanadium content, has an S
O 2 oxidation reaction rate can be significantly reduced.

【0015】以上に示したように、本発明になる触媒は
触媒内にバナジウムが局在化した部分を作ることにより
SO2 酸化の結果として生成したSO3 によるSO2
化反応の抑制が効果的に生じるようにして触媒全体のS
2 酸化反応速度を低減せしめたものである。この方法
によれば、従来と同様の触媒構成元素からなるにもかか
わらず、SO2 酸化活性の小さい高脱硝活性触媒を実現
できる。
As described above, the catalyst according to the present invention effectively suppresses the SO 2 oxidation reaction by SO 3 generated as a result of SO 2 oxidation by forming a portion where vanadium is localized in the catalyst. S of the entire catalyst
The O 2 oxidation reaction rate was reduced. According to this method, it is possible to realize a high denitration activity catalyst having a small SO 2 oxidation activity despite being composed of the same catalyst constituent elements as the conventional one.

【0016】[0016]

【実施例】【Example】

(i)全体の構成 本発明は上記したように、あらかじめ調製されたモリブ
デンまたはタングステン化合物を酸化チタンに担持して
なるものを第一成分、酸化バナジウムを担持せしめた酸
化チタンを第二成分にし、その両者を一定の不均質さを
保持した状態で混合した後、成形したことを特徴とする
ものである。図1にその構成を模式的に示す。
(I) Overall Configuration As described above, the present invention uses, as a first component, a component prepared by supporting a molybdenum or tungsten compound prepared in advance on titanium oxide, and a second component, using titanium oxide having vanadium oxide supported thereon, The two are mixed while maintaining a certain degree of inhomogeneity and then molded. FIG. 1 schematically shows the configuration.

【0017】ここであらかじめ調製された第一成分は、
酸化チタン、オルトチタン酸もしくはメタチタン酸のス
ラリ、または上記粉末に水を加えたものと、モリブデン
もしくはタングステンの酸化物、またはオキソ酸塩等の
熱分解により酸化物を生成する化合物とを混合した後、
加熱混練、蒸発乾固等の通常触媒調製に用いられる方法
によって水を蒸発させながら担持し、得られたペースト
を乾燥、さらに400〜600℃で焼成して得る。また
第二成分はメタバナジン酸アンモン、硫酸バナジルなど
のバナジウム化合物と、メタチタン酸またはオルトチタ
ン酸とを用いて第一成分と同様の方法で調製される。
Here, the first component prepared in advance is:
After mixing a slurry of titanium oxide, orthotitanic acid or metatitanic acid, or a powder obtained by adding water to the above powder, and a compound that generates an oxide by thermal decomposition such as an oxide of molybdenum or tungsten, or an oxo acid salt ,
Water is evaporated and supported by a method usually used for catalyst preparation such as heat kneading and evaporation to dryness, and the obtained paste is dried and further calcined at 400 to 600 ° C. The second component is prepared in the same manner as the first component using a vanadium compound such as ammonium metavanadate or vanadyl sulfate and metatitanic acid or orthotitanic acid.

【0018】第一成分と第二成分は混合に先立ち粉砕さ
れ、両者の比が50/50から95/5になるように混
合され、水とともにニーダ等の混練機でペースト状に混
練される。この際必要に応じてセラミックス製繊維、有
機または無機バインダ等を加えることができる。得られ
た触媒ペーストは、そのまま押出し成形機を用いてハニ
カム、柱状、円筒状等に成形されるか、ローラを用いて
メタルラス等の金属基板やセラミック、ガラス製網状織
布などに塗布して板状に成形される。成形体はその後、
必要形状に切断、型付けされ、乾燥後400℃から60
0℃で焼成される。 (ii)構成部分の相互作用・作用 本発明の触媒は以上のような簡単な工程により調製され
るが、発明の効果を充分得るためには各工程に次のよう
な配慮をするとよい。
The first component and the second component are pulverized prior to mixing, mixed so that the ratio of both becomes 50/50 to 95/5, and kneaded together with water in a kneader such as a kneader into a paste. At this time, ceramic fibers, an organic or inorganic binder, or the like can be added as necessary. The obtained catalyst paste is directly formed into a honeycomb, a columnar shape, a cylindrical shape, or the like by using an extruder, or is applied to a metal substrate such as a metal lath, a ceramic, or a glass woven fabric by using a roller. Molded into a shape. The molded body is then
Cut to required shape, molded, and dried to 400 to 60
Fired at 0 ° C. (Ii) Interaction and Action of Constituents The catalyst of the present invention is prepared by the above simple steps, but in order to sufficiently obtain the effects of the present invention, the following considerations should be given to each step.

【0019】第一成分と第二成分の組成は、本発明の効
果を限定するものではないが、次のような範囲にすると
実用上必要な活性を得易い。 第一成分:W or Mo/Ti=3/97〜10/9
0 第二成分: V/Ti=1/99〜5/95 第一成分中のWまたはMoは酸化チタンの熱的安定性を
増し、成形体強度を向上させると同時に脱硝活性の一部
を担うため多い方が好結果を得易いが、あまり多いと触
媒価格の上昇につながり実用的ではない。また第二成分
中のV量も高い方が第二成分と混合したときSO2 酸化
の抑制作用が強く、また脱硝活性も高く望ましいが、上
記範囲を超えるとその差が顕著でなくなる。また一定V
量にしようとした場合に第二成分との混合比が大きくな
り過ぎ混合状態を一定に維持しにくくなるため望ましく
ない。
Although the composition of the first component and the second component does not limit the effects of the present invention, it is easy to obtain a practically necessary activity in the following range. First component: W or Mo / Ti = 3/97 to 10/9
0 Second component: V / Ti = 1/99 to 5/95 W or Mo in the first component increases the thermal stability of the titanium oxide, improves the strength of the compact, and plays a part in the denitration activity. Therefore, it is easy to obtain good results when the amount is large, but when the amount is too large, it leads to an increase in the price of the catalyst and is not practical. Also, the higher the V content in the second component, the stronger the action of suppressing SO 2 oxidation when mixed with the second component, and the higher the denitration activity, which is desirable. However, if it exceeds the above range, the difference will not be remarkable. Also constant V
If the amount is to be increased, the mixing ratio with the second component becomes too large, and it becomes difficult to maintain a constant mixing state, which is not desirable.

【0020】両成分はあらかじめ焼成されることが望ま
しく、この段階で活性成分が不溶化され、引き続く混合
操作で活性成分が溶解して互いに混ざり合って不均一度
が低下することが防止される。第一成分と第二成分の混
合比は触媒の使用条件下で上記組成との兼ね合わせで決
定されるものでありどのような比率であってもよいが、
混合比があまり大きいと作り難くなり、逆に小さいと効
果が小さくなる。通常の混練による操作では第二成分/
第一成分の重量比が1/99ないし50/50、好まし
くは5/95から50/50程度の範囲が選ばれる。
Preferably, both components are calcined in advance. At this stage, the active components are insolubilized, and the subsequent mixing operation dissolves the active components and prevents them from mixing with each other to reduce the nonuniformity. The mixing ratio of the first component and the second component is determined by a combination of the above composition under the conditions of use of the catalyst, and may be any ratio,
If the mixing ratio is too large, it will be difficult to produce, and if it is small, the effect will be small. In the usual kneading operation, the second component /
The weight ratio of the first component is selected in the range of 1/99 to 50/50, preferably about 5/95 to 50/50.

【0021】さらに第一成分と第二成分は混合に先立ち
粉砕され、その粒径は通常100から350メッシュ以
下に選定される。脱硝性能面からは微粉が好ましいがS
2 酸化抑制からは粗粒が好ましい。SO2 酸化抑制に
効果があるためには第二成分粒子中に500オングスト
ローム以上の細孔が一定以上存在することが好ましく、
第二成分粒子は特に粗粒で用いると好結果が得られる。
Further, the first component and the second component are pulverized prior to mixing, and the particle size is usually selected from 100 to 350 mesh or less. Fine powder is preferable from the viewpoint of denitration performance,
Coarse grains are preferred from the viewpoint of suppressing O 2 oxidation. In order to be effective in suppressing SO 2 oxidation, it is preferable that pores of 500 Å or more exist in the second component particles in a certain amount or more,
Good results are obtained especially when the second component particles are used in coarse particles.

【0022】以下、具体的実施例を用いて本発明を詳細
に説明する。 実施例1 メタチタン酸スラリ(TiO2 含有量:30wt%、S
4 含有量:8wt%)67kgにパラモリブデン酸アン
モン((NH4 6 ・Mo7 24・4H2 O)を4.9
kg加え、加熱ニーダを用いて水を蒸発させながら混練し
て水分約36%のペーストを得た。これを直径3mmの柱
状に押出し造粒後流動層乾燥機で乾燥し、次に大気中5
00℃で2時間焼成した。得られた顆粒をハンマーミル
で平均粒径5μmの粒径に粉砕し第一成分とした。この
ときの組成はMo/Ti=1/9(原子比)である。
Hereinafter, the present invention will be described in detail with reference to specific examples. Example 1 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4 content: 8 wt%) 67 kg para molybdate ammonium and ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) 4.9
kg, and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a column having a diameter of 3 mm, granulated, dried with a fluidized bed drier, and then dried in air.
Baking was performed at 00 ° C. for 2 hours. The obtained granules were pulverized with a hammer mill to a particle diameter of an average particle diameter of 5 μm to obtain a first component. The composition at this time is Mo / Ti = 1/9 (atomic ratio).

【0023】一方、上記パラモリブデン酸アンモンに替
えメタバナジン酸アンモン(NH4 VO3 )を1.54
kg用い、同様の方法で第二成分を調製した。この組成は
V/Ti=5/95(原子比)である。以上の方法で得
られた第一成分粉末16kg、第二成分粉末4kg、Al2
3 ・SiO2 系無機繊維(商品名カオウール)3kg、
水10kgとをニーダを用いて1時間混練し、粘土状にし
た。この触媒ペーストを0.2mm厚さのSUS304製
メタルラス基板(金属多孔板)にAl溶射を施して粗面
化した基板にローラを用いてラス目間および表面に塗布
して厚さ約0.9mmの板状触媒を得た。この触媒を風乾
後大気中で、550℃で2時間焼成した。触媒の最終組
成はV/Mo/Ti=1/8/91である。 比較例1および2 実施例1に用いた第一成分単独、および第二成分単独で
同様の方法により触媒を調製した。 比較例3 メタチタン酸スラリ(TiO2 含有量:30wt%、S
4 含有量:8wt%)67kgにパラモリブデン酸アン
モン((NH4 6 ・Mo7 24・4H2 O)を4.9
kgおよびメタバナジン酸アンモン0.31kgとを加え、
加熱ニーダを用いて水を蒸発させながら混練し水分約3
6%のペーストを得た。これを直径3mmの柱状に押出し
造粒後流動層乾燥機で乾燥し、次に大気中500℃で2
時間焼成した。得られた顆粒をハンマーミルで平均粒径
5μmの粒径に粉砕し触媒粉末を得た。このときの組成
はV/Mo/Ti=1/10/90(原子比)である。
On the other hand, ammonium metavanadate (NH 4 VO 3 ) was replaced with 1.54 ammonium paramolybdate.
kg, and the second component was prepared in the same manner. This composition is V / Ti = 5/95 (atomic ratio). 16 kg of the first component powder, 4 kg of the second component powder, Al 2
3 kg of O 3 · SiO 2 inorganic fiber (Kao wool)
10 kg of water was kneaded with a kneader for 1 hour to make a clay. This catalyst paste is applied to a 0.2 mm-thick SUS304 metal lath substrate (metal perforated plate) that has been subjected to Al thermal spraying and roughened to a gap between the laths and the surface by using a roller to have a thickness of about 0.9 mm. Was obtained. The catalyst was air-dried and calcined at 550 ° C. for 2 hours in the air. The final composition of the catalyst is V / Mo / Ti = 1/8/91. Comparative Examples 1 and 2 A catalyst was prepared by a similar method using only the first component and the second component used in Example 1. Comparative Example 3 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4 content: 8 wt%) 67 kg para molybdate ammonium and ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) 4.9
kg and 0.31 kg of ammonium metavanadate,
Using a heating kneader, knead the water while evaporating the water.
6% paste was obtained. This was extruded into a column having a diameter of 3 mm, dried by a fluidized bed drier after granulation, and then dried at 500 ° C. in the atmosphere.
Fired for hours. The obtained granules were pulverized with a hammer mill to a particle diameter of 5 μm to obtain a catalyst powder. The composition at this time is V / Mo / Ti = 1/10/90 (atomic ratio).

【0024】以上の方法で得られた粉末20kg、Al2
3 ・SiO2 系無機繊維3kg、水10kgとをニーダを
用いて1時間混練し、粘土状にした。この触媒ペースト
を0.2mm厚さのSUS304製メタルラス基板にAl
溶射を施して粗面化した基板にローラを用いてラス目間
および表面に塗布して厚さ約0.9mmの板状触媒を得
た。この触媒を風乾後大気中で550℃で2時間焼成し
た。 比較例4 メタチタン酸スラリ(TiO2 含有量:30wt%、S
4 含有量:8wt%)67kgにパラモリブデン酸アン
モン((NH4 6 ・Mo7 24・4H2 O)を4.9
kgを加え加熱ニーダを用いて水を蒸発させながら混練し
水分約36%のペーストを得た。これを直径3mmの柱状
に押出し造粒後流動層乾燥機で乾燥し、次に大気中50
0℃で2時間焼成した。得られた顆粒をハンマーミルで
平均粒径5μmの粒径に粉砕し触媒粉末を得た。
20 kg of the powder obtained by the above method, Al 2
3 kg of O 3 · SiO 2 -based inorganic fiber and 10 kg of water were kneaded for 1 hour using a kneader to form a clay. This catalyst paste was applied to a 0.2 mm thick SUS304 metal lath substrate by Al.
Using a roller, the thermal sprayed and roughened substrate was applied to the gaps between the laths and the surface to obtain a plate-like catalyst having a thickness of about 0.9 mm. The catalyst was air-dried and calcined at 550 ° C. for 2 hours in air. Comparative Example 4 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4 content: 8 wt%) 67 kg para molybdate ammonium and ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) 4.9
The resulting mixture was kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a column having a diameter of 3 mm, granulated, dried with a fluidized bed drier, and then dried in air.
It was baked at 0 ° C. for 2 hours. The obtained granules were pulverized with a hammer mill to a particle diameter of 5 μm to obtain a catalyst powder.

【0025】以上の方法で得られた粉末20kg、メタバ
ナジン酸アンモン0.25kg、Al 2 3 ・SiO2
無機繊維3kg、水10kgとをニーダを用いて1時間混練
し、粘土状にした。この触媒ペーストを0.2mm厚さの
SUS304製メタルラス基板にAl溶射を施して粗面
化した基板にローラを用いてラス目間および表面に塗布
して厚さ約0.9mmの板状触媒を得た。この触媒を風乾
後大気中で550℃で2時間焼成した。この触媒の組成
はV/Mo/Ti=1/10/90(原子比)である。
20 kg of the powder obtained by the above method
Ammonium nadate 0.25kg, Al TwoOThree・ SiOTwosystem
Kneading 3 kg of inorganic fiber and 10 kg of water for 1 hour using a kneader
And made it clay-like. This catalyst paste is 0.2mm thick
SUS304 metal lath substrate is sprayed with Al and rough surface
Using a roller to apply to the gap between the laths and the surface
As a result, a plate-like catalyst having a thickness of about 0.9 mm was obtained. Air dry this catalyst
Thereafter, it was fired in the air at 550 ° C. for 2 hours. Composition of this catalyst
Is V / Mo / Ti = 1/10/90 (atomic ratio).

【0026】得られた実施例1の触媒、比較例1から4
の触媒について表1に示した条件で脱硝率を、表2に示
した条件でSO2 酸化率をそれぞれ測定した。
The obtained catalyst of Example 1 and Comparative Examples 1 to 4
The denitration rate and the SO 2 oxidation rate of the catalyst of No. 1 were measured under the conditions shown in Table 1, respectively.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 得られた実施例1と比較例1および2の結果を図4に示
した。実施例1の触媒は比較例1と比較例2の触媒を混
合することによって得られたにもかかわらず脱硝率は比
較例2とほとんど同程度の高い値が得られ、SO2 酸化
率は比較例1の触媒と同程度のきわめて低い値であっ
た。これは本発明の触媒が低SO2 酸化と高脱硝活性を
実現する優れたものであることを示している。
[Table 2] The obtained results of Example 1 and Comparative Examples 1 and 2 are shown in FIG. Although the catalyst of Example 1 was obtained by mixing the catalysts of Comparative Example 1 and Comparative Example 2, the denitration rate was almost as high as that of Comparative Example 2, and the SO 2 oxidation rate was relatively low. It was very low, comparable to the catalyst of Example 1. This indicates that the catalyst of the present invention is excellent in realizing low SO 2 oxidation and high denitration activity.

【0029】また図5には実施例1と比較例3、4によ
る触媒の脱硝率とSO2 酸化率とを示した。この図から
もわかるようにバナジウムが触媒成分中に均一に存在す
るような調製法で作った比較例3および4触媒に較べ実
施例触媒は高脱硝率を示すにもかかわらずSO2 酸化率
はきわめて低くなっている。3者はほとんど同組成の触
媒であることを考え合わせると本発明の効果がきわめて
大きいことがわかる。 実施例2 実施例1のメタバナジン酸アンモンの添加量を0.72
kgに替え同様に触媒を調製した。 実施例3〜6 実施例1の触媒における第二成分と第一成分の混合比4
/6を1/99、5/95、20/80、50/50に
変えて触媒を調製した。 比較例5〜8 比較例3におけるメタバナジン酸アンモンの添加量0.
31kgに替え、0.031kg、0.16kg、0.61kg
および0.78kg用いて触媒を調製した。 比較例9〜12 比較例4におけるメタバナジン酸アンモンの添加量0.
25kgに替え、0.025kg、0.13kg、0.50kg
および0.63kg用いて触媒を調製した。
FIG. 5 shows the denitration rate and SO 2 oxidation rate of the catalyst according to Example 1 and Comparative Examples 3 and 4. As can be seen from this figure, the SO 2 oxidation rate of the Example catalyst was higher than that of Comparative Examples 3 and 4 prepared by a preparation method in which vanadium was uniformly present in the catalyst component, although the catalyst had a higher denitration rate. Very low. Considering that the three catalysts have almost the same composition, it can be seen that the effect of the present invention is extremely large. Example 2 The addition amount of ammonium metavanadate of Example 1 was 0.72.
A catalyst was prepared in the same manner as in Example 1, except that the amount was changed to kg. Examples 3 to 6 The mixing ratio of the second component to the first component in the catalyst of Example 1 was 4
/ 6 was changed to 1/99, 5/95, 20/80, 50/50 to prepare a catalyst. Comparative Examples 5 to 8 The amount of ammonium metavanadate added in Comparative Example 3 was 0.
Replace with 31kg, 0.031kg, 0.16kg, 0.61kg
And 0.78 kg were used to prepare the catalyst. Comparative Examples 9 to 12 The amount of ammonium metavanadate added in Comparative Example 4 was 0.1.
0.025kg, 0.13kg, 0.50kg instead of 25kg
The catalyst was prepared using and 0.63 kg.

【0030】実施例1〜6および比較例3〜12の触媒
について380℃における脱硝率とSO2 酸化率を測定
し、得られた結果を図6にまとめて示した。同一脱硝率
で見ると実施例触媒はいずれも高脱硝率かつ低SO2
化率を示している。なお、実施例3になると比較例との
差異が小さくなっておりあまり混合比が小さいと効果が
小さくなることがわかる。
The denitration rate and SO 2 oxidation rate at 380 ° C. of the catalysts of Examples 1 to 6 and Comparative Examples 3 to 12 were measured, and the obtained results are shown in FIG. When viewed at the same denitration rate, the catalysts of the examples all show a high denitration rate and a low SO 2 oxidation rate. In Example 3, the difference from the comparative example is small, and it can be seen that the effect is small when the mixing ratio is too small.

【0031】[0031]

【発明の効果】本発明によりSO2 の酸化率が非常に小
さい高活性な脱硝触媒を実現できる。これにより触媒を
多量に使用して高脱硝率運転を行う装置で問題となるS
3 生成に起因する問題点を軽減できる。また脱硝装置
から放出されるSO3 の量を低減でき環境保全に寄与す
ることができる。
According to the present invention, a highly active denitration catalyst having a very small SO 2 oxidation rate can be realized. This causes a problem in a device that uses a large amount of catalyst to perform a high denitration operation.
Problems caused by O 3 generation can be reduced. Further, the amount of SO 3 released from the denitration device can be reduced, which can contribute to environmental conservation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明になる触媒の特色を示すための
触媒断面の模式図である。
FIG. 1 is a schematic cross-sectional view of a catalyst according to an embodiment of the present invention, showing characteristics of the catalyst.

【図2】、FIG.

【図3】図2および図3は、本発明の作用・効果を示す
ための図である。
FIGS. 2 and 3 are diagrams for illustrating the operation and effect of the present invention.

【図4】、FIG.

【図5】、FIG.

【図6】図4、図5および図6は、本発明の実施例触媒
と比較例触媒の脱硝性能とSO 2 酸化率を比較した図で
ある。
FIG. 4, FIG. 5, and FIG. 6 show catalysts according to examples of the present invention.
Performance and SO of Comparative Example catalyst TwoIn the figure comparing the oxidation rate
is there.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−35026(JP,A) 特開 平1−215345(JP,A) 特開 昭58−210849(JP,A) 特開 平2−6819(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/96 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-35026 (JP, A) JP-A-1-215345 (JP, A) JP-A-58-210849 (JP, A) JP-A-2- 6819 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-37/36 B01D 53/96

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化硫黄を含有する排ガス中の窒素酸
化物をアンモニアにより接触還元する脱硝触媒におい
て、モリブデン(Mo)および/またはタングステン
(W)とチタン(Ti)の酸化物からなる第一構成粒子
と、バナジウム(V)およびチタン(Ti)の酸化物か
らなる第二構成粒子とからなり、その両者が物理的な混
合状態を維持したまま成形されていることを特徴とする
二酸化硫黄の酸化を抑制した脱硝触媒。
1. A denitration catalyst for catalytically reducing nitrogen oxides in an exhaust gas containing sulfur dioxide with ammonia, the first configuration comprising molybdenum (Mo) and / or tungsten (W) and an oxide of titanium (Ti). Oxidation of sulfur dioxide, comprising particles and second constituent particles composed of oxides of vanadium (V) and titanium (Ti), both of which are formed while maintaining a physical mixed state. Denitration catalyst with reduced odor.
【請求項2】 二酸化硫黄含有排ガス中の窒素酸化物を
アンモニアにより接触還元する脱硝触媒の製造方法にお
いて、酸化チタンまたはその前駆体とモリブデンおよび
/またはタングステンの酸化物もしくは加熱することに
よりそれらの酸化物を生成する化合物と水とを混合した
のち乾燥、焼成した第一成分と、酸化チタンまたはその
前駆体とバナジウム化合物と水とを混合したのち乾燥、
焼成した第二成分とを、それぞれ粉砕したのち、両者の
粉末を水を加えて混練し、成形、乾燥、焼成することを
特徴とする二酸化硫黄の酸化を抑制した脱硝触媒の製造
方法。
2. A method for producing a denitration catalyst for catalytically reducing nitrogen oxides in an exhaust gas containing sulfur dioxide with ammonia, the method comprising oxidizing titanium oxide or a precursor thereof and molybdenum and / or tungsten by heating or heating them. Drying after mixing the compound to produce the product and water, drying and calcining the first component, mixing the titanium oxide or its precursor with the vanadium compound and water,
A method for producing a denitration catalyst in which oxidation of sulfur dioxide is suppressed, characterized in that the calcined second component is pulverized, then both powders are kneaded with water, molded, dried and calcined.
【請求項3】 二酸化硫黄を含有する排ガス中の窒素酸
化物をアンモニアにより接触還元する脱硝触媒の製造方
法において、あらかじめモリブデンおよび/またはタン
グステンの化合物と酸化チタンもしくはその前駆体とか
ら第一構成成分を調製し、これとは別にあらかじめバナ
ジウム化合物と酸化チタンもしくはその前駆体とから第
二構成成分を調製し、両成分を粒径100メッシュない
し350メッシュ以下に粉砕したのち、第一構成成分に
対する第二構成成分の重量比を1/99〜50/50で
混練、成形、乾燥、焼成することを特徴とする二酸化硫
黄の酸化を抑制した脱硝触媒の製造方法。
3. A method for producing a denitration catalyst for catalytically reducing nitrogen oxides in an exhaust gas containing sulfur dioxide with ammonia, wherein a first constituent component is prepared from a compound of molybdenum and / or tungsten and titanium oxide or a precursor thereof in advance. And separately prepared a second component from a vanadium compound and titanium oxide or a precursor thereof in advance, pulverizing both components to a particle size of 100 mesh to 350 mesh or less. A method for producing a denitration catalyst in which oxidation of sulfur dioxide is suppressed, characterized by kneading, molding, drying and calcining the two components at a weight ratio of 1/99 to 50/50.
JP03260839A 1991-10-08 1991-10-08 DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same Expired - Fee Related JP3076421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03260839A JP3076421B2 (en) 1991-10-08 1991-10-08 DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03260839A JP3076421B2 (en) 1991-10-08 1991-10-08 DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0596165A JPH0596165A (en) 1993-04-20
JP3076421B2 true JP3076421B2 (en) 2000-08-14

Family

ID=17353477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03260839A Expired - Fee Related JP3076421B2 (en) 1991-10-08 1991-10-08 DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same

Country Status (1)

Country Link
JP (1) JP3076421B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2054139B1 (en) * 2006-08-01 2011-02-16 Cormetech, Inc. Method for treating exhaust gases
CA2676953A1 (en) 2007-01-30 2008-08-07 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst and method of producing the same
JP5681990B2 (en) * 2011-06-13 2015-03-11 三菱日立パワーシステムズ株式会社 Method for producing denitration catalyst
JP6833494B2 (en) * 2016-12-15 2021-02-24 三菱パワー株式会社 Catalysts and methods for removing NOx from flue gas

Also Published As

Publication number Publication date
JPH0596165A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR100370460B1 (en) DeNOx CATALYST FOR REDUCING THE NOx CONCENTRATION IN A STREAM OF FLUID, AND METHOD OF MANUFACTURING THE CATALYST
KR101102714B1 (en) Method for preparing a catalyst for removal of nitrogen oxides using dry ball-milling
EP2324903B1 (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
JPH0242536B2 (en)
KR20180113551A (en) A catalyst for the oxidation reaction of metallic mercury and the reduction reaction of nitrogen oxides, and a method for purifying the exhaust gas
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP4508597B2 (en) Exhaust gas treatment catalyst capable of SO3 reduction treatment, method for producing the same, and exhaust gas treatment method using the exhaust gas treatment catalyst
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JPH01317545A (en) Preparation of denitrification catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JPH05154350A (en) Catalyst for removing nitrogen oxide and production thereof
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JPS58210849A (en) Denitration catalyst for catalytic reduction with ammonia
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees