JP3496964B2 - Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same - Google Patents

Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same

Info

Publication number
JP3496964B2
JP3496964B2 JP31221193A JP31221193A JP3496964B2 JP 3496964 B2 JP3496964 B2 JP 3496964B2 JP 31221193 A JP31221193 A JP 31221193A JP 31221193 A JP31221193 A JP 31221193A JP 3496964 B2 JP3496964 B2 JP 3496964B2
Authority
JP
Japan
Prior art keywords
catalyst
component
paste
titanium oxide
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31221193A
Other languages
Japanese (ja)
Other versions
JPH07163876A (en
Inventor
泰良 加藤
邦彦 小西
利文 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP31221193A priority Critical patent/JP3496964B2/en
Publication of JPH07163876A publication Critical patent/JPH07163876A/en
Application granted granted Critical
Publication of JP3496964B2 publication Critical patent/JP3496964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
のアンモニア還元用触媒およびその製造方法に係り、特
に高い細孔容積を有し、排ガスに含有される窒素酸化物
(NOX ) のアンモニア(NH3)還元反応に優れた活性
を示す触媒とその製造方法に関する。
The present invention relates to relates to a catalyst and a manufacturing method thereof for ammonia reduction of nitrogen oxides in the exhaust gas, in particular has a high pore volume, the nitrogen oxides contained in the exhaust gas (NO X) The present invention relates to a catalyst having excellent activity for ammonia (NH 3 ) reduction reaction and a method for producing the same.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOX は、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法として、アンモニ
ア(NH3)を還元剤とした選択的接触還元による排煙脱
硝法が火力発電所を中心に幅広く用いられている。触媒
には、バナジウム(V)、モリブデン(MO ) 、または
タングステン(W)を活性成分にした酸化チタン(Ti
2)系触媒が使用されており、特に活性成分の一つとし
てバナジウムを含むものは活性が高いだけでなく、排ガ
ス中に含まれている不純物による劣化が小さいこと、よ
り低温から使用できることなどから、現在の脱硝触媒の
主流になっている(特開昭50−128681号公報
等)。触媒は通常ハニカム状、板状に成形されて用いら
れ、各種製造法が発明、考案されてきた。
2. Description of the Related Art NO X in smoke emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain, and ammonia (NH 3 ) is used as an effective removal method. Flue gas denitration method by selective catalytic reduction using a reducing agent is widely used mainly in thermal power plants. The catalyst, vanadium (V), molybdenum (M O), or tungsten (W) and titanium oxide to the active ingredient (T i
O 2 ) -based catalysts are used, especially those containing vanadium as one of the active ingredients are not only highly active, they are also less deteriorated by impurities contained in the exhaust gas, and can be used at lower temperatures. Therefore, it has become the mainstream of the current denitration catalyst (Japanese Patent Laid-Open No. 50-128681). The catalyst is usually used by being formed into a honeycomb shape or a plate shape, and various manufacturing methods have been invented and devised.

【0003】火力発電所のボイラに使用される場合、上
記脱硝触媒の充填量は数百m3にもなり、かつ触媒寿命は
短いもので2年、長いものでは10年以上必要とされ
る。また、排ガスには酸化硫黄(SOx ) 等の酸性ガス
が含まれるものや、石炭燃焼灰等が煤塵として数十mg/
m3含まれることも少なくない。このため、触媒の活性の
みならず構造体としての強度、耐摩耗強度等の強度も極
めて高いものが要求され、両者に優れる触媒の組成、製
造法の開発研究が進められてきた。その例として酸化チ
タン系触媒に無機繊維を添加することにより強度を向上
させると同時に多孔質化させて活性の向上を図るもの
(特開昭52−65191号公報)、シンタリングしに
くい酸化チタンーシリカ、ジルコニア系アモルファス担
体を使用し活性・強度を高めた触媒(特開昭52−12
2293号公報)、高活性触媒成形体にシリカゾル、硫
酸アルミニウムなどのバインダを含浸して強度を高めた
触媒(特願昭56−58723号公報)などがある。
When used in a boiler of a thermal power plant, the filling amount of the above-mentioned denitration catalyst becomes several hundred m 3 , and the catalyst life is as short as 2 years and as long as 10 years or more. In addition, exhaust gas containing acidic gas such as sulfur oxide (SO x ), coal combustion ash, etc., as soot dust, dozens of mg /
Often included in m 3 . Therefore, not only the activity of the catalyst but also the strength of the structure and the strength such as abrasion resistance are required to be extremely high, and the research and development of a catalyst composition and a manufacturing method which are excellent for both of them have been advanced. Examples thereof include titanium oxide-based catalysts to which inorganic fibers are added to improve strength and at the same time make them porous to improve activity (JP-A-52-65191), titanium oxide-silica that is difficult to sinter, A catalyst with enhanced activity and strength using a zirconia-based amorphous carrier (JP-A-52-12)
2293), and a catalyst in which a high activity catalyst molded body is impregnated with a binder such as silica sol or aluminum sulfate to increase the strength (Japanese Patent Application No. 56-58723).

【0004】[0004]

【発明が解決しようとする課題】図3および図4は従来
の脱硝触媒の製造方法を示す説明図である図3に示した
従来技術では、成形用ペーストを得る混練時の触媒粒子
は、加熱混練による圧密化作用により極めて密度の高い
粒子になっている。このため、成形用ペーストは水分の
低いペーストになり、これを成形して得た触媒は非常に
細孔容積が小さく活性も低い。活性の向上を図るために
水分を増加してペーストを調製すると図5(A)に示し
たように触媒粒子間の距離を増加させ柔らかいペースト
になって成形に適さないだけでなく、乾燥工程で水が蒸
発するとそれに伴って粒子が移動し図5(B)のように
緻密な触媒しか得られない。
3 and 4 are explanatory views showing a conventional method for producing a denitration catalyst. In the prior art shown in FIG. 3, the catalyst particles at the time of kneading to obtain a molding paste are heated. Due to the consolidation effect of kneading, the particles have extremely high density. Therefore, the molding paste becomes a paste having a low water content, and the catalyst obtained by molding this has a very small pore volume and a low activity. When the paste is prepared by increasing the water content in order to improve the activity, the distance between the catalyst particles is increased as shown in FIG. When water evaporates, the particles move with it, and only a dense catalyst can be obtained as shown in FIG. 5 (B).

【0005】また、図4の方法では酸化チタンまたは含
水酸化チタンは加熱混練で圧密化されていないのでポー
ラスであり、図3の場合に比べると水分の多い状態で硬
いペーストが得られ、成形体の細孔容積は大きくなり高
活性の触媒が得られやすい。しかし、石炭や油焚きボイ
ラ用の脱硝用ハニカム触媒のように成形体の強度が大き
なものが必要な場合には、水分の低いペーストを成形し
なければならないが、通常の混練では一定以上水分を低
下することができず、低い強度のものしか得られない。
上記したように、酸化チタン系の脱硝触媒は原料が加熱
混練されて圧密化されているかどうかにより、一定の柔
らかさ(粘度)のペーストを得る場合の水分が大きく異
なり、かつその水分はその製造工程固有の値になり、容
易にそれを変えることができない。従ってペースト水分
に依存する活性と強度を両立させる製造条件を選定する
ことが極めて困難であった。
Further, in the method of FIG. 4, titanium oxide or hydrous titanium oxide is not compacted by heating and kneading, so that it is porous, and a hard paste can be obtained in a state with a large amount of water as compared with the case of FIG. Since the pore volume of is large, it is easy to obtain a highly active catalyst. However, when high strength of the molded body is required, such as a honeycomb catalyst for denitration for coal or oil-fired boiler, a paste with low water content must be molded, but in normal kneading, a certain amount of water or more is required. It cannot be lowered and only low strength is obtained.
As described above, the titanium oxide-based denitration catalyst has a large difference in water content when a paste having a certain softness (viscosity) is obtained depending on whether the raw materials are heated and kneaded to be consolidated, and the water content is different from that produced in the production. The value is unique to the process and cannot be changed easily. Therefore, it has been extremely difficult to select manufacturing conditions that achieve both activity and strength that depend on paste moisture.

【0006】すなわち、上記従来技術は、活性の大きな
支配因子である触媒の細孔容積とハニカム、板状への湿
式成形条件とを独立にコントロールするようには配慮さ
れておらず、このため活性と強度を両立させることが極
めて難しいという問題を有していた。図2はチタン(T
i ) 、バナジウム(V)、タングステン系触媒をハニカ
ム成形する場合のペースト水分とペーストの柔らかさの
指針である針入度との関係を示す一例である。一般にペ
ースト水分と針入度の関係は触媒の組成とその組成物を
調製する工程によって一意的に決定され、異なる組成・
工程の触媒は例えばA、B、C、……というように別々
の関係を示す。
That is, the above-mentioned prior art does not consider independently controlling the pore volume of the catalyst, which is a major controlling factor of the activity, and the wet forming conditions for the honeycomb and the plate. There was a problem that it was extremely difficult to achieve both strength and strength. Figure 2 shows titanium (T
i ), vanadium (V), and a tungsten-based catalyst in the case of forming a honeycomb, it is an example showing the relationship between the paste moisture and the penetration, which is a guideline for the softness of the paste. Generally, the relationship between paste water content and penetration is uniquely determined by the composition of the catalyst and the process of preparing the composition, and different compositions
The catalysts in the process show different relationships such as A, B, C, ....

【0007】一方、歪や欠陥の少ない高強度触媒を得る
ための成形に適する水分は針入度で代表されるペースト
の柔らかさがある一定の範囲であることを必要とする。
他方、触媒活性は細孔容積と比例関係にあり、細孔容積
はペーストの水分に比例するため、多水分で成形するほ
ど高活性のものが得られる傾向にある。従って、組成・
製造工程が決定されると触媒成形に最適な水分は自動的
に決定され、強度・活性をコントロールするために自由
に選定するわけにいかない。このことは、排煙脱硝触媒
のように種々の排ガス、条件で使用されるため、それに
応じて触媒の活性と強度を個別にコントロールしなけれ
ばならない場合には、極めて不都合であるだけでなく、
触媒性能を十分生かすことができず経済的にも大きな問
題となっていた。
On the other hand, the water content suitable for molding to obtain a high-strength catalyst with less distortion and defects requires that the softness of the paste represented by the penetration is within a certain range.
On the other hand, the catalytic activity is proportional to the pore volume, and since the pore volume is proportional to the water content of the paste, the more active it is, the higher the activity tends to be. Therefore, the composition
When the manufacturing process is determined, the optimum water content for catalyst molding is automatically determined, and it is not possible to freely select it in order to control the strength and activity. This is not only extremely inconvenient when it is necessary to individually control the activity and strength of the catalyst according to it, because it is used under various exhaust gases and conditions such as a flue gas denitration catalyst.
It was not possible to make full use of the catalyst performance, which was a big problem economically.

【0008】本発明の第一の目的は、上記従来技術の問
題点をなくし、触媒の成形時における水分を自由に選定
できる方法を提供し、活性、強度を個別に変えることが
できるようにすることにある。第二の目的は、この方法
の採用に基づく高強度・高活性脱硝触媒とその製造法を
提供することにある。
A first object of the present invention is to eliminate the above-mentioned problems of the prior art, provide a method of freely selecting the water content at the time of molding the catalyst, and make it possible to individually change the activity and the strength. Especially. The second object is to provide a high-strength, high-activity denitration catalyst based on the adoption of this method and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)酸化チタン(Ti 2)、バナジウム(V)、モリ
ブデン(Mo )、タングステン(W)、鉄(Fe )のう
ちの一種以上の元素の化合物を活性成分として含有する
排ガス中の窒素酸化物のアンモニア還元用触媒におい
て、酸化チタンに前記活性成分を加熱混練して担持した
ものの乾燥または仮焼粉末からなる第一成分と、含水酸
化チタン粉末からなる第二成分との混練物成形体を乾燥
・焼成したことを特徴とする排ガス中の窒素酸化物のア
ンモニア還元用触媒。
In order to achieve the above object, the invention claimed in the present application is as follows. (1) Titanium oxide (T i O 2), vanadium (V), molybdenum (M o), tungsten (W), exhaust gas containing as active ingredient a compound of one or more elements of the iron (F e) In the catalyst for ammonia reduction of nitrogen oxides, a kneaded product of a first component consisting of a dried or calcined powder of titanium oxide with the active component kneaded by heating and a second component consisting of hydrous titanium oxide powder. A catalyst for ammonia reduction of nitrogen oxides in exhaust gas, which is obtained by drying and firing a molded body.

【0010】(2)酸化チタン(Ti 2)、バナジウム
(V)、モリブデン(Mo )、タングステン(W)、鉄
(Fe ) のうちの一種以上の元素の化合物を活性成分と
して含有する排ガス中の窒素酸化物のアンモニア還元用
触媒の製造方法において、酸化チタンと前記活性成分と
を水の存在下で加熱しながら混練すると同時に水分を蒸
発させペーストを得る(加熱混練)工程と、得られたペ
ーストを乾燥および/または焼成する工程と、乾燥また
は焼成体を粉砕して第一成分を得る工程と、含水酸化チ
タン粉末を第二成分とし、両成分を第一成分/第二成分
の重量比で1/99〜30/70の割合で用い、これに
水を加えて混練しペーストを得る工程と、得られたペー
ストを成形後、乾燥焼成する工程とを有することを特徴
とする排ガス中の窒素酸化物のアンモニア還元用触媒の
製造方法。
(2) Containing, as an active ingredient, a compound of one or more elements of titanium oxide (T i O 2 ), vanadium (V), molybdenum (M o ), tungsten (W) and iron (F e ). In the method for producing a catalyst for ammonia reduction of nitrogen oxides in exhaust gas, the step of kneading titanium oxide and the active component while heating in the presence of water and simultaneously evaporating water to obtain a paste (heating kneading), A step of drying and / or firing the obtained paste, a step of pulverizing a dried or fired body to obtain a first component, a hydrous titanium oxide powder as a second component, and both components as a first component / a second component It is used at a weight ratio of 1/99 to 30/70, and has a step of adding water to this and kneading to obtain a paste, and a step of molding and drying and firing the obtained paste. In the exhaust gas Process for preparing a catalyst for ammonia reduction of iodine oxide.

【0011】(3)酸化チタン(Ti 2)、バナジウム
(V)、モリブデン(Mo )、タングステン(W)、鉄
(Fe )のうちの一種以上の元素の化合物を活性成分と
して含有する排ガス中の窒素酸化物のアンモニア還元用
触媒の製造方法において、酸化チタンと前記活性成分と
を水の存在下で加熱しながら混練してペーストを得る工
程と、ペーストを乾燥および/または焼成する工程と、
乾燥または焼成体を粉砕して第一成分とする工程と、含
水酸化チタン粉末を第二成分とし、両成分を第一成分/
第二成分の重量比で1/99〜30/70の割合で用
い、これに水および前記活性成分の塩類を加えて混練し
ペーストを得る工程と、得られたペーストを成形後、乾
燥焼成する工程とを有することを特徴とする排ガス中の
窒素酸化物のアンモニア還元用触媒の製造方法。
(3) Containing, as an active ingredient, a compound of at least one element selected from titanium oxide (T i O 2 ), vanadium (V), molybdenum (M o ), tungsten (W) and iron (F e ). In the method for producing a catalyst for ammonia reduction of nitrogen oxides in exhaust gas, the step of kneading titanium oxide and the active ingredient while heating in the presence of water to obtain a paste, and drying and / or firing the paste Process,
A step of pulverizing the dried or fired body to a first component, and a hydrous titanium oxide powder as a second component, and both components as a first component /
The second component is used in a weight ratio of 1/99 to 30/70, and water and salts of the above-mentioned active ingredient are added and kneaded to obtain a paste, and the obtained paste is molded and then dried and baked. A method for producing a catalyst for ammonia reduction of nitrogen oxides in exhaust gas, the method comprising:

【0012】[0012]

【作用】本発明の方法では、図1のように第一成分とし
て加熱混練した原料を、第二成分として加熱混練工程を
経ない含水酸化チタンをもちいて、両者を所定比率で混
練するため、触媒粒子は、図6(A)に示したように粘
度の高い含水酸化チタンスラリ内に分散された状態をと
る。このような状態では含水酸化チタン粒子が粒子の移
動を阻害するため、高い水分でも硬いペーストを得るこ
とができるうえ、乾燥時に触媒粒子が移動して緻密化す
ることがなく、図6(B)のような高い細孔容積の触媒
を得ることができる。
In the method of the present invention, as shown in FIG. 1, the raw material which is heat-kneaded as the first component and the hydrous titanium oxide which has not undergone the heat-kneading step as the second component are used to knead both at a predetermined ratio. As shown in FIG. 6A, the catalyst particles are in a state of being dispersed in a hydrous titanium oxide hydroxide slurry having a high viscosity. In such a state, the hydrous titanium oxide particles hinder the movement of the particles, so that a hard paste can be obtained even with high water content, and the catalyst particles do not move and become densified during drying. It is possible to obtain a catalyst having a high pore volume such as

【0013】また、触媒粒子は微細な含水酸化チタン粒
子で連結されており、この結合は焼成によりさらに強く
なるため、細孔容積が大きいにも関わらず強度の高いも
のが得られる。これに加えて、焼成時に活性成分である
V、Mo 、W等の酸化物が粒子表面を移動して含水酸化
チタン表面を活性化し、含水酸化チタンで触媒成分が希
釈されているにも関わらず高い活性を示す。このこと
と、上記した細孔容積の増大とが相まって、高強度にも
関わらず高い活性を有する触媒を得ることができる。
Further, the catalyst particles are connected by fine hydrous titanium oxide particles, and this bond is further strengthened by firing, so that high strength can be obtained despite the large pore volume. In addition to this, even though the oxides such as V, Mo and W, which are active components, move on the particle surface during calcination to activate the surface of hydrous titanium oxide, the catalyst component is diluted with hydrous titanium oxide. It shows high activity. This, combined with the increase in pore volume described above, makes it possible to obtain a catalyst having high activity in spite of high strength.

【0014】本発明の目的は、あらかじめ酸化チタンに
バナジウム(V)、モリブデン(M O )、タングステン
(W)、鉄(Fe )等の活性成分を担持したものの乾燥
または仮焼粉末を第一成分とし、第二成分としてメタチ
タン酸、オルトチタン酸等の含水酸化チタン粉末を用
い、両成分を重量比で99/1〜30/70の範囲で混
合し、これに水、必要に応じて有機結合剤、無機繊維を
添加して混練して成形用ペーストを調製することにより
達成できる。
The object of the present invention is to prepare titanium oxide in advance.
Vanadium (V), molybdenum (M O),tungsten
(W), iron (Fe), Etc. that carry active ingredients
Alternatively, the calcined powder is used as the first component and the meta
Uses hydrous titanium oxide powders such as tartanic acid and orthotitanic acid
Mix both components in a weight ratio of 99/1 to 30/70.
Water, and if necessary, organic binder, inorganic fiber
By adding and kneading to prepare a molding paste
Can be achieved.

【0015】すなわち、図3、図4に示した従来の触媒
調製法に代えて、本発明では、図1に示す触媒調製法に
より第一成分と第二成分とを混練して得たペーストを用
いて、板状、ハニカム状に成形することを特徴とする。
図1において、第一成分は、含水酸化チタン粉末または
含水酸化チタンのスラリにV、Mo 、W、Fe 等の塩類
を添加して水分50%以上のスラリ状にし、加熱手段を
有する混練機(ニーダ)で水を蒸発させながら混練し水
分30〜45%にした後、乾燥、必要に応じて200℃
から600℃で仮焼される。しかる後、第一成分組成物
はハンマーミル等で平均粒径0.5μm〜2μmに粉砕
される。
That is, instead of the conventional catalyst preparation method shown in FIGS. 3 and 4, in the present invention, a paste obtained by kneading the first component and the second component by the catalyst preparation method shown in FIG. 1 is used. It is characterized in that it is used to form a plate shape or a honeycomb shape.
In Figure 1, the first component, V to the slurry of hydrous titanium oxide powder or titanium oxide hydrate, M o, W, by the addition of salts such as F e to 50% or more of the slurry-like water, kneaded with a heating means Kneading with a machine (kneader) while evaporating water to make the water content 30-45%, then dry, if necessary 200 ° C
It is calcined at 600 ° C. Thereafter, the first component composition is pulverized with a hammer mill or the like to have an average particle size of 0.5 μm to 2 μm.

【0016】一方、第二成分として用いられる含水酸化
チタン粉末は、その製造工程で加熱混練により圧密化さ
れていないものであることが必要である。換言すれば圧
密化工程を受けていなければどのようなものであっても
よいが、表面積100m2/g以上、硫酸根(SO4)含有
量が2%以下のものが好結果を与える。第一成分と第二
成分は上記した重量比で混合された後、水、必要に応じ
てメチルセルロース等のセルロース系有機結合剤やシリ
カゾル等の無機結合剤、およびシリカ繊維、カオリン系
繊維、各種ガラス繊維等の無機繊維を添加しながらニー
ダで混練されて成形用ペーストとして供される。もちろ
ん、第一成分と第二成分の混合に際し、V、Mo 、W等
の活性成分を追加して添加することも本発明の範囲であ
り、活性成分含有量の増加にみあった活性向上を図るこ
とができる。
On the other hand, it is necessary that the hydrous titanium oxide powder used as the second component is not densified by heating and kneading in the manufacturing process. In other words, any material may be used as long as it has not been subjected to the consolidation step, but a surface area of 100 m 2 / g or more and a sulfate group (SO 4 ) content of 2% or less gives good results. After the first component and the second component are mixed in the above weight ratio, water, optionally a cellulosic organic binder such as methyl cellulose or an inorganic binder such as silica sol, and silica fiber, kaolin fiber, various glasses The mixture is kneaded with a kneader while adding inorganic fibers such as fibers and provided as a molding paste. Of course, it is also within the scope of the present invention to add an active ingredient such as V, Mo or W when mixing the first component and the second component, and it is possible to improve the activity corresponding to the increase of the active ingredient content. Can be achieved.

【0017】成形は公知のハニカム成形やメタルラス等
の金属基板や無機繊維製網状物にローラを用いて塗布す
る方法等が用いられ、得られた成形物は乾燥後、300
〜600℃で数時間焼成される。なお、酸化チタンは一
般的には触媒担体として使用されるが、窒素酸化物除去
用触媒として使用する場合、触媒活性機能をも有するの
で、本発明では活性成分の一つとして取扱っている。
For the molding, a known method such as honeycomb molding or a method of applying a metal substrate such as a metal lath or a mesh made of an inorganic fiber by using a roller is used, and the obtained molded product is dried to 300
Bake for several hours at ~ 600 ° C. Titanium oxide is generally used as a catalyst carrier, but when it is used as a catalyst for removing nitrogen oxides, it also has a catalytic activity function, so it is treated as one of the active components in the present invention.

【0018】[0018]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。 実施例1〜5 メタチタン酸スラリ(Ti 2 含有量:30 wt %、S
4 含有量:8 wt %)67kgにパラタングステン酸ア
ンモニウム((NH4)1010・W1246・6H 2 O)を
3.59kgおよびメタバナジン酸アンモン1.29kgと
を加え加熱ニーダを用いて水を蒸発させながら混練(加
熱混練)し水分約36%のペーストを得た。これを3¢
の柱状に押し出し造粒後流動層乾燥機で乾燥し、次に大
気中550℃で2時間焼成した。得られた顆粒をハンマ
ーミルで1μm以下の粒径が60%以上になるように粉
砕し第一成分である脱硝触媒粉末を得た。このときの組
成はV/W/Ti =4/5/91(原子比)である。
The present invention will be described in detail below with reference to examples.
It Examples 1-5 Slurry of metatitanate (TiO2Content: 30 wt%, S
OFourContent: 8 wt%) 67 kg of paratungstic acid
MONMONIUM ((NHFour)TenHTen・ W12O46・ 6H 2O)
With 3.59 kg and ammonium metavanadate 1.29 kg
Kneading (adding) while evaporating water using a heating kneader.
It was heat-kneaded to obtain a paste having a water content of about 36%. This is 3 ¢
After extruding into a columnar shape and granulating, dry in a fluidized bed dryer, then
It was baked in air at 550 ° C. for 2 hours. Hammer the resulting granules
-Mill so that the particle size of 1 μm or less becomes 60% or more.
It was crushed to obtain a denitration catalyst powder as the first component. Group at this time
Success is V / W / Ti= 4/5/91 (atomic ratio).

【0019】これとは別に、比表面積330m2/g、S
4 含有量:1.6 wt %の含水酸化チタン粉末(ロー
ヌ・プーラン社製G5)を用意し第二成分とした。第一
成分と第二成分粉末を各々99g/1g、90g/10
g、70g/30g、50g/50g、30g/70g
の比率で混合し、これに水を加えて乳鉢で混練して針入
度約80の柔らかさをもつペーストを調製した。このペ
ーストをピストン押し出し機で9.3¢の円柱状に成形
後、大気中で風乾、さらに550℃で2時間焼成した。
Apart from this, a specific surface area of 330 m 2 / g, S
O 4 content: 1.6 wt% hydrous titanium oxide powder (G5 manufactured by Rhone-Poulin) was prepared as the second component. First component and second component powders are 99 g / 1 g and 90 g / 10, respectively
g, 70g / 30g, 50g / 50g, 30g / 70g
The mixture was mixed at a ratio of 1, and water was added thereto, and the mixture was kneaded in a mortar to prepare a paste having a softness of about 80. The paste was molded into a columnar shape of 9.3 ¢ by a piston extruder, air-dried in the air, and further baked at 550 ° C for 2 hours.

【0020】比較例1 実施例1の第一成分のみを用い、上記実施例と同様にペ
ーストを調製し、触媒成形体を得た。 比較例2 比較例1の第一成分調製時の焼成温度を550℃から2
50℃に変更し、第一成分粉末を得た。これを用いて、
比較例1と同様に第一成分のみの触媒成形体を得た。 比較例3 含水酸化チタン粉末(Ti 2 含有量:86 wt %、S
4 含有量:1.6 wt %)23.3kgにパラタングス
テン酸アンモニウム((NH4)1010・W12 46・6H
2 O)を3.59kgおよびメタバナジン酸アンモン1.
29kgに水を加えて針入度80のペーストを調製し、実
施例1と同様に成形・乾燥・焼成し触媒成形体を得た。
Comparative Example 1 Using only the first component of Example 1, the same procedure as in the above Example was performed.
To prepare a catalyst molded body. Comparative example 2 The firing temperature during preparation of the first component of Comparative Example 1 was changed from 550 ° C. to 2
The temperature was changed to 50 ° C to obtain the first component powder. With this,
A catalyst molded body containing only the first component was obtained in the same manner as in Comparative Example 1. Comparative Example 3 Hydrous titanium oxide powder (TiO2Content: 86 wt%, S
OFourContent: 1.6 wt%) Paratungs to 23.3 kg
Ammonium tenate ((NHFour)TenHTen・ W12O 46・ 6H
2O) 3.59 kg and ammon metavanadate 1.
Add water to 29 kg to prepare a paste with a penetration of 80.
Molding, drying and firing were carried out in the same manner as in Example 1 to obtain a catalyst molded body.

【0021】実施例6 実施例1の第一成分の調製法におけるパラタングステン
酸アンモニウムにかえ、モリブデン酸アンモニウム
((NH4)6Mo 7 24・4H2 O)を2.43kgをも
ちいて第一成分を調製した。これと第二成分として実施
例1に用いた含水酸化チタンとを70g/30gの比率
で混合し、他は実施例1と同様にして触媒成形体を得
た。 比較例4 実施例6に用いた第一成分のみを混練し、実施例6と同
様の触媒成形体をえた。 実施例7 実施例3の第一成分と第二成分の混練時に硫酸バナジル
(VOSO4)を3.2kg添加し、他は同様に触媒を成形
した。
[0021] Instead of the ammonium paratungstate in the preparation method of the first component of Example 6 Example 1, first using a 2.43kg of ammonium molybdate ((NH 4) 6M o 7 O 24 · 4H 2 O) One component was prepared. This and the hydrous titanium oxide used in Example 1 as the second component were mixed at a ratio of 70 g / 30 g, and otherwise the same as in Example 1 to obtain a catalyst molded body. Comparative Example 4 Only the first component used in Example 6 was kneaded to obtain a catalyst molded body similar to that in Example 6. Example 7 3.2 kg of vanadyl sulfate (VOSO 4 ) was added at the time of kneading the first component and the second component of Example 3, and a catalyst was similarly molded.

【0022】実施例1〜7および比較例1〜4の触媒成
形体について細孔容積、木屋式錠剤硬度計による直径方
向の圧壊強度を測定した。また、成形体を粉砕後10〜
20メッシュに整粒したものを用い表1の条件で脱硝活
性を測定した。
With respect to the catalyst molded bodies of Examples 1 to 7 and Comparative Examples 1 to 4, the pore volume and the crushing strength in the diameter direction were measured by a Kiya type tablet hardness meter. Also, after crushing the molded body, 10 to
The denitration activity was measured under the conditions shown in Table 1 using a 20-mesh-sized product.

【0023】[0023]

【表1】 得られた結果を表2に第一成分と第二成分の重量割合、
成形時のペースト水分と共に比較して示した。
[Table 1] The obtained results are shown in Table 2, the weight ratio of the first component and the second component,
It is shown in comparison with the paste water content at the time of molding.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例のいずれの触媒も、加熱混練による
圧密化を経て調製された第一成分からのみなる比較例
1、2および4のものに比べ同一の柔らかになるペース
ト水分(成形時ペースト水分)が大幅に増大し、これに
伴って細孔容積も顕著に増大している。それにもかかわ
らず成形体の強度はほとんど低下することがなかった。
さらに触媒活性は触媒活性成分を含有する第一成分が活
性成分を含まない第二成分により希釈されているにもか
かわらず、高い活性を示していることがわかる。
In each of the catalysts of Examples, the paste water content was the same as that of Comparative Examples 1, 2 and 4 which consisted only of the first component prepared through consolidation by heating and kneading (paste water content during molding). ) Is significantly increased, and accordingly, the pore volume is also significantly increased. Nevertheless, the strength of the molded body was hardly reduced.
Further, it can be seen that the catalytic activity shows high activity even though the first component containing the catalytically active component is diluted with the second component containing no active component.

【0026】一方、加熱混練工程を経ないでペーストを
調製して成形した比較例3は、本発明と同等の成形時の
水分、ひいては細孔容積および活性を得ることができる
が、成形体の強度は極めて低く、実用触媒として使用す
ることが困難であることがわかる。特にハニカム状や円
筒状に成形して用いる場合のように構造体として一定以
上の強度が不可欠の場合には強度の低いことは致命的な
欠陥になり実用に供することができない。これに対し本
発明の触媒は比較例3とほぼ同等のペースト水分で成形
できるにもかかわらず、強度は圧密化工程を採用した比
較例1、2および4と同等のものが得られている。
On the other hand, in Comparative Example 3 in which a paste was prepared and molded without going through the heat-kneading step, the same moisture, and hence pore volume and activity at the time of molding as the present invention can be obtained. The strength is extremely low, which means that it is difficult to use as a practical catalyst. In particular, in the case where a structure having a certain strength is indispensable, such as in the case of being formed into a honeycomb shape or a cylindrical shape, the low strength is a fatal defect and cannot be put to practical use. On the other hand, although the catalyst of the present invention can be molded with the paste water content almost equal to that of Comparative Example 3, the strength is the same as that of Comparative Examples 1, 2 and 4 employing the consolidation process.

【0027】このように本発明の方法は、高い水分で硬
いペーストを得ることができ、強度低下をもたらすこと
なく細孔容積の増大、ひいては少ない活性成分量で高い
活性の触媒を得ることができる優れた方法である。ま
た、表2の実施例によれば第一成分と第二成分の混合比
は99/1〜30/70の範囲が適当であり、小さい場
合に細孔容積の増加が小さく、逆に大きすぎると強度、
活性の低下をもたらすことがわかる。特に混合比90/
10〜50/50の範囲で強度、活性共に優れ触媒を得
ることができる。
As described above, according to the method of the present invention, a hard paste can be obtained with high water content, the pore volume can be increased without lowering the strength, and a highly active catalyst can be obtained with a small amount of active ingredient. An excellent method. Further, according to the examples in Table 2, the mixing ratio of the first component and the second component is appropriately in the range of 99/1 to 30/70, and when the mixing ratio is small, the increase in the pore volume is small, and conversely it is too large. And strength,
It can be seen that this leads to a decrease in activity. Mixing ratio 90 /
Within the range of 10 to 50/50, a catalyst having excellent strength and activity can be obtained.

【0028】さらに実施例7と3の比較により、第二成
分の添加時に活性成分であるバナジウム塩を添加し、触
媒成分の第二成分によって希釈されることを補ってやる
ことにより、細孔の増加を十分に生かした極めて高活性
な触媒にすることが可能であることは言うまでもない。 実施例8 繊維径9μmのEガラス性繊維1400本の捻糸を10
本/インチの粗さで平織りした網状物にチタニア40
%、シリカゾル20%、ポリビニールアルコール1%の
スラリーを含浸し、150℃で乾燥して剛性を持たせ触
媒基材を得た。
Further, by comparing Examples 7 and 3, by adding a vanadium salt which is an active component at the time of adding the second component and compensating for dilution by the second component of the catalyst component, It goes without saying that it is possible to make an extremely highly active catalyst that takes full advantage of the increase. Example 8 Ten 1400 twisted yarns of E glassy fiber having a fiber diameter of 9 μm were used.
Titania 40 on a plain weave mesh with a book / inch roughness
%, Silica sol 20% and polyvinyl alcohol 1% slurry were impregnated and dried at 150 ° C. to give rigidity to obtain a catalyst substrate.

【0029】これとは別に、実施例6で使用したTi
o /V系第一成分14kgと第二成分である含水酸化チ
タンを6kgとにシリカ・アルミナ系無機繊維5.3kg、
水40kgを加えてニーダで混練し、触媒ペーストを得
た。上記基材2枚の間に調製したペースト状触媒混合物
を置き加圧ローラを通過させることにより基材の網目間
および表面に触媒を圧着して厚さ約1mmの板状触媒を得
た。得られた触媒は、180℃で2時間乾燥した後、大
気中550℃で2時間焼成した。
Apart from this, the T i / used in Example 6
M o / V system first component 14kg and silica-alumina a hydrous titanium oxide which is the second component and 6kg inorganic fibers 5.3 kg,
40 kg of water was added and kneaded with a kneader to obtain a catalyst paste. The paste catalyst mixture prepared between the two base materials was placed and passed through a pressure roller to press-bond the catalyst between the meshes and the surface of the base material to obtain a plate-like catalyst having a thickness of about 1 mm. The obtained catalyst was dried at 180 ° C. for 2 hours and then calcined in the air at 550 ° C. for 2 hours.

【0030】得られた触媒の細孔容積は0.37ml/g
であり、第一成分のみを用いて成形したものの0.27
ml/gに比べ著しく増大した。また触媒強度は第一成分
のみの場合と同等であり、脱硝活性は約1.2倍に増加
した。さらに、上記加圧ローラを用いて触媒を塗布する
場合、第一成分のみのときにはペーストがローラに付着
する現象が見られたが、本実施例のペーストでは水分が
多いにもかかわらず硬いためペーストのローラへの付着
はほとんどなく、作業性の大幅な向上が図れることが判
明した。 実施例9 実施例1に用いた第一成分70重量部、第二成分30重
量部、水酸化カルシウム1重量部、径6μm−長さ6mm
のEガラス繊維を15重量部、メチルセルロース重量部
に水を加えて混練し、水分28%のペーストを調製し
た。これをスクリュー押出機を用いてセルピッチ4mm、
セル壁厚0.3mmの正方形のハニカム状に成形し、風乾
後550℃で2時間焼成した。
The resulting catalyst has a pore volume of 0.37 ml / g
And 0.27 of those molded using only the first component
Significantly increased compared to ml / g. The catalyst strength was the same as that of the first component alone, and the denitration activity was increased by about 1.2 times. Further, when the catalyst was applied using the pressure roller, a phenomenon was observed in which the paste adhered to the roller when only the first component was used. It was found that there was almost no adhesion to the roller, and the workability could be greatly improved. Example 9 70 parts by weight of the first component used in Example 1, 30 parts by weight of the second component, 1 part by weight of calcium hydroxide, diameter 6 μm-6 mm length.
Water was added to 15 parts by weight of E glass fiber of (1) and methyl cellulose by weight and kneaded to prepare a paste having a water content of 28%. Using a screw extruder, this is a cell pitch of 4 mm,
It was formed into a square honeycomb shape having a cell wall thickness of 0.3 mm, air-dried and then fired at 550 ° C. for 2 hours.

【0031】これと第一成分のみを用いて同様のハニカ
ムを成形した場合と比較すると、成形時の水分は第一成
分のみの場合24%であったのに対し、本実施例では2
8%で良好な成形体を得られることが明らかになった。
このことにより細孔容積は、0.24ml/gから0.2
8ml/gに増加し、それにともなって活性も約1.1倍
に増加するという好結果が得られることが明らかになっ
た。
Compared with the case where the same honeycomb was formed by using only this and the first component, the water content at the time of forming was 24% in the case of only the first component, while in the present embodiment, it was 2%.
It was revealed that a good molded product could be obtained at 8%.
This results in a pore volume of 0.24 ml / g to 0.2
It was revealed that the good results were obtained in which the activity was increased to 8 ml / g and the activity was increased to about 1.1 times.

【0032】[0032]

【発明の効果】本発明によれば、従来の方法に比べ高い
水分量で硬いペーストを得ることができ、高い水分量で
ハニカム状、または板状などの成形を行なうことが可能
になる。これにより成形体の細孔容積を大幅に増大する
ことが可能になり、高活性の触媒を実現できる。
EFFECTS OF THE INVENTION According to the present invention, a hard paste can be obtained with a higher water content than in the conventional method, and it is possible to form a honeycomb shape or a plate shape with a high water content. This makes it possible to significantly increase the pore volume of the molded body and realize a highly active catalyst.

【0033】さらに、第二成分が乾燥時の粒子の移動を
阻害し乾燥時の亀裂発生を低減するうえ、触媒粒子同士
を結合するため、高細孔容積であるにもかかわらず高強
度の触媒を得ることが可能になる。また、本発明は高価
な触媒成分(第一成分)を安価な含水酸化チタン(第二
成分)で希釈して使用することに相当し、これにより触
媒の製造コストを低減できる。
Further, the second component inhibits the movement of particles during drying and reduces the occurrence of cracks during drying, and since the catalyst particles are bonded to each other, a catalyst having a high pore volume and a high strength can be obtained. It will be possible to obtain. Further, the present invention corresponds to the use of an expensive catalyst component (first component) diluted with an inexpensive hydrous titanium oxide (second component), which can reduce the production cost of the catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒の調製方法を示す製造工程図。FIG. 1 is a manufacturing process diagram showing a method for preparing a catalyst of the present invention.

【図2】従来技術の問題点を示すペースト水分とペース
トの針入度の関係図。
FIG. 2 is a diagram showing the relationship between the paste water content and the penetration of the paste, showing the problems of the prior art.

【図3】、[Fig. 3]

【図4】従来の技術になる触媒の製造工程図。FIG. 4 is a manufacturing process diagram of a conventional catalyst.

【図5】従来の方法になる触媒ペーストの状態を示す模
式図。
FIG. 5 is a schematic diagram showing a state of a catalyst paste according to a conventional method.

【図6】本発明の触媒ペーストの特徴を示す模式図。FIG. 6 is a schematic diagram showing the characteristics of the catalyst paste of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/36 102H (56)参考文献 特開 昭53−26290(JP,A) 特開 平5−96165(JP,A) 特開 平2−198633(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/00 - 53/96 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B01D 53/36 102H (56) References JP-A-53-26290 (JP, A) JP-A-5-96165 (JP, A) JP-A-2-198633 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/00-53/96

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化チタン(Ti 2)、バナジウム
(V)、モリブデン(M o ) 、タングステン(W)、鉄
(Fe ) のうちの一種以上の元素の化合物を活性成分と
して含有する排ガス中の窒素酸化物のアンモニア還元用
触媒において、酸化チタンに前記活性成分を加熱混練し
て担持したものの乾燥または仮焼粉末からなる第一成分
と、含水酸化チタン粉末からなる第二成分との混練物成
形体を乾燥・焼成したことを特徴とする排ガス中の窒素
酸化物のアンモニア還元用触媒。
1. Titanium oxide (TiO2),vanadium
(V), molybdenum (M o), Tungsten (W), iron
(Fe) A compound of one or more of the
For ammonia reduction of nitrogen oxides contained in exhaust gas
In the catalyst, titanium oxide is heated and kneaded with the active ingredient.
First component consisting of dry or calcined powder that is supported by
And kneaded with the second component consisting of hydrous titanium oxide powder
Nitrogen in exhaust gas characterized by dried and fired form
Catalyst for ammonia reduction of oxides.
【請求項2】酸化チタン(TiO2 )、バナジウム
(V)、モリブデン(Mo)、タングステン(W)、鉄
(Fe)のうちの一種以上の元素の化合物を活性成分と
して含有する排ガス中の窒素酸化物のアンモニア還元用
触媒の製造方法において、酸化チタンと前記活性成分と
を水の存在下で加熱しながら混練すると同時に水分を蒸
発させペーストを得る工程と、得られたペーストを乾燥
および/または焼成する工程と、乾燥または焼成体を粉
砕して第一成分を得る工程と、含水酸化チタン粉末を第
二成分とし、両成分を第一成分/第二成分の重量比で1
/99〜30/70の割合で用い、これに水を加えて混
練しペーストを得る工程と、得られたペーストを成形
後、乾燥焼成する工程とを有することを特徴とする排ガ
ス中の窒素酸化物のアンモニア還元用触媒の製造方法。
2. Nitrogen in exhaust gas containing a compound of at least one element selected from titanium oxide (TiO 2 ), vanadium (V), molybdenum (Mo), tungsten (W) and iron (Fe) as an active ingredient. In the method of producing a catalyst for ammonia reduction of oxides, a step of kneading titanium oxide and the active ingredient while heating in the presence of water and at the same time evaporating water to obtain a paste, and drying and / or drying the obtained paste. A step of firing, a step of obtaining a first component by drying or crushing the fired body, a hydrous titanium oxide powder as a second component, and both components in a first component / second component weight ratio of 1
Nitrogen oxidation in exhaust gas, characterized by using a ratio of / 99 to 30/70, adding water to this and kneading to obtain a paste, and molding and drying and baking the obtained paste. Method for producing a catalyst for ammonia reduction of a product.
【請求項3】 酸化チタン(Ti 2)、バナジウム
(V)、モリブデン(M o )、タングステン(W)、鉄
(Fe )のうちの一種以上の元素の化合物を活性成分と
して含有する排ガス中の窒素酸化物のアンモニア還元用
触媒の製造方法において、酸化チタンと前記活性成分と
を水の存在下で加熱しながら混練してペーストを得る工
程と、ペーストを乾燥および/または焼成する工程と、
乾燥または焼成体を粉砕して第一成分とする工程と、含
水酸化チタン粉末を第二成分とし、両成分を第一成分/
第二成分の重量比で1/99〜30/70の割合で用
い、これに水および前記活性成分の塩類を加えて混練し
ペーストを得る工程と、得られたペーストを成形後、乾
燥焼成する工程とを有することを特徴とする排ガス中の
窒素酸化物のアンモニア還元用触媒の製造方法。
3. Titanium oxide (TiO2),vanadium
(V), molybdenum (M o), Tungsten (W), iron
(FeA compound of one or more elements of
For ammonia reduction of nitrogen oxides contained in exhaust gas
In the method for producing a catalyst, titanium oxide and the active ingredient
To obtain a paste by kneading while heating in the presence of water
And a step of drying and / or firing the paste,
A step of pulverizing the dried or fired body to obtain the first component,
Titanium hydroxide powder as the second component, both components as the first component /
For the second component weight ratio of 1/99 to 30/70
Add the water and salts of the active ingredient to the mixture and knead
The process of obtaining the paste, and after molding the obtained paste, dry it.
In the exhaust gas, characterized by having a step of dry firing
A method for producing a catalyst for ammonia reduction of nitrogen oxides.
JP31221193A 1993-12-13 1993-12-13 Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same Expired - Fee Related JP3496964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31221193A JP3496964B2 (en) 1993-12-13 1993-12-13 Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31221193A JP3496964B2 (en) 1993-12-13 1993-12-13 Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07163876A JPH07163876A (en) 1995-06-27
JP3496964B2 true JP3496964B2 (en) 2004-02-16

Family

ID=18026536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31221193A Expired - Fee Related JP3496964B2 (en) 1993-12-13 1993-12-13 Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same

Country Status (1)

Country Link
JP (1) JP3496964B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648125B2 (en) 1999-06-25 2005-05-18 株式会社日本触媒 Catalyst for removing organic halogen compound and method for removing organic halogen compound
KR100767563B1 (en) * 2006-04-03 2007-10-17 한국전력기술 주식회사 Preparation Method of Vanadium/titania-based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Window through Introduction of Ball Milling, and Use Thereof
JP4709716B2 (en) * 2006-09-12 2011-06-22 バブコック日立株式会社 Denitration catalyst for coal combustion exhaust gas and exhaust gas purification method
JP5681990B2 (en) * 2011-06-13 2015-03-11 三菱日立パワーシステムズ株式会社 Method for producing denitration catalyst
JP6308832B2 (en) * 2014-03-25 2018-04-11 株式会社日本触媒 Method for producing exhaust gas treatment catalyst
JP6391397B2 (en) * 2014-09-30 2018-09-19 株式会社日本触媒 Method for producing exhaust gas treatment catalyst

Also Published As

Publication number Publication date
JPH07163876A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
JP3229324B2 (en) Catalyst for reducing nitrogen oxides in flowing medium and method for producing the same
US4798813A (en) Catalyst for removing nitrogen oxide and process for producing the catalyst
JPH02290250A (en) Catalyst for selectively reducing nitrogen oxide with ammonia
JP3308979B2 (en) Method for producing denitration catalyst containing inorganic fibers
JPH0242536B2 (en)
US4966882A (en) Catalyst for denitration by catalytic reduction using ammonia and a process for producing the same
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2005342711A (en) Denitration method of diesel engine exhaust gas
KR20180113551A (en) A catalyst for the oxidation reaction of metallic mercury and the reduction reaction of nitrogen oxides, and a method for purifying the exhaust gas
WO2013099253A1 (en) Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
JPH10323570A (en) Catalyst for denitration of flue gas and its production
KR101187758B1 (en) METHOD FOR MANUFACTURING DE-NOx SCR CATALYST USING CALCIUM SULFATE HEMIHYDRATE
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP3270084B2 (en) Catalyst for removing nitrogen oxides and method for producing the same
JP3775815B2 (en) Nitrogen oxide removal method
JP3783875B2 (en) Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method
JP2583912B2 (en) Nitrogen oxide removal catalyst
DE202021001756U1 (en) Catalytic coating for / of open-pore carrier material, which preferably consists of ceramic and / or other materials and is used as a catalyst to reduce and / or reduce harmful dust and gaseous emissions (pollutants)
JPH01317545A (en) Preparation of denitrification catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP2991431B2 (en) Catalyst for catalytic reduction and denitration of ammonia and its production method
JP7183081B2 (en) Denitrification catalyst and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees