JP5156173B2 - Method for producing catalyst for removing nitrogen oxides - Google Patents

Method for producing catalyst for removing nitrogen oxides Download PDF

Info

Publication number
JP5156173B2
JP5156173B2 JP2004141000A JP2004141000A JP5156173B2 JP 5156173 B2 JP5156173 B2 JP 5156173B2 JP 2004141000 A JP2004141000 A JP 2004141000A JP 2004141000 A JP2004141000 A JP 2004141000A JP 5156173 B2 JP5156173 B2 JP 5156173B2
Authority
JP
Japan
Prior art keywords
component
catalyst
titanium oxide
silica
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004141000A
Other languages
Japanese (ja)
Other versions
JP2005319422A (en
Inventor
尚美 今田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004141000A priority Critical patent/JP5156173B2/en
Publication of JP2005319422A publication Critical patent/JP2005319422A/en
Application granted granted Critical
Publication of JP5156173B2 publication Critical patent/JP5156173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、窒素酸化物除去用触媒の製造法に係り、特に450〜600℃の高温排ガス中に含まれるチッソ酸化物(NOx)や、石炭焚ボイラなど硫黄酸化物(SOx)を含有する排ガス中のNOxを高効率で除去するための触媒の製法に関する。   The present invention relates to a method for producing a catalyst for removing nitrogen oxides, and in particular, exhaust gas containing sulfur oxide (SOx) such as nitrogen oxide (NOx) and coal fired boilers contained in high-temperature exhaust gas at 450 to 600 ° C. The present invention relates to a method for producing a catalyst for removing NOx contained therein with high efficiency.

近年、米国では、電力不足を補うためや、電力使用量のピークに対応するため、ガスタービンを建設し単独で運転する、いわゆるシンプルサイクルガスタービンが増大している。これらに用いられる設備は都市郊外に建設されるため、排ガス中のNOxも効率で分解浄化する必要がある。しかし、シンプルサイクルガスタービン発電では、脱硝装置をガスタービン出口直後の450〜600℃という高温で処理する必要があるため、高温で高い性能と寿命を有する脱硝触媒が必要となる。   In recent years, in the United States, so-called simple cycle gas turbines, in which gas turbines are constructed and operated independently, are increasing in order to make up for power shortages and to cope with peak power consumption. Since the equipment used for these is constructed in the suburbs of the city, it is necessary to efficiently decompose and purify NOx in the exhaust gas. However, in the simple cycle gas turbine power generation, it is necessary to treat the denitration device at a high temperature of 450 to 600 ° C. immediately after the gas turbine outlet, so a denitration catalyst having high performance and life at a high temperature is required.

また米国では、亜瀝青炭(PRB炭)や瀝青炭など、低品位の炭種を使用するボイラが増加傾向にある。特に米国東部で多く産出される瀝青炭はS分を多く含んでおり(1〜3%)、排ガス中のSO2濃度が2000〜3000ppmと高濃度になるが、このSO2の一部がNOx除去用に設けられた脱硝触媒上で酸化されて三酸化硫黄(SO3)となり、 (1)後流機器の腐食、(2)リークアンモニア(NH3)と反応して硫安を生成し、後流のエアヒータを閉塞、などの問題を引き起こす。そのため、瀝青炭焚きボイラでは出口のリークNH3、SO3発生量をできるだけ押さえた高脱硝活性でかつSO2のSO3への酸化率を低減した脱硝触媒が必要である。これに対し、一般に、活性成分の増減で活性をコントロールしようとすると、活性成分を増加させると脱硝活性は向上するが、酸化活性も上昇し、一方、活性成分を低減して酸化活性を下げようとすると脱硝活性も低下するため、高脱硝活性でSO2酸化活性の低い触媒が得られ難いという問題があった。 In the United States, boilers using low-grade coal types such as subbituminous coal (PRB coal) and bituminous coal are on the rise. Bituminous coal produced especially in the eastern United States contains a large amount of S (1 to 3%), and the SO 2 concentration in the exhaust gas is as high as 2000 to 3000 ppm, but part of this SO 2 removes NOx. Oxidized on the denitration catalyst provided for the production to become sulfur trioxide (SO 3 ), (1) Corrosion of downstream equipment, (2) Reaction with leaked ammonia (NH 3 ) to produce ammonium sulfate, and downstream This causes problems such as blocking the air heater. Therefore, a bituminous coal-fired boiler requires a denitration catalyst that has high denitration activity that suppresses the amount of NH 3 and SO 3 generated at the outlet as much as possible and that reduces the oxidation rate of SO 2 to SO 3 . On the other hand, in general, when trying to control the activity by increasing or decreasing the active ingredient, increasing the active ingredient improves the denitration activity, but also increases the oxidative activity, while reducing the active ingredient to lower the oxidative activity. Then, since the denitration activity is also reduced, there is a problem that it is difficult to obtain a catalyst having high denitration activity and low SO 2 oxidation activity.

一方、触媒(担体)としての二酸化チタン(TiO2)は、それ単独では300m2/g近い比表面積を有しているものも、例えば600℃で焼成することにより50〜60m2/gにまで比表面積が低下し、熱によるシンタリングが生じやすく、活性や耐久性が悪化する。これに対し、TiO2に二酸化ケイ素(SiO2)を添加してTiO2にSiO2を修飾すると、TiO2単独に比べて熱によるシンタリングが生じにくく、600℃で焼成した後も80m2/g近い比表面積が得られること、また、これに活性成分を担持した触媒は、高い脱硝活性と低いSO2のSO3への酸化率(SO2酸化率)を有することが知られている。そこで、高温での耐久性や低いSO2酸化率が望まれるNOx除去に使用することを目的に、 TiO2とSiO2の複合酸化物に活性成分を担持した触媒の製造方法が多数提案されている(特許文献1〜5)。 On the other hand, the catalyst of titanium dioxide as (support) (TiO 2) is a well which has a 300 meters 2 / g close specific surface area alone, up to 50 to 60 m 2 / g by baking for example 600 ° C. The specific surface area decreases, heat sintering tends to occur, and the activity and durability deteriorate. In contrast, when modifying the SiO 2 to TiO 2 by adding silicon dioxide (SiO 2) to TiO 2, the heat sintering hardly occurs due compared to TiO 2 alone, even after firing at 600 ° C. 80 m 2 / it g near the specific surface area is obtained, also catalyst carrying active ingredients to, are known to have an oxidation rate to SO 3 in a high denitration activity and a low SO 2 (SO 2 oxidation rate). Therefore, a number of methods for producing a catalyst in which an active component is supported on a composite oxide of TiO 2 and SiO 2 have been proposed for use in NOx removal where durability at high temperatures and a low SO 2 oxidation rate are desired. (Patent Documents 1 to 5).

一方、本発明者等は、表面に水酸基を有する酸化チタンとタングステン酸、あるいはその塩類を水の存在下で混合すると、TiO2の水酸基とタングステン酸が縮合してTiO2結晶間に架橋が作られ、これを焼成するとゼオライト細孔にも匹敵する50Å以下の微細孔が形成されること、また、この細孔内にVを触媒活性成分として含浸すると極めて高い活性を示すだけでなく、V化合物の作用によるTiO2の焼結を防止できる現象を見出している(特許文献6)。 On the other hand, when the present inventors mixed titanium oxide having a hydroxyl group on the surface with tungstic acid or a salt thereof in the presence of water, the hydroxyl group of TiO 2 and tungstic acid were condensed to form a bridge between TiO 2 crystals. When this is calcined, fine pores of 50 mm or less comparable to the zeolite pores are formed, and when impregnating V as a catalytic active component in this pore, not only shows extremely high activity, but also V compound We have found a phenomenon that can prevent the sintering of TiO 2 due to the action of (Patent Document 6).

特公昭57−30532号公報Japanese Patent Publication No.57-30532 特公昭62−14339号公報Japanese Patent Publication No.62-14339 特開平08−257399号公報JP 08-257399 A 特開2000−254493号公報JP 2000-254493 A 特開2001−113170号公報JP 2001-113170 A 特開平08−229407号公報Japanese Patent Laid-Open No. 08-229407

前述した従来技術におけるTiO2-SiO2複合酸化物の製造方法は、主に、チタン源として、焼成してチタン酸化物を生成する無機および有機の化合物、例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物または蓚酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を、ケイ素源として、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素、シリカゲルなどの無機ケイ素化合物およびテトラエチルシリケートなどの有機ケイ素化合物と共に、共沈法により沈殿させた後、乾燥・焼成する方法が一般的である。しかしながら、この方法は、(1)シリカ含有量を多くして耐熱性を高めようとすると脱硝活性に悪影響を及ぼす、(2)TiO2の製造過程でSiO2を添加するため、Ti/Si比の異なる組成で触媒を製造する場合、触媒仕様の変更や触媒性能のコントロールが容易でない、(3)従来法で得られる酸化チタンーシリカ複合化合物は結合性に乏しいため、高強度の触媒が得られ難い、などの改良すべき問題があった。 The above-described conventional method for producing TiO 2 —SiO 2 composite oxide mainly includes inorganic and organic compounds that are baked to produce titanium oxide as a titanium source, such as titanium tetrachloride, titanium sulfate, etc. Inorganic titanium compounds or organic titanium compounds such as titanium oxalate and tetraisopropyl titanate are used as silicon sources, together with inorganic silicon compounds such as colloidal silica, water glass, fine-particle silicon, silicon tetrachloride and silica gel, and organic silicon compounds such as tetraethyl silicate. In general, a method of precipitating by a coprecipitation method and then drying and baking is generally used. However, this method has the following effects: (1) Increasing silica content to increase heat resistance has an adverse effect on denitration activity. (2) Since SiO 2 is added during the production of TiO 2 , the Ti / Si ratio When producing catalysts with different compositions, it is not easy to change the catalyst specifications or control the catalyst performance. (3) Since the titanium oxide-silica composite compound obtained by the conventional method has poor binding properties, it is difficult to obtain a high-strength catalyst. There was a problem that should be improved.

本発明の課題は、上記従来技術の有する問題点に鑑み、TiO2のシンタリングを防止して高い耐熱性と、SO2のSO3への酸化活性を抑え、かつ高い脱硝活性を得ることができる触媒を、従来よりもTi-Si比のコントロールが容易で、かつ結合性の高い高強度の触媒を、複雑な製造工程を経ることなく、できるだけ簡単な方法で調製することができる、窒素酸化物除去用触媒の製造法を提供することにある。 In view of the above-mentioned problems of the prior art, the object of the present invention is to prevent sintering of TiO 2 to suppress high heat resistance, to suppress oxidation activity of SO 2 to SO 3 and to obtain high denitration activity. Nitrogen oxidation that can control a Ti-Si ratio that is easier than before and that can produce a high-strength catalyst with high bonding properties and in the simplest way possible without going through complicated manufacturing processes. An object of the present invention is to provide a method for producing an object removal catalyst.

本発明者等は、上記課題を達成するため、酸化チタンを主成分とする、耐熱・活性とも飛躍的に向上せしめた触媒を開発すべく、鋭意研究を重ねた結果、次のように本発明に到った。
TiO2は加熱によりシンタリング、すなわち結晶成長を生じ、比表面積が減少して耐熱性が悪化する。これを防止するには、TiO2粒子の周囲をシリカ粒子で覆い、TiO2同士が接触して結合し結晶成長することを防止することが有効であると考えた。これを実現するためには、酸化チタンと、酸化チタン粒子よりも小さい粒子径を有するシリカとを水の存在下で混合し、酸化チタン粒子表面をシリカ粒子で覆うことにより、TiO2結晶同士の接触を防止して熱によるTiO2結晶の成長を阻害し、高温でも比表面積の低下を防止できることが分かった。シリカ粒径が酸化チタンより大きい場合、二次凝集した酸化チタン粒子間にシリカが進入できないし、進入したとしても酸化チタン粒子をシリカ粒子で覆うことはできない。
In order to achieve the above-mentioned problems, the present inventors have conducted extensive research to develop a catalyst that has titanium oxide as a main component and has dramatically improved both heat resistance and activity. As a result, the present invention is as follows. It reached.
TiO 2 undergoes sintering, that is, crystal growth by heating, the specific surface area is reduced, and heat resistance is deteriorated. In order to prevent this, it was considered effective to cover the periphery of the TiO 2 particles with silica particles and prevent the TiO 2 from coming into contact with each other to bond and grow crystals. To achieve this, a titanium oxide, and a silica having a smaller particle diameter than the titanium oxide particles were mixed in the presence of water, by covering the surfaces of titanium oxide particles with silica particles, TiO 2 crystals between It was found that the growth of TiO 2 crystals due to heat can be prevented by preventing contact, and the decrease in specific surface area can be prevented even at high temperatures. When the silica particle diameter is larger than titanium oxide, silica cannot enter between the secondary aggregated titanium oxide particles, and even if it enters, the titanium oxide particles cannot be covered with the silica particles.

本発明の方法では、前述のタングステンによる触媒の微細孔形成効果と、上記の微粒シリカによる酸化チタンの結晶成長防止効果とをより効果的に発現させるために、微粒子径を有するシリカゾルと、シリカゾルに任意に混合可能なタングステン酸またはその塩類とを混合して得られるゾル状物を酸化チタンと混合する。これにより、Wとシリカとをそれぞれ単独で用いるよりもこれらの併用による相乗効果が得られ、触媒活性の向上及び耐熱性向上効果が得られることを見出した。
すなわち、本願で特許請求される発明は下記のとおりである。
In the method of the present invention, a silica sol having a fine particle diameter and a silica sol are used in order to more effectively express the above-described catalyst micropore formation effect by tungsten and the above-described titanium oxide crystal growth prevention effect by fine silica. A sol obtained by mixing an optionally mixed tungstic acid or a salt thereof is mixed with titanium oxide. As a result, it was found that a synergistic effect obtained by using these in combination with W and silica can be obtained rather than using W and silica alone, and an improvement in catalytic activity and an improvement in heat resistance can be obtained.
That is, the invention claimed in the present application is as follows.

(1)第一成分として平均粒子径が15nm以下の酸化チタンと、第二成分として第一成分よりも小さい平均粒子径を有するコロイダル状のシリカと、第三成分としてタングステンまたはモリブデンの可溶性の塩類と、水とを混合して得られる触媒スラリまたはペーストを担体に担持するか、またはハニカム状に押出し成形後、焼成することを特徴とする窒素酸化物除去用触媒の製造法。 (1) Titanium oxide having an average particle size of 15 nm or less as the first component, colloidal silica having an average particle size smaller than the first component as the second component, and soluble salts of tungsten or molybdenum as the third component And a catalyst slurry or paste obtained by mixing water with a carrier, or extruding into a honeycomb shape and then firing, followed by firing a method for producing a catalyst for removing nitrogen oxides.

(2)前記第一成分、第二成分及び第三成分の化合物と水とを混合する際に、さらに第四成分としてセリウム、バナジウムまたはニオブから選ばれる1種以上の元素の化合物を加えて混合することを特徴とする(1)記載の方法。 (2) When mixing the compound of the first component, the second component and the third component with water, a compound of one or more elements selected from cerium, vanadium or niobium is further added and mixed as the fourth component. The method according to (1), characterized in that:

(3)前記第一成分、第二成分及び第三成分の化合物の混合物に、前記第四成分の化合物と水とを混合して得られた触媒スラリまたはペーストを、担体に担持するかまたはハニカム状に押出し成形後焼成することを特徴とする(2)記載の方法。 (3) A catalyst slurry or paste obtained by mixing the fourth component compound and water into the mixture of the first component, the second component, and the third component compound is supported on a carrier or a honeycomb. (2) The method according to (2), characterized by firing after extrusion into a shape.

(4)前記担体が、金属もしくは無機繊維の網状物、無機繊維織布、またはシリカアルミナ無機繊維シートをコルゲート加工して得られたコルゲートハニカム担体であることを特徴とする(1)〜(3)のいずれかに記載の方法。 (4) The carrier is a corrugated honeycomb carrier obtained by corrugating a metal or inorganic fiber network, an inorganic fiber woven fabric, or a silica alumina inorganic fiber sheet (1) to (3) ) Any one of the methods.

本発明において、第一成分である酸化チタン原料は、平均粒子径が15nm以下であれば良く、含水酸化チタンや酸化チタンのゾル状物の乾燥体を用いることができる。平均粒子径が15nm以下であれば、比表面積が大きいため酸化チタン表層にシリカが覆い易く、効果が得やすい。15nmより大きい粒子径を有する酸化チタンの場合、比表面積が小さく、シリカが酸化チタン粒子の間隙内に進入しづらいため効果が得難い。   In the present invention, the titanium oxide raw material as the first component may have an average particle diameter of 15 nm or less, and a hydrous titanium oxide or a dried product of a titanium oxide sol can be used. If the average particle size is 15 nm or less, the specific surface area is large, and the silica is easily covered with the titanium oxide surface layer, and the effect is easily obtained. In the case of titanium oxide having a particle diameter larger than 15 nm, the specific surface area is small, and it is difficult to obtain the effect because silica hardly enters the gaps between the titanium oxide particles.

一方、第二成分であるシリカ原料は、上記酸化チタンの結晶子径よりも小さい平均粒子径を有するシリカ、具体的には、平均粒子径が2〜10nm、好ましくは2〜5nmの範囲内のシリカのコロイダル状物であることが重要である。平均粒子径が酸化チタンの結晶子径よりも大きいと、酸化チタン粒子同士が凝集して形成された酸化チタンの2次粒子内に入り込んで酸化チタン結晶成長を防止する効果が得られ難い。一方、平均粒子径が2nm以下のコロイダル状シリカゾルは液性状が不安定でゲル化しやすく取り扱い上問題が生じやすい。その添加量は、酸化チタン重量の1〜15wt%、好ましくは5〜10wt%が好ましい。添加量が少ないと耐熱性や、強度の悪化を招き、多すぎると細孔閉塞を生じ活性低下を引き起こし易い。   On the other hand, the silica raw material as the second component is silica having an average particle size smaller than the crystallite size of the titanium oxide, specifically, the average particle size is in the range of 2 to 10 nm, preferably 2 to 5 nm. It is important to be a colloidal silica. When the average particle diameter is larger than the crystallite diameter of titanium oxide, it is difficult to obtain an effect of preventing titanium oxide crystal growth by entering into the titanium oxide secondary particles formed by aggregation of titanium oxide particles. On the other hand, colloidal silica sols having an average particle size of 2 nm or less are unstable in liquid properties and easily gelled, thus causing problems in handling. The addition amount is 1 to 15 wt%, preferably 5 to 10 wt% of the titanium oxide weight. If the amount added is small, heat resistance and strength are deteriorated, and if it is too large, pores are clogged and the activity tends to be lowered.

また、第三成分であるタングステン(W)原料は、該当する金属のMO4型イオン(M:W)または可溶性の塩類で、コロイダル状シリカに任意に混合可能な塩類、例えばメタタングステン酸アンモニウムが好ましく使用される。シリカとW原料とが緊密混合された原料を用いることにより、Wとシリカが酸化チタンの粒子間に架橋を形成し、酸化チタンの結晶成長を防止することができる。その添加量は1〜20原子%である。同じ第三成分であるモリブデン(Mo)原料には、該当する金属のMO4型イオン(M: Mo)または可溶性の塩類で、モリブデン酸アンモニウムなどのアンモニウム塩が好ましい。モリブデン酸アンモニウムはシリカとゲル化しやすいため、シリカとの混合状態で添加するよりも、別々に酸化チタンと混合する方が、効果が得やすい。その添加量は1〜20原子%である。 The tungsten (W) raw material, which is the third component, is a MO 4 type ion (M: W) or a soluble salt of the corresponding metal, and a salt that can be arbitrarily mixed with colloidal silica, such as ammonium metatungstate. Preferably used. By using a raw material in which silica and a W raw material are intimately mixed, W and silica can form a bridge between titanium oxide particles, thereby preventing crystal growth of titanium oxide. The amount of addition is 1 to 20 atomic%. For the molybdenum (Mo) raw material which is the same third component, an MO 4 type ion (M: Mo) or a soluble salt of the corresponding metal, and an ammonium salt such as ammonium molybdate is preferable. Since ammonium molybdate is easily gelled with silica, it is easier to obtain the effect by separately mixing with titanium oxide than adding it in a mixed state with silica. The amount of addition is 1 to 20 atomic%.

また、Wを使用すると高温での耐熱性が優れるため、高耐熱性が必要な場合、特にシンプルサイクルガスタービン発電など550℃以上の高温排ガス中のNOx除去にはWを、500℃以下の比較的低温の排ガス用にはMoを使用すると好結果を与える。Wは、添加量が少ないと耐熱性の悪化を招き、多すぎると活性成分を保持する酸化チタンの比率が減少して活性低下を引き起こす。望ましくは5〜15原子%が適当である。Moは、添加量が多すぎても少な過ぎても性能低下を引き起こすため、同じく5〜15原子%が適当である。
第四成分であるセリウム(Ce)原料には、硝酸セリウムなどの塩類のほか、有機アルカリや酸を安定化剤に含む水にCeO2を分散させた酸化セリウムのゾル状物などを用いることができる。その添加量は、0〜10原子%であり、少ない場合は高い活性が得難く、多すぎると500℃以上での活性低下を引き起こしやすい。望ましくは1〜5原子%の範囲が好結果を与えやすい。
Also, when W is used, the heat resistance at high temperature is excellent. Therefore, when high heat resistance is required, especially when removing NOx in high-temperature exhaust gas of 550 ° C or higher such as simple cycle gas turbine power generation, W is compared to 500 ° C or lower. Use of Mo gives good results for low temperature exhaust gas. When W is added in a small amount, the heat resistance is deteriorated, and when it is too large, the ratio of titanium oxide holding the active ingredient is decreased to cause a decrease in activity. Desirably, 5 to 15 atomic% is suitable. Since Mo causes a decrease in performance when the amount is too much or too little, 5 to 15 atomic% is also appropriate.
For the cerium (Ce) raw material, which is the fourth component, in addition to salts such as cerium nitrate, cerium oxide sol in which CeO 2 is dispersed in water containing organic alkali or acid as a stabilizer is used. it can. The addition amount is 0 to 10 atomic%. When the addition amount is small, it is difficult to obtain high activity. Desirably, the range of 1 to 5 atomic% tends to give good results.

さらに、同じ第四成分であるバナジウム(V)原料には、メタバナジン酸アンモニウムなどのアンモニウム塩などの塩類を用いることができるが、硫酸バナジルのような酸化チタンに強吸着しやすい原料は、SO2酸化活性を上昇させやすいため好ましくない。Vの添加量は0〜10原子%であり、少ない場合は高い活性が得難く、多すぎるとSO2酸化率の上昇を引き起こしやすい。望ましくは1〜5原子%の範囲が好結果を与えやすい。
また、ニオブ(Nb)原料は、ニオブ酸や、有機アルカリや酸を安定化剤に含む水に酸化ニオブを分散させたゾル状物等を用いると好結果を与える。その添加量は、0〜10原子%であり、少ない場合は高い活性が得難く、多すぎると500℃以上での活性低下を引き起こしやすい。望ましくは1〜5原子%の範囲が好結果を与えやすい。
Furthermore, the vanadium (V) raw material, which is the same fourth component, can be a salt such as ammonium salt such as ammonium metavanadate, but a raw material that is strongly adsorbed to titanium oxide such as vanadyl sulfate is SO 2. Since it is easy to raise oxidation activity, it is not preferable. The addition amount of V is 0 to 10 atomic%, and when it is small, high activity is difficult to obtain, and when it is too large, the SO 2 oxidation rate is likely to increase. Desirably, the range of 1 to 5 atomic% tends to give good results.
As the niobium (Nb) raw material, niobic acid, a sol-like material in which niobium oxide is dispersed in water containing an organic alkali or acid as a stabilizer, and the like are used, a good result is obtained. The addition amount is 0 to 10 atomic%. When the addition amount is small, it is difficult to obtain high activity. Desirably, the range of 1 to 5 atomic% tends to give good results.

本発明の方法では、触媒活性成分の添加順序としては、第一成分の酸化チタンに第二成分のシリカと第三成分のW、Mo原料を添加して混合した後、第四成分のCe、V及び/又はNb化合物を添加することが好ましい。こうすることで、シリカとWまたはMoにより酸化チタン粒子間に架橋を形成し、その後に添加したCe、V及びNbが、酸化チタン粒子間に担持され、これらが酸化チタンに強吸着して酸化チタンのシンタリングを促進することを防止する。第四成分の化合物を加える際の第一、第二および第三成分の混合物は、水との混合物(スラリまたはペースト)であってもよいし、または乾燥、焼成後の混合物であってもよい。   In the method of the present invention, as the addition order of the catalytically active component, after adding and mixing the second component silica and the third component W, Mo raw material to the first component titanium oxide, the fourth component Ce, V and / or Nb compounds are preferably added. By doing so, a bridge is formed between the titanium oxide particles by silica and W or Mo, and then added Ce, V and Nb are supported between the titanium oxide particles, and these are strongly adsorbed on the titanium oxide and oxidized. Prevents sintering of titanium. The mixture of the first, second and third components when adding the fourth component compound may be a mixture with water (slurry or paste), or a mixture after drying and baking. .

上記化合物を含む触媒スラリまたはペーストを担持する担体には、前述のように無機繊維シートをコルゲート加工したハニカム状担体、無機繊維製不織布、金網やメタルラスなどの網状物、E-ガラス繊維などの無機繊維ヤーンを網状に織った網状物などが用いられる。これらは公知の強化剤で強化したり、触媒成分の付着性増加や金属基材の酸化を防止する目的のコーティング層を設けて用いてもよい。   The carrier supporting the catalyst slurry or paste containing the above compound includes a honeycomb carrier obtained by corrugating an inorganic fiber sheet as described above, an inorganic fiber nonwoven fabric, a net such as a wire mesh or a metal lath, and an inorganic material such as E-glass fiber. A net or the like obtained by weaving fiber yarns is used. These may be reinforced with a known reinforcing agent, or provided with a coating layer for the purpose of preventing an increase in adhesion of the catalyst component and oxidation of the metal substrate.

担持方法はどのようなものでもよいが、金属またはセラミック製網状物を用いる場合には、網状物の目が小さい場合には、水分が30-35%の触媒ペーストに無機繊維を添加したものをローラを用いて網状物の目を埋めるように塗布する方法を採用することができる。一方、無機繊維製コルゲートハニカムやセラミック製不織布、セラミックハニカム担体などには、30〜50wt%の触媒成分を有するスラリに浸漬して繊維間隙または表面に触媒スラリをコーティングする方法が適している。また、水分が30-35%の触媒ペーストに無機繊維を添加したものを金型で押出してハニカム状に成形する方法も可能である。
以上の方法により各種基材に触媒スラリまたは触媒ペーストが担持されたものは、必要に応じて切断、成形、変形などの処理を経た後、風乾や熱風乾燥など公知の手段で乾燥され、しかる後に500〜700℃で焼成して触媒として用いられる。
Any supporting method may be used. However, when using a metal or ceramic mesh, if the mesh is small, a catalyst paste with a moisture content of 30-35% and inorganic fibers added. A method of applying so as to fill the mesh with a roller can be employed. On the other hand, for inorganic corrugated honeycombs, ceramic non-woven fabrics, ceramic honeycomb carriers, etc., a method of immersing in a slurry having a catalyst component of 30 to 50 wt% and coating the catalyst slurry on the fiber gap or the surface is suitable. In addition, a method of forming a honeycomb paste by extruding a catalyst paste having a moisture content of 30 to 35% and adding inorganic fibers with a mold is also possible.
The catalyst slurry or catalyst paste supported on various substrates by the above method is subjected to treatments such as cutting, molding and deformation as necessary, and then dried by a known means such as air drying or hot air drying. It is calcined at 500 to 700 ° C. and used as a catalyst.

請求項記載の本発明によれば、TiO2のシンタリングを防止して高い耐熱性と、SO2のSO3への酸化活性を抑えた、高い脱硝活性を有すると共に、従来よりもTi-Si比のコントロールが容易で、かつ結合性の高い高強度の触媒を、複雑な製造工程を経ることなく、簡単な方法で製造することができる。 According to the present invention, it is possible to prevent sintering of TiO 2 , to have high heat resistance, to suppress oxidation activity of SO 2 to SO 3 , to have high denitration activity, and to be more Ti-Si than conventional. A high-strength catalyst that is easy to control the ratio and has high binding properties can be manufactured by a simple method without going through a complicated manufacturing process.

さらに、従来法ではあらかじめTiO2−SiO2化合物を調製後、これに活性成分や無機繊維、バインダ等を混合して触媒スラリもしくは触媒ペーストを得、これを担体に担持するかもしくはハニカム状に押出し成形する方法が取られるが、従来法で得られたTiO2-SiO2化合物は結合性に乏しいため、強度が出難い。これに対し、本発明の方法では、TiO2−SiO2化合物の形成と活性成分担持とを一段に行うことができ、このとき添加するシリカゾルがそのまま無機バインダとしての働きを有するため、容易に機械的強度の高い触媒を得ることができる。S分を含有する石炭焚き燃焼ボイラでは排ガス中に灰が多く含まれ、この燃焼灰によって触媒が摩耗することが懸念されるが、本発明の方法であれば、高強度の触媒を得ることができる。 Furthermore, in the conventional method, a TiO 2 —SiO 2 compound is prepared in advance, and then an active ingredient, inorganic fiber, binder, etc. are mixed to obtain a catalyst slurry or catalyst paste, which is supported on a carrier or extruded into a honeycomb shape. A molding method is used, but the TiO 2 —SiO 2 compound obtained by the conventional method has poor bonding properties, so that it is difficult to obtain strength. On the other hand, in the method of the present invention, the formation of the TiO 2 —SiO 2 compound and the loading of the active component can be performed in one step, and the silica sol added at this time has the function as an inorganic binder as it is, so that the machine can be easily used. A catalyst with high mechanical strength can be obtained. A coal-fired combustion boiler containing S content contains a large amount of ash in exhaust gas, and there is a concern that the catalyst may be worn by the combustion ash. However, with the method of the present invention, a high-strength catalyst can be obtained. it can.

[実施例1]
低温乾燥酸化チタン(ミレニアム社製G5、表面積275m2/g、平均粒径6nm以上)を120g、メタタングステン酸アンモニウム水溶液((NH4)6・H2W12O40・XH2O、WO3として50wt%含有)79g、微粒シリカゾル(日産化学社製、OXSゾル、濃度10wt%、平均粒子径5nm)を120gとを混合し、砂浴上で攪拌しながら蒸発乾固し、大気中150℃で5時間乾燥して、Ti-W-Si化合物を得た。このときの含有量はTi/W原子比で9/1、シリカは酸化チタン重量の10wt%である。
[Example 1]
Low-temperature dry titanium oxide (G5 manufactured by Millennium, surface area 275 m 2 / g, average particle size of 6 nm or more) 120 g, ammonium metatungstate aqueous solution ((NH 4 ) 6 · H 2 W 12 O 40 · XH 2 O, WO 3 79g, fine silica sol (manufactured by Nissan Chemical Co., OXS sol, concentration 10wt%, average particle size 5nm) is mixed with 120g, evaporated to dryness with stirring on a sand bath, and 150 ℃ in the atmosphere And dried for 5 hours to obtain a Ti—W—Si compound. The content at this time is 9/1 in terms of Ti / W atomic ratio, and silica is 10 wt% of the titanium oxide weight.

[実施例2]
実施例1のメタタングステン酸アンモニウムをモリブデン酸アンモニウム((NH4)6・Mo724・4H2O)29.4gに変えた以外は実施例1と同様にしてTi-Mo-Si化合物を得た。このときの含有量はTi/Mo原子比で9/1、シリカは酸化チタン重量の10wt%である。
[Example 2]
A Ti-Mo-Si compound was obtained in the same manner as in Example 1 except that the ammonium metatungstate of Example 1 was changed to 29.4 g of ammonium molybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O). It was. The content at this time is 9/1 in terms of Ti / Mo atomic ratio, and silica is 10 wt% of the titanium oxide weight.

[実施例3]
実施例1の微粒シリカゾルを平均粒径2.1nmのシリカゾル(日産化学社製、濃度3wt%)1.6kgに変えた以外は実施例1と同様にしてTi-W-Si化合物を得た。このときの含有量はTi/W原子比で9/1、シリカは酸化チタン重量の10wt%である。
[Example 3]
A Ti—W—Si compound was obtained in the same manner as in Example 1, except that the fine silica sol of Example 1 was changed to 1.6 kg of silica sol having an average particle diameter of 2.1 nm (Nissan Chemical Co., Ltd., concentration: 3 wt%). The content at this time is 9/1 in terms of Ti / W atomic ratio, and silica is 10 wt% of the titanium oxide weight.

[実施例4、5]
実施例1の微粒シリカゾルを60、180gに変えた以外は実施例1と同様にしてTi-W-Si化合物を得た。このときの含有量はTi/W原子比で9/1、シリカは酸化チタン重量の5、15wt%である。
[Examples 4 and 5]
A Ti—W—Si compound was obtained in the same manner as in Example 1 except that the fine silica sol of Example 1 was changed to 60 and 180 g. The content at this time is 9/1 in terms of Ti / W atomic ratio, and silica is 5, 15 wt% of the titanium oxide weight.

[実施例6〜8]
実施例1で得られたTi-W-Si化合物の乾燥粉末109gを乳鉢で粉砕し、これに、それぞれメタバナジン酸アンモニウム(NH4VO3)1.28g、酸化ニオブゾル(多木化学製、ニオブゾル、5酸化ニオブ濃度10wt%)14.5g、酸化セリウムゾル(多木化学製、ニードラールU-15、酸化セリウム濃度15wt%)12.4gと水150gとを加え、砂浴上で蒸発乾固して、大気中150℃で5時間乾燥した。それぞれTi-W-Si-V化合物、Ti-W-Si-Nb化合物、Ti-W-Si-Ce化合物を得た。このときの含有量はいずれもTi/W原子比で9/1、Ti/V、Ti/Nb、Ti/Ceはいずれも原子比で99/1、シリカはいずれも酸化チタン重量の10wt%である。
[Examples 6 to 8]
109 g of the dried powder of Ti—W—Si compound obtained in Example 1 was pulverized in a mortar, and each was mixed with 1.28 g of ammonium metavanadate (NH 4 VO 3 ), niobium oxide sol (manufactured by Taki Chemical Co., Niobium Sol, 5 Niobium oxide concentration 10wt%) 14.5g, Cerium oxide sol (manufactured by Taki Chemical Co., Nidral U-15, cerium oxide concentration 15wt%) 12.4g and water 150g were added, evaporated to dryness in a sand bath, and 150 in air Dry at 5 ° C. for 5 hours. Ti-W-Si-V compound, Ti-W-Si-Nb compound, and Ti-W-Si-Ce compound were obtained respectively. The content at this time is 9/1 in Ti / W atomic ratio, Ti / V, Ti / Nb, Ti / Ce are all in 99/1 atomic ratio, and silica is 10wt% of titanium oxide weight. is there.

[比較例1]
実施例1の微粒シリカゾルをシリカゾル(日産化学社製、OLゾル、平均粒径45nm)に変えた以外は、実施例1と同様にしてTi-W化合物を得た。このときの含有量はTi/W原子比で9/1ある。
[比較例2]
実施例1で用いた酸化チタンのみを水とともに混合し、砂浴上で攪拌しながら蒸発乾固し、大気中150℃で5時間乾燥した。
[比較例]
実施例1で用いた酸化チタンに実施例6と同様にメタバナジン酸アンモニウムを添加し、後は実施例6と同様にしてTi-V化合物を得た。このときのTi/V比は原子比で99/1である。
[Comparative Example 1]
A Ti—W compound was obtained in the same manner as in Example 1 except that the fine silica sol of Example 1 was changed to silica sol (manufactured by Nissan Chemical Co., Ltd., OL sol, average particle size 45 nm). The content at this time is 9/1 in terms of Ti / W atomic ratio.
[Comparative Example 2]
Only the titanium oxide used in Example 1 was mixed with water, evaporated to dryness while stirring on a sand bath, and dried in air at 150 ° C. for 5 hours.
[Comparative Example 3 ]
In the same manner as in Example 6, ammonium metavanadate was added to the titanium oxide used in Example 1, and thereafter, Ti-V compound was obtained in the same manner as in Example 6. The Ti / V ratio at this time is 99/1 in atomic ratio.

実施例1〜8、及び比較例1〜3で得られた化合物の150℃乾燥品をそれぞれ600℃で2時間、20時間焼成した。得られた化合物の乾燥品、及び焼成品の比表面積をBET比表面積測定法にて測定するとともに、X線回折装置により酸化チタンの結晶子径を測定した。
実施例及び比較例の化合物の組成を表1に、比表面積及び酸化チタン結晶子径の測定結果を表2に示す。比較例に示した酸化チタンのみの比表面積は、乾燥のみでは270m2/g以上の高い数値なのに対し、600℃で焼成することで1/5以下に低下する。これにVを添加した比較例ではさらに比表面積の低下が大きく、結晶成長が大きくなる。これに対し実施例の触媒は、いずれも600℃焼成後の比表面積低下及び酸化チタンの結晶子径の成長が小さく、本発明方法が酸化チタンのシンタリング防止効果が大きいことを示している。また、シリカ粒子径の大きなシリカゾルを用いた比較例1ではシンタリング防止効果が小さく、より小さな微粒子シリカゾルを使用した実施例3の結果と比較すると、本発明方法がいかに優れているかが明らかである。
150 ° C. dried products of the compounds obtained in Examples 1 to 8 and Comparative Examples 1 to 3 were calcined at 600 ° C. for 2 hours and 20 hours, respectively. The specific surface area of the dried product and the fired product obtained was measured by the BET specific surface area measurement method, and the crystallite diameter of titanium oxide was measured by an X-ray diffractometer.
Table 1 shows the compositions of the compounds of Examples and Comparative Examples, and Table 2 shows the measurement results of specific surface area and titanium oxide crystallite diameter. The specific surface area of only titanium oxide shown in Comparative Example 2 is as high as 270 m 2 / g or more by drying alone, but decreases to 1/5 or less by firing at 600 ° C. In Comparative Example 3 in which V is added thereto, the specific surface area is further greatly reduced and the crystal growth is increased. On the other hand, the catalysts of the examples all show a small reduction in specific surface area after firing at 600 ° C. and a small growth of the crystallite diameter of titanium oxide, indicating that the method of the present invention has a great effect of preventing sintering of titanium oxide. In Comparative Example 1 using a silica sol having a large silica particle diameter, the effect of preventing sintering is small, and it is clear how superior the method of the present invention is compared with the results of Example 3 using a smaller fine particle silica sol. .

[実施例9]
本発明の触媒を実現するための実施例として、本発明を適用した板状触媒の製造例を示す。
酸化チタン(石原産業社製、比表面積250m2/g12kg、メタタングステン酸アンモニウム4.25kg(粉末状、WO3として93%)、シリカゾル(日産化学社製、OXSゾル)8.1kgと水をニーダに入れて20分混練後、メタバナジン酸アンモニウム399gを添加して20分混練し、シリカアルミナ系セラミック繊維(東芝ファインフレックス社製)を3. 2kgを徐々に添加しながら30分間混練して水分29%の触媒ペーストを得た。得られたペーストを厚さ0.2mmのSUS430製鋼板をメタルラス加工した基材の上に置き、これを二枚のポリエチレンシートに挟んで一対の加圧ローラを通して、メタルラス基材の網目間及び表面に塗布した。これを風乾後、500℃で2時間焼成して板状触媒を得た。得られた触媒の厚さは0.9mmであった。
[Example 9]
As an example for realizing the catalyst of the present invention, a production example of a plate catalyst to which the present invention is applied will be shown.
Titanium oxide (Ishihara Sangyo Co., Ltd., specific surface area 250m 2 / g ) 12kg, ammonium metatungstate 4.25kg (powder, 93% as WO 3 ), silica sol (Nissan Chemical Co., OXS sol) 8.1kg and water kneader After mixing for 20 minutes, add 399 g of ammonium metavanadate and knead for 20 minutes, and knead for 30 minutes while gradually adding 3.2 kg of silica-alumina ceramic fiber (manufactured by TOSHIBA FINEFLEX). % Catalyst paste was obtained. The obtained paste is placed on a metal lath processed base material made of SUS430 steel plate with a thickness of 0.2 mm, sandwiched between two polyethylene sheets, and passed through a pair of pressure rollers between the mesh and the surface of the metal lath base material. Applied. This was air-dried and then calcined at 500 ° C. for 2 hours to obtain a plate catalyst. The thickness of the obtained catalyst was 0.9 mm.

[比較例]
TiO2を30%および硫酸根を2.7%含有するメタチタン酸スラリ40kgに、珪酸エチル5.78kgを添加し、ニーダで3時間混合した。さらにメタタングステン酸アンモニウム4.04kg(粉末状、WO3として93%)を加えて加熱しながら混練し、水分32%のペーストとした。これを3mmφの円柱状に押出造粒し、150℃で12時間乾燥した後、ハンマミルで粉砕しTi/W/Siの粉末を得た。
得られた触媒粉末12kgとメタバナジン酸アンモニウム270gと水を添加して20分混練し、シリカアルミナ系セラミック繊維(東芝ファインフレックス社製)を3.3kgを徐々に添加しながら30分間混練したが、ダイラタンシィーな性質が発現し、ペースト水分が34%と実施例9よりも高水分の触媒ペーストが得られた。得られたペーストを実施例9と同様に基材に塗布しようとすると、ペーストがローラに付着する現象が見られた。得られた触媒を風乾後、500℃で2時間焼成して板状触媒を得た。得られた触媒の厚さは1.3mmであった。


[Comparative Example 4 ]
To 40 kg of metatitanate slurry containing 30% TiO 2 and 2.7% sulfate radical, 5.78 kg of ethyl silicate was added and mixed with a kneader for 3 hours. Further, 4.04 kg of ammonium metatungstate (powder, 93% as WO 3 ) was added and kneaded while heating to obtain a paste with a moisture content of 32%. This was extruded and granulated into a 3 mmφ cylindrical shape, dried at 150 ° C. for 12 hours, and then pulverized with a hammer mill to obtain a Ti / W / Si powder.
12 kg of the resulting catalyst powder, 270 g of ammonium metavanadate and water were added and kneaded for 20 minutes. Silica alumina ceramic fiber (manufactured by Toshiba Fineflex) was kneaded for 30 minutes while gradually adding 3.3 kg. Latency properties were developed, and a catalyst paste with a moisture content higher than that of Example 9 was obtained with a paste moisture of 34%. When the obtained paste was applied to the substrate in the same manner as in Example 9, a phenomenon that the paste adhered to the roller was observed. The obtained catalyst was air-dried and then calcined at 500 ° C. for 2 hours to obtain a plate catalyst. The thickness of the obtained catalyst was 1.3 mm.


実施例9及び比較例で得られた触媒を表3に示す条件で350℃の脱硝率を、表4に示す条件で380℃でのSO2酸化率を測定した。また、触媒の摩耗強度を測定するため、100mm×100mmに切断した触媒を45゜傾けて設置し、その50cm上部から直径0.7mm前後のグリッド8kgを触媒表面に自然落下させて、グリッドによる摩耗強度試験を実施した。その結果を表5に示す。実施例9の触媒は、高強度で高い脱硝性能及び低いSO2酸化率を示すが、比較例3の触媒は、強度が低く良好な成形体が得られず、また脱硝性能が低くまたSO2酸化率が高い。このことからも、本発明の方法が従来法よりも優れた製造法であることが明白である。 The catalyst obtained in Example 9 and Comparative Example 4 was measured for the denitration rate at 350 ° C. under the conditions shown in Table 3, and the SO 2 oxidation rate at 380 ° C. under the conditions shown in Table 4. In addition, to measure the wear strength of the catalyst, a catalyst cut to 100 mm x 100 mm is installed at an angle of 45 °, and 8 kg of a grid with a diameter of about 0.7 mm is naturally dropped from the upper 50 cm onto the catalyst surface. The test was conducted. The results are shown in Table 5. The catalyst of Example 9 has high strength and high denitration performance and a low SO 2 oxidation rate. However, the catalyst of Comparative Example 3 has low strength and a good molded article cannot be obtained, and the denitration performance is low and SO 2 is low. High oxidation rate. From this, it is clear that the method of the present invention is a production method superior to the conventional method.

Figure 0005156173
Figure 0005156173

Figure 0005156173
Figure 0005156173

Figure 0005156173
Figure 0005156173

Figure 0005156173
Figure 0005156173

Figure 0005156173
Figure 0005156173

本発明によれば、低濃度でも高い活性が得られる窒素酸化物除去用触媒が得られ、HRSGを持たないガスタービン排ガスなどの高温排ガス中のNOxを効率よく浄化でき、またこれによりコンパクトな脱硝装置を実現することができる。
According to the present invention, a catalyst for removing nitrogen oxides that can obtain high activity even at a low concentration can be obtained, and NOx in high-temperature exhaust gas such as gas turbine exhaust gas that does not have HRSG can be efficiently purified. An apparatus can be realized.

Claims (4)

第一成分として平均粒子径が15nm以下の酸化チタンと、第二成分として第一成分よりも小さい平均粒子径を有するコロイダル状のシリカと、第三成分としてタングステンまたはモリブデンの可溶性の塩類と、水とを混合して得られる触媒スラリまたはペーストを担体に担持するか、またはハニカム状に押出し成形後、焼成することを特徴とする窒素酸化物除去用触媒の製造法。 Titanium oxide having an average particle size of 15 nm or less as the first component, colloidal silica having an average particle size smaller than the first component as the second component, soluble salts of tungsten or molybdenum as the third component, water And a catalyst slurry or paste obtained by mixing with a carrier, or extruded into a honeycomb and then fired, and then a method for producing a catalyst for removing nitrogen oxides. 前記第一成分、第二成分及び第三成分の化合物と水とを混合する際に、さらに第四成分としてセリウム、バナジウムまたはニオブから選ばれる1種以上の元素の化合物を加えて混合することを特徴とする請求項1記載の方法。 When mixing the compound of the first component, the second component and the third component and water, adding a compound of one or more elements selected from cerium, vanadium or niobium as the fourth component and mixing The method of claim 1, characterized in that: 前記第一成分、第二成分及び第三成分の化合物の混合物に、前記第四成分の化合物と水とを混合して得られた触媒スラリまたはペーストを、担体に担持するかまたはハニカム状に押出し成形後焼成することを特徴とする請求項2記載の方法。 A catalyst slurry or paste obtained by mixing the fourth component compound and water into the mixture of the first component, the second component and the third component compound is supported on a carrier or extruded into a honeycomb shape. The method according to claim 2, wherein firing is performed after molding. 前記担体が、金属もしくは無機繊維の網状物、無機繊維織布、またはシリカアルミナ無機繊維シートをコルゲート加工して得られたコルゲートハニカム担体であることを特徴とする請求項1〜3のいずれかに記載の方法。


4. The corrugated honeycomb carrier obtained by corrugating a metal or inorganic fiber network, an inorganic fiber woven fabric, or a silica-alumina inorganic fiber sheet. The method described.


JP2004141000A 2004-05-11 2004-05-11 Method for producing catalyst for removing nitrogen oxides Expired - Lifetime JP5156173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141000A JP5156173B2 (en) 2004-05-11 2004-05-11 Method for producing catalyst for removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141000A JP5156173B2 (en) 2004-05-11 2004-05-11 Method for producing catalyst for removing nitrogen oxides

Publications (2)

Publication Number Publication Date
JP2005319422A JP2005319422A (en) 2005-11-17
JP5156173B2 true JP5156173B2 (en) 2013-03-06

Family

ID=35467096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141000A Expired - Lifetime JP5156173B2 (en) 2004-05-11 2004-05-11 Method for producing catalyst for removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP5156173B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881716B2 (en) * 2006-12-25 2012-02-22 日立造船株式会社 Method for producing denitration catalyst
JP5022697B2 (en) * 2006-12-25 2012-09-12 日立造船株式会社 Method for producing denitration catalyst
JP5401049B2 (en) 2008-04-22 2014-01-29 日立造船株式会社 Slurry for producing denitration catalyst, method for producing the slurry, method for producing denitration catalyst using the slurry, and denitration catalyst produced by the method
JP5723646B2 (en) 2011-03-25 2015-05-27 日立造船株式会社 Method for preparing denitration catalyst
US9242211B2 (en) * 2011-05-30 2016-01-26 The Babcock & Wilcox Company Catalysts possessing an improved resistance to poisoning
CN117065794A (en) * 2015-06-18 2023-11-17 庄信万丰股份有限公司 Single or double layer ammonia slip catalyst
WO2018011132A1 (en) * 2016-07-15 2018-01-18 Haldor Topsøe A/S Method for the preparation of a vanadium based catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204040A (en) * 1985-03-05 1986-09-10 Ube Ind Ltd Production of catalyst for purifying nitrogen oxides
JPH0768172A (en) * 1993-07-20 1995-03-14 Sakai Chem Ind Co Ltd Catalyst for catalyst production of nox and method thereof
JPH0824651A (en) * 1994-07-22 1996-01-30 Nippon Shokubai Co Ltd Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3775815B2 (en) * 1995-02-24 2006-05-17 バブコック日立株式会社 Nitrogen oxide removal method
JP4112661B2 (en) * 1997-12-11 2008-07-02 住友化学株式会社 Photocatalyst and its use
JPH11342333A (en) * 1998-05-29 1999-12-14 Catalysts & Chem Ind Co Ltd Shared of nox removal catalyst and its production
JP4225735B2 (en) * 2002-03-01 2009-02-18 バブコック日立株式会社 Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
JP4538198B2 (en) * 2002-04-18 2010-09-08 日揮触媒化成株式会社 Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder

Also Published As

Publication number Publication date
JP2005319422A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP6595088B2 (en) SCR catalyst for removing nitrogen oxides and method for producing the same
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
KR20140033000A (en) Ce containing, v-free mobile denox catalyst
JP4225735B2 (en) Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
KR101700433B1 (en) Titanium dioxide nanocomposites for Plate-type Selective Catalytic Reduction
JP6047477B2 (en) NOx removal catalyst and method for producing the same
KR101362606B1 (en) NOx REMOVAL CATALYST FOR HIGH-TEMPERATURE FLUE GAS, MANUFACTURING METHOD THEREOF, AND NOx REMOVAL METHOD FOR HIGH-TEMPERATURE FLUE GAS
JP2008024565A (en) Modified titanium oxide particle and its manufacturing method and exhaust gas treating catalyst using the same
WO2010013729A1 (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP6697287B2 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxide, and method for purifying exhaust gas
JP2010142688A (en) Catalyst for selective catalytic reduction of nitrogen oxide
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP4335583B2 (en) Exhaust gas purification catalyst and production method thereof
JP3660381B2 (en) Method for producing plate catalyst for exhaust gas denitration
JP2018538122A (en) Honeycomb catalyst and method for its preparation for removal of nitrogen oxides in flue and exhaust gases
JPH08229407A (en) Catalyst carrier for removing nitrogen oxide, production thereof, catalyst for removing nitrogen oxide using the catalyst carrier and removal of nitrogen oxide using the catalyst
JP2013078768A (en) Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
JP2010017687A (en) Catalyst for cleaning exhaust gas and manufacturing method therefor
KR20240031839A (en) De-nox catalyst having high durability for sulfur dioxide, manufacturing method of the same, and process for elimination of nitrogen oxides using the same
JPWO2014006697A1 (en) Manufacturing method of denitration catalyst for high temperature exhaust gas
JP2006116393A (en) Manufacturing method for catalyst for removing nitrogen oxide and catalyst
JPH04265159A (en) Platelike catalyst for removal of nitrogen oxide and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term