JP2013091045A - Exhaust gas treating method - Google Patents

Exhaust gas treating method Download PDF

Info

Publication number
JP2013091045A
JP2013091045A JP2011235584A JP2011235584A JP2013091045A JP 2013091045 A JP2013091045 A JP 2013091045A JP 2011235584 A JP2011235584 A JP 2011235584A JP 2011235584 A JP2011235584 A JP 2011235584A JP 2013091045 A JP2013091045 A JP 2013091045A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
oxide
denitration catalyst
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011235584A
Other languages
Japanese (ja)
Inventor
Atsushi Morita
敦 森田
Mitsuharu Hagi
光晴 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011235584A priority Critical patent/JP2013091045A/en
Publication of JP2013091045A publication Critical patent/JP2013091045A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To treat a nitrogen oxide contained in exhaust gas that contains components usually called poisoning substance.SOLUTION: An exhaust gas treating method is provided for treating, in the presence of a denitration catalyst, the nitrogen oxide in exhaust gas containing the nitrogen oxide that contains at least one element selected from a group consisting of alkali metal, alkali earth metal, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium, and/or its compound. The denitration catalyst contains an active component such as vanadium, niobium or tantalum, and an titanium oxide, and the titanium oxide is a composite oxide of titanium and a base material addition component such as aluminum, silicon or zirconium.

Description

本発明は、窒素酸化物が含まれる排ガスの処理に関するものであり、特にアルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモン、バナジウムが含まれる排ガスの処理に関する技術である。   The present invention relates to treatment of exhaust gas containing nitrogen oxides, and in particular, technology relating to treatment of exhaust gas containing alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron, antimony, and vanadium. It is.

現在実用化されている排ガス中の窒素酸化物除去方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的である。近年、酸性雨に代表されるように窒素酸化物による環境汚染が世界的に深刻化するに伴い、高性能な触媒が求められている。   As a method for removing nitrogen oxides in exhaust gas that is currently in practical use, a selective catalyst that catalytically reduces nitrogen oxides in exhaust gas using a reducing agent such as ammonia or urea and decomposes it into nitrogen and water. The reduction method (SCR method) is common. In recent years, as environmental pollution caused by nitrogen oxides has become serious worldwide, as represented by acid rain, a high-performance catalyst has been demanded.

脱硝触媒に関する従来技術としては、例えば、窒素酸化物の除去に有効な触媒として、チタン、バナジウムおよびタングステンからなる金属成分、またはチタン、バナジウム、タングステンおよびモリブデンからなる金属成分を含有する化合物群を混合して熱処理した原料を用いて調製した触媒について開示されている(特許文献1)。   For example, as a conventional technique related to a denitration catalyst, as a catalyst effective for removing nitrogen oxides, a metal component composed of titanium, vanadium and tungsten or a compound group containing a metal component composed of titanium, vanadium, tungsten and molybdenum is mixed. A catalyst prepared using a heat-treated raw material is disclosed (Patent Document 1).

一方、重油や石炭を燃料とする燃焼炉やボイラ、船舶用ディーゼルエンジン排ガス、ごみ焼却炉から排出される排ガス中にはアルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンなどが含まれ、これらは触媒中に蓄積して触媒活性点の被毒や触媒表面の被覆を引き起こす為、脱硝活性を低下させる要因となる。更に、重油を燃料とする燃焼炉やボイラでは排ガス中にバナジウムが含まれる場合があり、これが触媒中に蓄積するとSOのSOへの酸化活性が経時的に上昇し、触媒反応装置の後流側の配管や設備の腐食等の問題が起こる。 On the other hand, there are alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron in the exhaust gas discharged from combustion furnaces and boilers fueled with heavy oil and coal, exhaust gas from marine diesel engines, and waste incinerators Antimony and the like are contained, and these accumulate in the catalyst and cause poisoning of the catalyst active sites and coating of the catalyst surface, which causes a reduction in denitration activity. Furthermore, in combustion furnaces and boilers that use heavy oil as fuel, vanadium may be contained in the exhaust gas. When this accumulates in the catalyst, the oxidation activity of SO 2 to SO 3 increases with time, and the catalytic reactor is Problems such as corrosion of pipes and equipment on the flow side occur.

よって、触媒に求められる特性として窒素酸化物の除去性能に優れるだけでなく、排ガス中含有成分に対する被毒耐性やSO酸化率の上昇抑制が求められる場合があるが、前記公報に開示された技術ではこれらの点において必ずしも充分であるとはいえなかった。 Therefore, in addition to being excellent in nitrogen oxide removal performance as a characteristic required for the catalyst, there is a case where it is required to suppress poisoning resistance to components contained in exhaust gas and increase in SO 2 oxidation rate. Technology has not always been sufficient in these respects.

特開平10−323570号公報JP-A-10-323570

本発明の目的は上記従来技術の問題点を解決し、アルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモン、バナジウムなどの排ガス中含有成分による脱硝活性の低下およびSO酸化率の上昇を抑制できる排ガス処理方法を提供する事にある。 The object of the present invention is to solve the above-mentioned problems of the prior art, and to reduce the denitration activity due to the components contained in the exhaust gas such as alkali metal, alkaline earth metal, phosphorus, arsenic, silicon, zinc, lead, iron, antimony, vanadium, and An object of the present invention is to provide an exhaust gas treatment method capable of suppressing an increase in the SO 2 oxidation rate.

本発明者は、上記課題を解決する為に鋭意検討を行った結果、以下に示す脱硝触媒を用いる事が有効である事を見出した。本発明で用いる脱硝触媒は、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素またはその化合物(活性成分)とチタン酸化物を含みかつ当該チタン酸化物がアルミニウム、ケイ素、ジルコニウム、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素(基材添加成分)とチタンの複合酸化物および/または混合酸化物の1種以上の酸化物用いるものである。   As a result of intensive studies to solve the above problems, the present inventor has found that it is effective to use the following denitration catalyst. The denitration catalyst used in the present invention contains at least one element selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten or a compound thereof (active component) and titanium oxide, and the titanium oxide is aluminum, silicon In addition, at least one element selected from the group consisting of zirconium, molybdenum and tungsten (base material addition component) and one or more oxides of a composite oxide and / or mixed oxide of titanium are used.

本発明は、重油焚きボイラや石炭焚きボイラ、ディーゼルエンジン、火力発電所、産業廃棄物や都市廃棄物を処理する焼却施設および各種工業プロセスから排出される排ガス中に含まれる窒素酸化物(NOx)をアンモニアや尿素などの還元剤を用いて接触還元する為の排ガス処理方法に関する。   The present invention relates to nitrogen oxide (NOx) contained in exhaust gas discharged from heavy oil fired boilers, coal fired boilers, diesel engines, thermal power plants, incineration facilities for treating industrial waste and municipal waste, and various industrial processes. The present invention relates to an exhaust gas treatment method for catalytic reduction using a reducing agent such as ammonia or urea.

本発明を用いる事で、排ガス中に含まれる窒素酸化物を有効に処理することができる。特にアルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンおよびバナジウムからなる群から選ばれる少なくとも1種の元素および/またはその化合物を含有する窒素酸化物含有排ガスを処理するときであっても長時間高い窒素酸化物処理能力を維持する事ができる。また、バナジウムの蓄積によるSO酸化率の上昇を抑制する事ができる。 By using the present invention, nitrogen oxides contained in exhaust gas can be effectively treated. Particularly treating nitrogen oxide-containing exhaust gas containing at least one element selected from the group consisting of alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium and / or compounds thereof Even when this is done, a high nitrogen oxide treatment capacity can be maintained for a long time. In addition, an increase in the SO 2 oxidation rate due to the accumulation of vanadium can be suppressed.

本発明で用いる脱硝触媒は、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素またはその化合物を活性成分として含むものである。この中でも特にバナジウム、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素またはその化合物を活性成分として含むことによりNOx除去性能を高く維持できるので好適に用いられる。当該活性成分の触媒全体に占める割合は、0.1〜40質量%(酸化物換算)であるのが好ましく、より好ましくは0.2〜20質量%、更に好ましくは0.4〜10質量%である。活性成分の含有量が0.1質量%よりも少ないと充分なNOx除去性能が得られない他、アルカリ金属など排ガス中に含まれる被毒物質の影響を受けやすくなり、40質量%を超えて多くするとSO酸化率が高くなって触媒反応装置の後流側の配管や設備の腐食等の問題を引き起こす場合があるからである。なお、活性成分としてバナジウム、ニオブ、タンタル、モリブデンおよびタングステンからなる群から選ばれる少なくとも2種の元素またはその化合物を含む場合、その含有量は各々の元素またはその化合物について前記範囲の中にあるのがよい。 The denitration catalyst used in the present invention contains at least one element selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten or a compound thereof as an active component. Among these, the use of at least one element selected from the group consisting of vanadium, molybdenum and tungsten or a compound thereof as an active component is particularly preferable because it can maintain high NOx removal performance. The proportion of the active component in the total catalyst is preferably 0.1 to 40% by mass (as oxide), more preferably 0.2 to 20% by mass, and still more preferably 0.4 to 10% by mass. It is. If the content of the active ingredient is less than 0.1% by mass, sufficient NOx removal performance cannot be obtained, and it becomes susceptible to poisonous substances contained in the exhaust gas such as alkali metals, and exceeds 40% by mass. This is because if the amount is increased, the SO 2 oxidation rate becomes high, which may cause problems such as corrosion of piping and equipment on the downstream side of the catalytic reactor. When the active ingredient contains at least two elements selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten, or a compound thereof, the content is within the above range for each element or the compound. Is good.

また、本発明で用いる脱硝触媒は、前記活性成分をチタン酸化物からなる基材成分に担持させたものである。当該基材成分の触媒全体に占める割合は、60〜99.9質量%(酸化物換算)であるのが好ましく、より好ましくは80〜99.8質量%、更に好ましくは90〜99.6質量%である。基材成分の割合をこの範囲にする事によって、高いNOx除去性能を維持する事ができる。   The denitration catalyst used in the present invention is one in which the active component is supported on a base material component made of titanium oxide. The ratio of the base material component to the entire catalyst is preferably 60 to 99.9% by mass (as oxide), more preferably 80 to 99.8% by mass, and still more preferably 90 to 99.6% by mass. %. By making the ratio of the base component within this range, high NOx removal performance can be maintained.

基材成分の主成分はチタン酸化物であるが、チタン以外に基材添加成分としてアルミニウム、ケイ素、ジルコニウム、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素とチタンの複合酸化物や混合酸化物が用いられる。また、2種以上の複合酸化物や混合酸化物を混合して用いてもよい。   The main component of the base material component is titanium oxide, but in addition to titanium, as a base material addition component, at least one element selected from the group consisting of aluminum, silicon, zirconium, molybdenum, and tungsten and a composite oxide or mixture of titanium An oxide is used. Two or more complex oxides or mixed oxides may be mixed and used.

当該複合酸化物または混合酸化物中のチタン含有量は、40〜99モル%であるのが好ましく、より好ましくは60〜98モル%、更に好ましくは70〜97モル%である。チタン含有量を前記範囲にする事によって、高いNOx除去性能を維持する事ができる。特に、本発明の効果を充分に発揮する為には、当該複合酸化物または混合酸化物がケイ素を含有している事が好ましい。この場合の当該複合酸化物または混合酸化物中のケイ素の含有量は、2〜50モル%であるのが好ましく、より好ましくは4〜40モル%、更に好ましくは5〜30モル%の範囲にあるのがよい。当該複合酸化物または混合酸化物中のケイ素の含有量が2モル%未満では充分な効果が得られない場合があり、50モル%を超えるとNOx除去性能が低下するからである。   The titanium content in the composite oxide or mixed oxide is preferably 40 to 99 mol%, more preferably 60 to 98 mol%, still more preferably 70 to 97 mol%. By setting the titanium content in the above range, high NOx removal performance can be maintained. In particular, in order to sufficiently exhibit the effects of the present invention, it is preferable that the complex oxide or mixed oxide contains silicon. In this case, the content of silicon in the composite oxide or mixed oxide is preferably 2 to 50 mol%, more preferably 4 to 40 mol%, still more preferably 5 to 30 mol%. There should be. This is because if the silicon content in the composite oxide or mixed oxide is less than 2 mol%, a sufficient effect may not be obtained, and if it exceeds 50 mol%, the NOx removal performance decreases.

本発明で用いる脱硝触媒の比表面積は、50〜200m/gの範囲にあるのがよく、より好ましくは60〜150m/g、更に好ましくは65〜130m/gの範囲にあるのがよい。触媒の比表面積が低すぎると充分な触媒性能が得られない他、活性成分のシンタリングが起こりやすくなり、高すぎても触媒性能はそれほど向上しないが、被毒物質の蓄積量が多くなって耐久性が低くなる場合があるからである。 The specific surface area of the denitration catalyst used in the present invention should be in the range of 50 to 200 m 2 / g, more preferably 60 to 150 m 2 / g, and still more preferably in the range of 65 to 130 m 2 / g. Good. If the specific surface area of the catalyst is too low, sufficient catalyst performance cannot be obtained, and active component sintering tends to occur. If it is too high, the catalyst performance will not improve much, but the amount of poisonous substances accumulated will increase. This is because the durability may be lowered.

また、本発明で用いる脱硝触媒の細孔容積は、全細孔容積が0.2〜0.7mL/gの範囲にあるのがよく、より好ましくは0.3〜0.6mL/g、更に好ましくは0.35〜0.5mL/gの範囲にあるのがよい。触媒の細孔容積が小さすぎると十分な触媒性能が得られず、大きすぎても触媒性能はそれほど向上しないが、触媒の機械的強度が低下してハンドリングに支障をきすことや耐磨耗性が低くなるなどの弊害が生じるおそれがあるので好ましくない。   The pore volume of the denitration catalyst used in the present invention is such that the total pore volume is in the range of 0.2 to 0.7 mL / g, more preferably 0.3 to 0.6 mL / g, Preferably it is in the range of 0.35 to 0.5 mL / g. If the pore volume of the catalyst is too small, sufficient catalyst performance will not be obtained, and if it is too large, the catalyst performance will not improve so much, but the mechanical strength of the catalyst will be reduced and handling will be hindered and abrasion resistance This is not preferable because there is a risk of adverse effects such as lowering.

本発明で用いる脱硝触媒の調製法としては、各種金属化合物を用いた一般的な調製方法を用いる事ができ、例えば、含浸法、共沈法、混錬法、アルコキシド法などが用いられる。   As a preparation method of the denitration catalyst used in the present invention, a general preparation method using various metal compounds can be used. For example, an impregnation method, a coprecipitation method, a kneading method, an alkoxide method and the like are used.

各触媒成分の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられる。具体的にはアンモニウム塩、シュウ酸塩、硫酸塩、硝酸塩、ハロゲン化物などが挙げられ、例えばチタン供給源としては、硫酸チタニル、四塩化チタン、テトライソプロピルチタネートなどが用いられ、ケイ素供給源としてはシリカゾル、水ガラス、四塩化ケイ素などを用いる事ができる。またバナジウム源としては、メタタングステンバナジン酸アンモニウムなどが用いられ、タングステン源としてはメタタングステン酸アンモニウム、パラタングステン酸アンモニウムなどが用いられ、モリブデン源としてはパラモリブデン酸アンモニウム、モリブデン酸などが用いられる。   As starting materials for each catalyst component, oxides, hydroxides, inorganic salts, organic salts, and the like of each element are used. Specific examples include ammonium salts, oxalates, sulfates, nitrates, halides, etc. For example, titanium sources include titanyl sulfate, titanium tetrachloride, tetraisopropyl titanate, etc. Silica sol, water glass, silicon tetrachloride and the like can be used. As the vanadium source, ammonium metatungsten vanadate is used, as the tungsten source, ammonium metatungstate, ammonium paratungstate, etc. are used, and as the molybdenum source, ammonium paramolybdate, molybdic acid, etc. are used.

本発明で用いる脱硝触媒は、押し出し成形、打錠成形、転動造粒などにより、サドル状、ペレット、球体、ハニカム状に成形して用いることができる。またサドル状、ペレット、球体、ハニカム状の担体に脱硝触媒の成分を被覆して用いる事もできる。排ガス処理装置の圧力損失を少なくするにはハニカム状が好ましい。   The denitration catalyst used in the present invention can be formed into a saddle shape, a pellet, a sphere, or a honeycomb shape by extrusion molding, tableting molding, rolling granulation, or the like. Further, a saddle-shaped, pellet, sphere, or honeycomb-shaped carrier can be used by coating the components of the denitration catalyst. A honeycomb shape is preferable for reducing the pressure loss of the exhaust gas treatment apparatus.

本発明の排ガス処理方法は、アルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンおよびバナジウムからなる群から選ばれる少なくとも1種の元素及び/またはその化合物を含有する排ガス中の窒素酸化物を除去する排ガス処理方法であるが、当該排ガス中に含まれるアルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンおよびバナジウムからなる群から選ばれる少なくとも1種の元素及び/またはその化合物の濃度は、100g/m(Normal)以下であるのがよく、好ましくは50g/m(Normal)以下、より好ましくは30g/m(Normal)以下であるのがよい。 The exhaust gas treatment method of the present invention contains at least one element selected from the group consisting of alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium and / or compounds thereof. An exhaust gas treatment method for removing nitrogen oxides in exhaust gas, selected from the group consisting of alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium contained in the exhaust gas The concentration of the at least one element and / or compound thereof may be 100 g / m 3 (Normal) or less, preferably 50 g / m 3 (Normal) or less, more preferably 30 g / m 3 (Normal). It should be:

アルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンおよびバナジウムからなる群から選ばれる少なくとも1種の元素及び/またはその化合物の濃度が100g/m(Normal)を超えると触媒の活性低下が大きくなる他、場合によってはSO酸化率の上昇も大きくなるからである。 The concentration of at least one element selected from the group consisting of alkali metal, alkaline earth metal, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium and / or its compound is 100 g / m 3 (Normal) This is because if it exceeds, the decrease in the activity of the catalyst increases, and in some cases, the increase in the SO 2 oxidation rate also increases.

本発明の排ガス処理方法における排ガスの処理温度は、150〜600℃、好ましくは170〜550℃、より好ましくは200〜500℃の範囲にあるのがよい。排ガスの処理温度が150℃未満では充分なNOx除去効率が得られない他、触媒の活性低下が大きくなり、600℃を超えると触媒の熱劣化が大きくなる他、SO酸化率が高くなるからである。また、本発明の排ガス処理に際しての空間速度は、500〜100,000hr−1(STP)、好ましくは1,000〜50,000hr−1(STP)、より好ましくは1,500〜30,000hr−1(STP)の範囲にあるのがよい。空間速度が100,000hr−1(STP)を超えると充分なNOx除去効率が得られず、500hr−1(STP)未満ではNOx除去効率は大きく変わらないが排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって非効率だからである。更に、本発明の排ガス処理に際しての触媒層を通過するガスの線速度は、0.1〜10m/sec(Normal)、好ましくは0.5〜7m/sec(Normal)、より好ましくは0.7〜4m/sec(Normal)の範囲にあるのがよい。線速度が0.1m/sec(Normal)未満では充分なNOx除去効率が得られず、10m/sec(Normal)を超えるとNOx除去効率は大きく変わらないが、排ガス処理装置の圧力損失が高くなるからである。 The treatment temperature of the exhaust gas in the exhaust gas treatment method of the present invention is in the range of 150 to 600 ° C, preferably 170 to 550 ° C, more preferably 200 to 500 ° C. If the exhaust gas treatment temperature is less than 150 ° C., sufficient NOx removal efficiency cannot be obtained, and the catalyst activity decreases greatly. If it exceeds 600 ° C., thermal deterioration of the catalyst increases, and the SO 2 oxidation rate increases. It is. The space velocity during the exhaust gas treatment of the present invention is 500 to 100,000 hr −1 (STP), preferably 1,000 to 50,000 hr −1 (STP), more preferably 1,500 to 30,000 hr −. It should be in the range of 1 (STP). The space velocity is not sufficient NOx removal efficiency can be obtained exceeds 100,000hr -1 (STP), although NOx removal efficiency does not change greatly increases the pressure loss of the exhaust gas treatment device is less than 500hr -1 (STP), Also, the device itself is large and inefficient. Furthermore, the linear velocity of the gas passing through the catalyst layer in the exhaust gas treatment of the present invention is 0.1 to 10 m / sec (Normal), preferably 0.5 to 7 m / sec (Normal), more preferably 0.7. It should be in the range of ˜4 m / sec (Normal). If the linear velocity is less than 0.1 m / sec (Normal), sufficient NOx removal efficiency cannot be obtained, and if it exceeds 10 m / sec (Normal), the NOx removal efficiency does not change greatly, but the pressure loss of the exhaust gas treatment device increases. Because.

本発明で用いる脱硝触媒は、排ガス中に酸素が存在する条件下で好適に用いられるが、この場合の酸素濃度は、0.1〜50容量%の範囲にあるのが好ましく、より好ましくは0.3〜20容量%、更に好ましくは0.5〜16容量%の範囲にあるのがよい。酸素濃度が0.1容量%未満ではNOx除去効率が低下し、50容量%を超えるとSO酸化率が高くなるからである。また、排ガス中に水分を含む場合には、その濃度は50容量%以下であるのが好ましく、より好ましくは40容量%以下、更に好ましくは30容量%以下であるのがよい。排ガス中の水分濃度が50容量%を超えるとNOx除去効率が低下するからである。更に、排ガス中のSOx濃度は1〜10000ppm(容量基準)であるのが好ましく、より好ましくは10〜7000ppm、更に好ましくは20〜5000ppmであるのがよい。排ガス中のSOx濃度が1ppm以上であればアルカリ金属など排ガス中の被毒物質による活性低下が軽減されるので好ましい。一方、排ガス中のSOx濃度が10000ppmを超えるとSOxによる活性低下が問題となる場合があるからである。 The denitration catalyst used in the present invention is suitably used under conditions where oxygen is present in the exhaust gas. In this case, the oxygen concentration is preferably in the range of 0.1 to 50% by volume, more preferably 0. It should be in the range of 3 to 20% by volume, more preferably 0.5 to 16% by volume. This is because if the oxygen concentration is less than 0.1% by volume, the NOx removal efficiency decreases, and if it exceeds 50% by volume, the SO 2 oxidation rate increases. When the exhaust gas contains moisture, the concentration is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 30% by volume or less. This is because NOx removal efficiency decreases when the moisture concentration in the exhaust gas exceeds 50% by volume. Furthermore, the SOx concentration in the exhaust gas is preferably 1 to 10000 ppm (volume basis), more preferably 10 to 7000 ppm, and still more preferably 20 to 5000 ppm. If the SOx concentration in the exhaust gas is 1 ppm or more, it is preferable because a decrease in activity due to poisonous substances in the exhaust gas such as alkali metals is reduced. On the other hand, if the SOx concentration in the exhaust gas exceeds 10,000 ppm, there may be a problem that the activity is reduced by SOx.

以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved.

(実施例1)
<脱硝触媒の調製>
シリカゾル(SiO2として20質量%含有)20kgと25質量%アンモニア水225kgを混合した液に、硫酸チタニルの硫酸溶液(TiOとして125g/L、硫酸濃度550g/L)240Lをよく攪拌しながら徐々に滴下し、沈殿を生成させ後、適量のアンモニア水を加えてpHを8に調整した。このスラリーを熟成、濾過、洗浄した後、150℃で10時間乾燥した。これを空気雰囲気下550℃で6時間焼成し、さらにハンマーミルを用いて粉砕し、Ti−Si複合酸化物粉体を得た。このようにして調製したTi−Si複合酸化物粉体の組成は、Ti:Si=85:15(モル比)であった。
Example 1
<Preparation of denitration catalyst>
While mixing 20 liters of silica sol (containing 20 mass% as SiO 2 ) and 225 kg of 25 mass% ammonia water, 240 L of sulfuric acid solution of titanyl sulfate (125 g / L as TiO 2 , sulfuric acid concentration 550 g / L) is gradually stirred. After adding dropwise to form a precipitate, an appropriate amount of aqueous ammonia was added to adjust the pH to 8. The slurry was aged, filtered, washed and dried at 150 ° C. for 10 hours. This was fired at 550 ° C. for 6 hours in an air atmosphere, and further pulverized using a hammer mill to obtain a Ti—Si composite oxide powder. The composition of the Ti—Si composite oxide powder thus prepared was Ti: Si = 85: 15 (molar ratio).

次にメタバナジン酸アンモニウム0.6kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液とパラタングステン酸アンモニウムの10質量%メチルアミン水溶液(WOとして400g/L)4.4Lを成形助剤と適量の水とともに、先に調製したTi−Si複合酸化物20kgに加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き3.2mm、肉厚0.5mmのハニカム状に押し出し成形した。このハニカム成形体を80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Aを得た。 Next, 0.6 kg of ammonium metavanadate, 0.7 kg of oxalic acid, and 0.2 kg of monoethanolamine were mixed and dissolved in 2 L of water to prepare a uniform solution. 4.4 L of this vanadium-containing solution and 10 mass% aqueous solution of ammonium paratungstate methylamine (400 g / L as WO 3 ) are added to 20 kg of the Ti-Si composite oxide prepared above together with a molding aid and an appropriate amount of water. After kneading with a kneader, extrusion molding was performed into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 3.2 mm, and a wall thickness of 0.5 mm. The honeycomb formed body was dried at 80 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a denitration catalyst A.

脱硝触媒Aの組成は、(Ti−Si複合酸化物):V:WO=90:2:8(質量比)であり、BET比表面積は116m/g、全細孔容積は0.46mL/gであった。 The composition of the denitration catalyst A is (Ti—Si composite oxide): V 2 O 5 : WO 3 = 90: 2: 8 (mass ratio), the BET specific surface area is 116 m 2 / g, and the total pore volume is It was 0.46 mL / g.

<NOx分解試験>
反応管に上記脱硝触媒Aを充填し、下記組成の合成ガスを下記処理条件で導入した。なお、触媒の充填量は、下記処理条件に記載の空間速度(SV)にあわせて決定した。
<NOx decomposition test>
The reaction tube was filled with the denitration catalyst A, and synthesis gas having the following composition was introduced under the following processing conditions. The catalyst filling amount was determined in accordance with the space velocity (SV) described in the following processing conditions.

[合成ガス組成]
NOx:250ppm,NH:200ppm,SO:2000ppm,O:2容量%,HO:10容量%,N:balance
[処理条件]
処理温度:350℃,空間速度:10,000hr−1(STP),ガス線速度:2.0m/sec(Normal)
次に、脱硝触媒入口および脱硝触媒出口のNOx濃度を測定し、次式に従って脱硝率を算出した。結果を表1に示す。
脱硝率(%)={(脱硝触媒入口NOx濃度)−(脱硝触媒出口NOx濃度)}/(脱硝触媒入口NOx濃度)×100
(実施例2)
<Naの含浸>
排ガス成分としてNaが存在したとき触媒に付着するであろうNaを予め触媒に含ませることにより、被毒物質(Na)に対する触媒性能を評価する実施例である。
[Syngas composition]
NOx: 250 ppm, NH 3 : 200 ppm, SO 2 : 2000 ppm, O 2 : 2% by volume, H 2 O: 10% by volume, N 2 : balance
[Processing conditions]
Processing temperature: 350 ° C., space velocity: 10,000 hr −1 (STP), gas linear velocity: 2.0 m / sec (Normal)
Next, the NOx concentration at the denitration catalyst inlet and the denitration catalyst outlet was measured, and the denitration rate was calculated according to the following equation. The results are shown in Table 1.
Denitration rate (%) = {(Denitration catalyst inlet NOx concentration) − (Denitration catalyst outlet NOx concentration)} / (Denitration catalyst inlet NOx concentration) × 100
(Example 2)
<Impregnation of Na>
This is an example in which the catalyst performance with respect to the poisoning substance (Na) is evaluated by previously including in the catalyst Na that will adhere to the catalyst when Na is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aに硝酸ナトリウム水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のNa含有量は触媒全体に対して2質量%(NaO換算)であった。 The denitration catalyst A prepared in Example 1 was impregnated with an aqueous sodium nitrate solution, dried at 80 ° C., and calcined at 400 ° C. for 3 hours in an air atmosphere. The Na content of this catalyst was 2% by mass (converted to Na 2 O) with respect to the entire catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記Na含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the Na-impregnated catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例3)
<Kの含浸>
排ガス成分としてKが存在したとき触媒に付着するであろうKを予め触媒に含ませることにより、被毒物質(K)に対する触媒性能を評価する実施例である。
(Example 3)
<K impregnation>
This is an example in which the catalyst performance with respect to the poisoning substance (K) is evaluated by previously including in the catalyst K that will adhere to the catalyst when K is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aに硝酸カリウム水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のK含有量は触媒全体に対して2質量%(KO換算)であった。 The denitration catalyst A prepared in Example 1 was impregnated with an aqueous potassium nitrate solution, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. The K content of this catalyst was 2% by mass (converted to K 2 O) with respect to the entire catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記K含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the K impregnation catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例4)
<Mgの含浸>
排ガス成分としてMgが存在したとき触媒に付着するであろうMgを予め触媒に含ませることにより、被毒物質(Mg)に対する触媒性能を評価する実施例である。
Example 4
<Impregnation of Mg>
This is an example in which the catalyst performance with respect to the poisoning substance (Mg) is evaluated by preliminarily containing Mg that will adhere to the catalyst when Mg is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aに硝酸マグネシウム水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のMg含有量は触媒全体に対して2質量%(MgO換算)であった。   The denitration catalyst A prepared in Example 1 was impregnated with an aqueous magnesium nitrate solution, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. The Mg content of this catalyst was 2% by mass (MgO conversion) with respect to the whole catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記Mg含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the Mg impregnated catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例5)
<Caの含浸>
排ガス成分としてCaが存在したとき触媒に付着するであろうCaを予め触媒に含ませることにより、被毒物質(Ca)に対する触媒性能を評価する実施例である。
(Example 5)
<Ca impregnation>
This is an example in which the catalyst performance with respect to the poisoning substance (Ca) is evaluated by previously including in the catalyst Ca that will adhere to the catalyst when Ca is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aに硝酸カルシウム水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のCa含有量は触媒全体に対して2質量%(CaO換算)であった。   The denitration catalyst A prepared in Example 1 was impregnated with an aqueous calcium nitrate solution, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. The Ca content of this catalyst was 2% by mass (CaO conversion) with respect to the whole catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記Ca含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the above Ca-impregnated catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例6)
<Pの含浸>
排ガス成分としてPが存在したとき触媒に付着するであろうPを予め触媒に含ませることにより、被毒物質(P)に対する触媒性能を評価する実施例である。
(Example 6)
<P impregnation>
This is an example in which the catalyst performance with respect to the poisoning substance (P) is evaluated by previously including in the catalyst P that will adhere to the catalyst when P is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aにリン酸水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のP含有量は触媒全体に対して2質量%(P換算)であった。 The denitration catalyst A prepared in Example 1 was impregnated with an aqueous phosphoric acid solution, dried at 80 ° C., and calcined at 400 ° C. for 3 hours in an air atmosphere. The P content of this catalyst was 2% by mass (converted to P 2 O 5 ) with respect to the whole catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記P含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the P impregnation catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例7)
<Asの含浸>
排ガス成分としてAsが存在したとき触媒に付着するであろうAsを予め触媒に含ませることにより、被毒物質(As)に対する触媒性能を評価する実施例である。
(Example 7)
<As impregnation>
This is an example in which the catalyst performance with respect to the poisoning substance (As) is evaluated by previously including in the catalyst As that will adhere to the catalyst when As is present as the exhaust gas component.

実施例1で調製した脱硝触媒Aに砒酸水溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のAs含有量は触媒全体に対して2質量%(As換算)であった。 The denitration catalyst A prepared in Example 1 was impregnated with an aqueous arsenic acid solution, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. As content of this catalyst was 2 mass% (As 2 O 3 conversion) with respect to the whole catalyst.

<NOx分解試験>
実施例1のNOx分解試験において、脱硝触媒Aのかわりに上記As含浸触媒を用いた事以外は、実施例1と同様にしてNOx分解試験を行なった。結果を表1に示す。
<NOx decomposition test>
In the NOx decomposition test of Example 1, the NOx decomposition test was performed in the same manner as in Example 1 except that the As impregnated catalyst was used instead of the denitration catalyst A. The results are shown in Table 1.

(実施例8)
<SO酸化試験>
反応管に実施例1で調製した脱硝触媒Aを充填し、下記組成の合成ガスを下記条件で導入した。なお、触媒の充填量は、下記処理条件に記載の空間速度(SV)にあわせて決定した。
(Example 8)
<SO 2 oxidation test>
The reaction tube was filled with the denitration catalyst A prepared in Example 1, and a synthesis gas having the following composition was introduced under the following conditions. The catalyst filling amount was determined in accordance with the space velocity (SV) described in the following processing conditions.

[合成ガス組成]
NOx:250ppm,NH:200ppm,SO:2000ppm,O:2容量%,HO:10容量%,N:balance
[処理条件]
処理温度:350℃,空間速度:10,000hr−1(STP),ガス線速度:2.0m/sec(Normal)
次に、脱硝触媒入口のSO濃度および脱硝触媒出口のSO濃度を測定し、次式に従ってSO酸化率を算出した。結果を表2に示す。
SO酸化率(%)=(脱硝触媒出口SO濃度)/(脱硝触媒入口SO濃度)×100
(実施例9)
<Vの含浸>
排ガス成分としてVが存在したとき触媒に付着するであろうVを予め触媒に含ませることにより、触媒中のVの増加によるSO酸化率の変化を評価する実施例である。
[Syngas composition]
NOx: 250 ppm, NH 3 : 200 ppm, SO 2 : 2000 ppm, O 2 : 2% by volume, H 2 O: 10% by volume, N 2 : balance
[Processing conditions]
Processing temperature: 350 ° C., space velocity: 10,000 hr −1 (STP), gas linear velocity: 2.0 m / sec (Normal)
Next, the SO 2 concentration at the denitration catalyst inlet and the SO 3 concentration at the denitration catalyst outlet were measured, and the SO 2 oxidation rate was calculated according to the following equation. The results are shown in Table 2.
SO 2 oxidation rate (%) = (denitration catalyst outlet SO 3 concentration) / (denitration catalyst inlet SO 2 concentration) × 100
Example 9
<V impregnation>
In this example, the change in the SO 2 oxidation rate due to the increase in V in the catalyst is evaluated by previously including in the catalyst V that will adhere to the catalyst when V is present as an exhaust gas component.

実施例1で調製した脱硝触媒Aに、実施例1で用いたメタバナジン酸アンモニウム溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のV含有量は触媒全体に対して5質量%(V換算)であった。 The denitration catalyst A prepared in Example 1 was impregnated with the ammonium metavanadate solution used in Example 1, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. V content of this catalyst was 5 mass% (V 2 O 5 conversion) with respect to the whole catalyst.

<SO酸化試験>
実施例8のSO酸化試験において、脱硝触媒Aのかわりに上記V含浸触媒を用いた事以外は、実施例8と同様にしてSO酸化試験を行なった。結果を表2に示す。
<SO 2 oxidation test>
In the SO 2 oxidation test of Example 8, an SO 2 oxidation test was performed in the same manner as in Example 8 except that the V impregnation catalyst was used instead of the denitration catalyst A. The results are shown in Table 2.

(比較例1)
<脱硝触媒の調製>
メタバナジン酸アンモニウム0.6kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液とパラタングステン酸アンモニウムの10質量%メチルアミン水溶液(WOとして400g/L)4.4Lを成形助剤と適量の水とともに、TiO粉体(Cristal Global社製、DT−51(商品名))20kgに加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に押し出し成形した。このハニカム成形体を80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Bを得た。
(Comparative Example 1)
<Preparation of denitration catalyst>
A homogeneous solution was prepared by mixing and dissolving 0.6 kg of ammonium metavanadate, 0.7 kg of oxalic acid and 0.2 kg of monoethanolamine in 2 L of water. This vanadium-containing solution and 4.4 L of 10% by weight methylamine aqueous solution of ammonium paratungstate (400 g / L as WO 3 ) together with a molding aid and an appropriate amount of water are mixed with TiO 2 powder (manufactured by Crystal Global, DT-51 (Product Name) In addition to 20 kg, after kneading with a kneader, it was extruded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm. The honeycomb formed body was dried at 80 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a denitration catalyst B.

脱硝触媒Bの組成は、TiO:V:WO=90:2:8(質量比)であり、BET比表面積は71m/g、全細孔容積は0.30mL/gであった。 The composition of the denitration catalyst B is TiO 2 : V 2 O 5 : WO 3 = 90: 2: 8 (mass ratio), the BET specific surface area is 71 m 2 / g, and the total pore volume is 0.30 mL / g. there were.

<SO酸化試験>
実施例8のSO酸化試験において、脱硝触媒Aのかわりに上記脱硝触媒Bを用いた事以外は、実施例8と同様にしてSO酸化試験を行なった。結果を表2に示す。
<SO 2 oxidation test>
In the SO 2 oxidation test of Example 8, the SO 2 oxidation test was performed in the same manner as in Example 8 except that the above-described denitration catalyst B was used instead of the denitration catalyst A. The results are shown in Table 2.

(比較例2)
<Vの含浸>
排ガス成分としてVが存在したとき触媒に付着するであろうVを予め触媒に含ませることにより、触媒中のVの増加によるSO酸化率の変化を評価する比較例である。
(Comparative Example 2)
<V impregnation>
This is a comparative example for evaluating the change in the SO 2 oxidation rate due to the increase of V in the catalyst by previously including in the catalyst V that will adhere to the catalyst when V is present as an exhaust gas component.

比較例1で調製した脱硝触媒Bに、比較例1で用いたメタバナジン酸アンモニウム溶液を含浸し、80℃で乾燥した後、空気雰囲気下400℃で3時間焼成した。この触媒のV含有量は触媒全体に対して5質量%(V換算)であった。 The denitration catalyst B prepared in Comparative Example 1 was impregnated with the ammonium metavanadate solution used in Comparative Example 1, dried at 80 ° C., and then calcined at 400 ° C. for 3 hours in an air atmosphere. V content of this catalyst was 5 mass% (V 2 O 5 conversion) with respect to the whole catalyst.

<SO酸化試験>
実施例8のSO酸化試験において、脱硝触媒Aのかわりに上記V含浸触媒を用いた事以外は、実施例8と同様にしてSO酸化試験を行なった。結果を表2に示す。
<SO 2 oxidation test>
In the SO 2 oxidation test of Example 8, an SO 2 oxidation test was performed in the same manner as in Example 8 except that the V impregnation catalyst was used instead of the denitration catalyst A. The results are shown in Table 2.

Figure 2013091045
Figure 2013091045

Figure 2013091045
Figure 2013091045

本発明は産業排ガス処理に関する技術に利用することができ、窒素酸化物の処理に用いることができる。特に有効に作用するのは通常被毒物質と呼ばれる成分を含む排ガス中に含まれる窒素酸化物を処理するときである。   The present invention can be used for technology relating to industrial exhaust gas treatment and can be used for treatment of nitrogen oxides. Particularly effective is when treating nitrogen oxides contained in exhaust gas containing components usually called poisonous substances.

Claims (4)

アルカリ金属、アルカリ土類金属、リン、砒素、ケイ素、亜鉛、鉛、鉄、アンチモンおよびバナジウムからなる群から選ばれる少なくとも1種の元素および/またはその化合物を含有する窒素酸化物含有排ガス中の窒素酸化物を脱硝触媒の存在下に処理する排ガス処理方法であり、当該脱硝触媒がバナジウム、ニオブ、タンタル、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素またはその化合物(活性成分)とチタン酸化物を含みかつ当該チタン酸化物がアルミニウム、ケイ素、ジルコニウム、モリブデンおよびタングステンからなる群から選ばれる少なくとも1種の元素(基材添加成分)とチタンの複合酸化物および/または混合酸化物の1種以上の酸化物である事を特徴とする排ガス処理方法。 Nitrogen in a nitrogen oxide-containing exhaust gas containing at least one element selected from the group consisting of alkali metals, alkaline earth metals, phosphorus, arsenic, silicon, zinc, lead, iron, antimony and vanadium and / or compounds thereof An exhaust gas treatment method for treating an oxide in the presence of a denitration catalyst, wherein the denitration catalyst is at least one element selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten or a compound thereof (active component) and titanium 1 of complex oxide and / or mixed oxide of titanium containing at least one element (base material addition component) selected from the group consisting of aluminum, silicon, zirconium, molybdenum and tungsten. An exhaust gas treatment method characterized by being an oxide of more than species. 当該チタン酸化物がケイ素を含有している事を特徴とする請求項1に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 1, wherein the titanium oxide contains silicon. 当該排ガスが硫黄酸化物(SOx)を含有している事を特徴とする請求項1および請求項2に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 1 or 2, wherein the exhaust gas contains sulfur oxide (SOx). 当該排ガスが船舶用ディーゼルエンジンからの排ガスである事を特徴とする請求項1記載の排ガス処理方法。 The exhaust gas treatment method according to claim 1, wherein the exhaust gas is exhaust gas from a marine diesel engine.
JP2011235584A 2011-10-27 2011-10-27 Exhaust gas treating method Pending JP2013091045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235584A JP2013091045A (en) 2011-10-27 2011-10-27 Exhaust gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235584A JP2013091045A (en) 2011-10-27 2011-10-27 Exhaust gas treating method

Publications (1)

Publication Number Publication Date
JP2013091045A true JP2013091045A (en) 2013-05-16

Family

ID=48614612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235584A Pending JP2013091045A (en) 2011-10-27 2011-10-27 Exhaust gas treating method

Country Status (1)

Country Link
JP (1) JP2013091045A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065031A (en) * 2012-09-05 2014-04-17 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and method of regenerating the same
WO2015012202A1 (en) * 2013-07-25 2015-01-29 日立造船株式会社 Method for purifying exhaust gas
CN104474857A (en) * 2014-11-20 2015-04-01 浙江大学 Method and device for pre-oxidizing and absorbing NOx and SO2 in coal-fired flue gas by active molecules
WO2015119015A1 (en) * 2014-02-05 2015-08-13 イビデン株式会社 Honeycomb catalyst and process for producing honeycomb catalyst
CN106140146A (en) * 2016-06-27 2016-11-23 浙江大学 A kind of vanadium oxide nanometer tube denitrating catalyst with anti-poisoning performance and preparation method thereof
CN106179326A (en) * 2016-06-27 2016-12-07 浙江大学 A kind of manganese oxide nano tube supported type denitrating catalyst and preparation method thereof
CN106268769A (en) * 2016-08-26 2017-01-04 大唐南京环保科技有限责任公司 A kind of rare earth base Plate-type denitration catalyst and preparation method
KR20210049215A (en) * 2019-10-23 2021-05-06 경기대학교 산학협력단 Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR102296714B1 (en) * 2020-11-11 2021-09-06 성진세미텍주식회사 An apparatus for removing NOx

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065031A (en) * 2012-09-05 2014-04-17 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and method of regenerating the same
US9802155B2 (en) 2013-07-25 2017-10-31 Hitachi Zosen Corporation Method for purifying exhaust gas
WO2015012202A1 (en) * 2013-07-25 2015-01-29 日立造船株式会社 Method for purifying exhaust gas
JP2015024362A (en) * 2013-07-25 2015-02-05 日立造船株式会社 Exhaust gas purification method
WO2015119015A1 (en) * 2014-02-05 2015-08-13 イビデン株式会社 Honeycomb catalyst and process for producing honeycomb catalyst
JP2015147165A (en) * 2014-02-05 2015-08-20 イビデン株式会社 Honeycomb catalyst and production method of honeycomb catalyst
CN105246591A (en) * 2014-02-05 2016-01-13 揖斐电株式会社 Honeycomb catalyst and process for producing honeycomb catalyst
CN104474857A (en) * 2014-11-20 2015-04-01 浙江大学 Method and device for pre-oxidizing and absorbing NOx and SO2 in coal-fired flue gas by active molecules
CN104474857B (en) * 2014-11-20 2016-07-06 浙江大学 NO in the preposition oxidative absorption coal-fired flue-gas of bioactive moleculexAnd SO2Method and apparatus
CN106140146A (en) * 2016-06-27 2016-11-23 浙江大学 A kind of vanadium oxide nanometer tube denitrating catalyst with anti-poisoning performance and preparation method thereof
CN106179326A (en) * 2016-06-27 2016-12-07 浙江大学 A kind of manganese oxide nano tube supported type denitrating catalyst and preparation method thereof
CN106268769A (en) * 2016-08-26 2017-01-04 大唐南京环保科技有限责任公司 A kind of rare earth base Plate-type denitration catalyst and preparation method
KR20210049215A (en) * 2019-10-23 2021-05-06 경기대학교 산학협력단 Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR102378405B1 (en) * 2019-10-23 2022-03-25 경기대학교 산학협력단 Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR102296714B1 (en) * 2020-11-11 2021-09-06 성진세미텍주식회사 An apparatus for removing NOx

Similar Documents

Publication Publication Date Title
JP2013091045A (en) Exhaust gas treating method
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
JP4113090B2 (en) Exhaust gas treatment method
CN104923213B (en) A kind of nontoxic rare-earth type denitrating catalyst and its preparation method and application
JPH0242536B2 (en)
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP6591919B2 (en) Method for manufacturing honeycomb-type denitration catalyst
JPWO2012086413A1 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
JP2014061476A (en) Oxide of titanium/silicon/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2012206058A (en) Denitration catalyst and denitrification method
JP2013071071A (en) Method for treating exhaust gas
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP2020163368A (en) Exhaust gas-treating catalyst, production method therefor, exhaust gas treatment method using the catalyst and method for engineering the catalyst
JP2013193938A (en) Denitration catalyst, method of preparing the same, and method of denitration
JP2015181971A (en) Catalyst and method for treating marine exhaust gas
JPS59213442A (en) Preparation of denitration catalyst
JP2017177051A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2548756B2 (en) Catalyst for removing nitrogen oxides