JP2015181971A - Catalyst and method for treating marine exhaust gas - Google Patents

Catalyst and method for treating marine exhaust gas Download PDF

Info

Publication number
JP2015181971A
JP2015181971A JP2014057925A JP2014057925A JP2015181971A JP 2015181971 A JP2015181971 A JP 2015181971A JP 2014057925 A JP2014057925 A JP 2014057925A JP 2014057925 A JP2014057925 A JP 2014057925A JP 2015181971 A JP2015181971 A JP 2015181971A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014057925A
Other languages
Japanese (ja)
Inventor
森田 敦
Atsushi Morita
敦 森田
泰弘 樋口
Yasuhiro Higuchi
泰弘 樋口
裕太郎 安武
Yutaro Yasutake
裕太郎 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2014057925A priority Critical patent/JP2015181971A/en
Publication of JP2015181971A publication Critical patent/JP2015181971A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for treating marine exhaust gas which is used for treating exhaust gas generated by a marine diesel engine, more specifically, for stably treating NOx contained in exhaust gas over a long time even when the temperature of the exhaust gas is low and particularly even when sulfur oxide is contained in the exhaust gas.SOLUTION: A catalyst for treating marine exhaust gas which is used for treating exhaust gas generated by a marine diesel engine, contains: a catalyst A component comprising a compound oxide and/or a mixed oxide of titanium, silicon and tungsten, which are obtained from compounds of titanium, silicon and tungsten by a coprecipitation method; and a catalyst B component comprising a compound of at least one element of vanadium, niobium and tantalum.

Description

本発明は、船舶用ディーゼル機関から発生する排ガスを処理するための触媒、及びその触媒を用いた排ガスの処理に関するものである。特に硫黄酸化物が含まれる排ガスの処理に関するものである。   The present invention relates to a catalyst for treating exhaust gas generated from marine diesel engines, and to treatment of exhaust gas using the catalyst. In particular, it relates to treatment of exhaust gas containing sulfur oxides.

一般にディーゼルエンジンは酸素過剰型の内燃機関であり、その排気ガスは比較的多量の窒素酸化物(以下NOxともいう)を含有している。このNOxは、公害や環境破壊の原因となり得るものであるため、ディーゼルエンジンには排気ガスからNOxを除去するための方法が不可欠である。その方法として、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的に用いられている。   In general, a diesel engine is an oxygen-excess type internal combustion engine, and its exhaust gas contains a relatively large amount of nitrogen oxide (hereinafter also referred to as NOx). Since this NOx can cause pollution and environmental destruction, a method for removing NOx from exhaust gas is indispensable for diesel engines. As the method, a selective catalytic reduction method (SCR method) in which nitrogen oxide in exhaust gas is catalytically reduced on a catalyst using a reducing agent such as ammonia or urea and decomposed into nitrogen and water is generally used. Yes.

SCR法に用いられる排ガス処理触媒としては、例えば、チタン酸化物、バナジウム酸化物およびタングステン酸化物を含有する触媒(特許文献1)、またはチタン酸化物、バナジウム酸化物およびモリブデン酸化物を含有する触媒(特許文献2)等が提案されている。   As an exhaust gas treatment catalyst used in the SCR method, for example, a catalyst containing titanium oxide, vanadium oxide and tungsten oxide (Patent Document 1), or a catalyst containing titanium oxide, vanadium oxide and molybdenum oxide (Patent Document 2) and the like have been proposed.

一方、船舶などでは、中速ディーゼル機関を搭載した船舶でのSCR法内燃機関の搭載例が数多くあり、低速ディーゼル機関においてもSCR内燃機関の搭載について検討が進められている。船舶用ディーゼル機関からの排気ガスの浄化に使用される触媒としては、耐硫黄被毒特性に優れる触媒成分として、シリカ/アルミナ比が大きなゼオライトや、バナジウム、タングステン、モリブデン、ニオブ、又はチタンから選ばれる一種以上の酸化物の使用が開示されている(特許文献3)。   On the other hand, in ships and the like, there are many examples of mounting an SCR internal combustion engine on a ship equipped with a medium-speed diesel engine, and studies are being made on mounting an SCR internal combustion engine in a low-speed diesel engine. The catalyst used to purify exhaust gas from marine diesel engines is selected from zeolite with a high silica / alumina ratio, vanadium, tungsten, molybdenum, niobium, or titanium as a catalyst component with excellent sulfur poisoning resistance. The use of one or more oxides is disclosed (Patent Document 3).

船舶へのSCR搭載における最も注意すべき問題点は、燃料油中に含有される硫黄分による触媒の被毒である。還元剤に使用するアンモニアが排ガス中の硫黄酸化物(以下SOxともいう)等と反応し,酸性硫安(硫酸水素アンモニウム:NHHSO)を生成し、これが触媒表面に付着することで触媒の機能低下を招き、特に、この問題は排ガス温度が約300℃以下の雰囲気において顕著であるとされている。中速ディーゼル機関では,ほとんどの機関における排ガス温度が300℃以上あるために、この問題は軽減される。 The most notable problem in mounting SCR on ships is poisoning of the catalyst by sulfur contained in fuel oil. Ammonia used as a reducing agent reacts with sulfur oxides (hereinafter also referred to as SOx) in exhaust gas to produce acidic ammonium sulfate (ammonium hydrogen sulfate: NH 4 HSO 4 ), which adheres to the surface of the catalyst. In particular, this problem is considered to be remarkable in an atmosphere having an exhaust gas temperature of about 300 ° C. or lower. In medium-speed diesel engines, this problem is mitigated because the exhaust gas temperature in most engines is above 300 ° C.

これに対して、低速ディーゼル機関においてはほとんどの機関で排ガス温度が300℃以下であり、特に機関性能の優れた最新機種では250℃を下回るものまである。低速ディーゼル機関において、排ガス温度が低いということは捨てる熱量が少ないということを意味しており、高効率で、低燃費、低CO排出であることのあかしでもある。その反面、排ガスの処理温度が300℃以下になることからSOx等の被毒が顕著になり、触媒の耐久性という点で問題があった。そのため前の特許文献3に記載された耐硫黄被毒特性を優れる触媒であっても、高効率で、低燃費、低CO排出の性能を維持しつつNOxを効率よく除去し、さらにSOx等の被毒に対する耐久性を維持することにおいては改善の余地があった。 On the other hand, in most low speed diesel engines, the exhaust gas temperature is 300 ° C. or lower in most engines, and in particular, the latest models with excellent engine performance are below 250 ° C. In a low-speed diesel engine, a low exhaust gas temperature means that the amount of heat to be discarded is small, and it is also a testament to high efficiency, low fuel consumption, and low CO 2 emissions. On the other hand, since the exhaust gas treatment temperature is 300 ° C. or less, poisoning such as SOx becomes remarkable, and there is a problem in terms of durability of the catalyst. Therefore, even if the catalyst is superior in sulfur poisoning resistance described in Patent Document 3 above, NOx is efficiently removed while maintaining high efficiency, low fuel consumption, and low CO 2 emission performance, and further, SOx, etc. There was room for improvement in maintaining durability against poisoning.

特許第3337634号公報Japanese Patent No. 3337634 特許第3749078号公報Japanese Patent No. 3749078 特開2011−32953号公報JP 2011-32953 A

本発明の目的は、従来の触媒に比べて硫黄酸化物などによる性能低下が少なく、特に、排ガスの低温度域においてもより長時間にわたって排ガス中の窒素酸化物を除去する事ができる船舶用ディーゼル機関からの排気ガスを処理する触媒、およびこの触媒を用いた船舶用ディーゼル機関から発生する排気ガスを処理する方法を提供することにある。   An object of the present invention is a marine diesel capable of removing nitrogen oxides in exhaust gas over a longer period of time even in a low temperature range of exhaust gas, with less performance degradation due to sulfur oxide or the like than conventional catalysts. An object of the present invention is to provide a catalyst for treating exhaust gas from an engine and a method for treating exhaust gas generated from a marine diesel engine using the catalyst.

本発明者は、上記課題を解決する為に鋭意検討を行った結果、以下に示す組成の触媒が有効である事を見出した。   As a result of intensive studies in order to solve the above problems, the present inventor has found that a catalyst having the following composition is effective.

すなわち本発明の第一の発明は、船舶用ディーゼル機関から発生する排気ガスを処理する触媒は、触媒A成分として、チタン、ケイ素およびタングステンの3種の化合物から共沈法によって得られる複合酸化物および/または混合酸化物、触媒B成分として、バナジウム、ニオブおよびタンタルの少なくとも1種の元素の化合物を含有し、かつ触媒B成分の含有量が触媒A成分と触媒B成分の合計に対して0.2〜10質量%(酸化物換算)であることを特徴とするものである。   That is, according to the first aspect of the present invention, a catalyst for treating exhaust gas generated from a marine diesel engine is a composite oxide obtained by a coprecipitation method from three compounds of titanium, silicon and tungsten as a catalyst A component. And / or a mixed oxide and a catalyst B component containing a compound of at least one element of vanadium, niobium and tantalum, and the content of the catalyst B component is 0 with respect to the total of the catalyst A component and the catalyst B component .2 to 10% by mass (as oxide).

本発明の第二の発明は、第一の発明の触媒を用いることを特徴とする船舶用ディーゼル機関からの排ガスを処理する方法である。   A second invention of the present invention is a method for treating exhaust gas from a marine diesel engine characterized by using the catalyst of the first invention.

本発明を用いる事で、排ガスの温度が低温度域、特に300℃以下の温度域においても硫黄酸化物による性能低下を抑制する事が可能になり、排ガス中に含まれるNOxを長時間にわたって安定的に処理する事ができる。   By using the present invention, it becomes possible to suppress the performance deterioration due to sulfur oxide even in the low temperature range, particularly in the temperature range of 300 ° C. or less, and the NOx contained in the exhaust gas can be stabilized for a long time. Can be processed automatically.

本発明の排ガス処理触媒は、触媒A成分として、チタン、ケイ素およびタングステンの3種の化合物から共沈法によって得られる複合酸化物および/または混合酸化物、触媒B成分として、バナジウム、ニオブおよびタンタルの少なくとも1種の元素の化合物の少なくとも1種の元素の化合物を含むものである。   The exhaust gas treatment catalyst of the present invention is a composite oxide and / or mixed oxide obtained by coprecipitation from three compounds of titanium, silicon and tungsten as the catalyst A component, and vanadium, niobium and tantalum as the catalyst B component. And at least one elemental compound of at least one elemental compound.

触媒A成分の組成はNOx除去性能および耐久性に大きく影響し、具体的には触媒A成分はチタン、ケイ素およびタングステンの元素を必須とし、これら元素の化合物から共沈法によって得られる複合酸化物および/または混合酸化物である。触媒A成分中のチタンの含有量は酸化物換算で70〜98質量%であるのがよく、好ましくは75〜95質量%、更に好ましくは80〜93質量%であるのがよい。触媒A成分中のチタンの含有量が酸化物換算で98質量%を超えて多くすると充分な耐久性が得られず、70質量%未満ではNOxの除去性能が低下する。また、触媒A成分中のケイ素の含有量は酸化物換算で1〜20質量%であるのがよく、好ましくは1.5〜15質量%、更に好ましくは2〜10質量%であるのがよい。触媒A成分中のケイ素の含有量が酸化物換算で20質量%を超えて多くするとNOxの除去性能が低下し、1質量%未満では充分な耐久性が得られない。タングステンの含有量は1〜20質量%であれば良く、好ましくは2〜15質量%、さらに好ましくは4〜12質量%である。20質量%を越えて多くすると初期性能が顕著に低下し、1質量%未満では充分な耐久性が得られないからである。触媒中に占める触媒A成分の含有量としては、触媒A成分と触媒B成分の合計に対して酸化物換算で90〜99.8質量%であるのが好ましく、より好ましくは91〜99.7質量%、更に好ましくは91.5〜99.6質量%であるのがよい。触媒A成分の含有量が90質量%未満あるいは99.8質量%を超えるとNOx除去性能あるいは耐久性が低下する。   The composition of the catalyst A component greatly affects the NOx removal performance and durability. Specifically, the catalyst A component essentially includes elements of titanium, silicon and tungsten, and a composite oxide obtained from a compound of these elements by a coprecipitation method. And / or mixed oxides. The content of titanium in the catalyst A component is 70 to 98% by mass in terms of oxide, preferably 75 to 95% by mass, and more preferably 80 to 93% by mass. When the content of titanium in the catalyst A component exceeds 98% by mass in terms of oxide, sufficient durability cannot be obtained, and when it is less than 70% by mass, the NOx removal performance decreases. The content of silicon in the catalyst A component is preferably 1 to 20% by mass in terms of oxide, preferably 1.5 to 15% by mass, and more preferably 2 to 10% by mass. . When the content of silicon in the catalyst A component exceeds 20% by mass in terms of oxide, the NOx removal performance decreases, and when it is less than 1% by mass, sufficient durability cannot be obtained. Content of tungsten should just be 1-20 mass%, Preferably it is 2-15 mass%, More preferably, it is 4-12 mass%. This is because if it exceeds 20% by mass, the initial performance is remarkably deteriorated, and if it is less than 1% by mass, sufficient durability cannot be obtained. The content of the catalyst A component in the catalyst is preferably 90 to 99.8% by mass in terms of oxide with respect to the total of the catalyst A component and the catalyst B component, and more preferably 91 to 99.7. It is good that it is mass%, More preferably, it is 91.5-99.6 mass%. When the content of the catalyst A component is less than 90% by mass or exceeds 99.8% by mass, the NOx removal performance or durability is lowered.

また、触媒A成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられる。例えばチタン供給源としては、硫酸チタニル、四塩化チタン、テトライソプロピルチタネートなどが用いられ、ケイ素供給源としてはシリカゾル、水ガラス、四塩化ケイ素などが用いられ、タングステン源としては、メタタングステン酸アンモニウム、パラタングステン酸アンモニウムなどを用いる事ができる。   In addition, as starting materials for preparing the catalyst A component, oxides, hydroxides, inorganic salts, organic salts and the like of each element are used. For example, titanyl sulfate, titanium tetrachloride, tetraisopropyl titanate, etc. are used as the titanium source, silica sol, water glass, silicon tetrachloride, etc. are used as the silicon source, and ammonium metatungstate, For example, ammonium paratungstate can be used.

更に、本発明における触媒A成分は共沈法によって調製されるものであるが、具体的にはケイ素源とタングステン源との混合物の塩基性溶液にチタン源の酸性溶液を添加する事によって触媒A成分の前駆体を得るのがよい。このように調製する事によって、チタン、ケイ素またはタングステンの各成分が高度に分散された状態になり、高いNOxの除去性能と耐久性を具備する触媒を得る事ができる。また、このとき共沈反応後のpHは、チタン、ケイ素及びタングステンの三元系酸化物の場合では、好ましくは4〜10、より好ましくは6〜8に制御するのがよい。このように制御する事によって性能および耐久性に優れた触媒を得る事ができる。更に、共沈反応中の液またはスラリーの温度は5〜60℃の間に制御されている事が好ましく、より好ましくは10〜50℃、更に好ましくは15〜45℃の範囲にあるのが良い。共沈反応中の液またはスラリーの温度が5〜60℃の範囲を超えると触媒のNOx除去性能あるいは耐久性が低下するからである。   Furthermore, the catalyst A component in the present invention is prepared by a coprecipitation method. Specifically, the catalyst A component is added by adding an acidic solution of a titanium source to a basic solution of a mixture of a silicon source and a tungsten source. It is good to obtain the precursor of a component. By preparing in this way, each component of titanium, silicon, or tungsten is in a highly dispersed state, and a catalyst having high NOx removal performance and durability can be obtained. In this case, the pH after the coprecipitation reaction is preferably controlled to 4 to 10, more preferably 6 to 8 in the case of a ternary oxide of titanium, silicon and tungsten. By controlling in this way, a catalyst excellent in performance and durability can be obtained. Furthermore, the temperature of the liquid or slurry during the coprecipitation reaction is preferably controlled between 5 and 60 ° C, more preferably between 10 and 50 ° C, and even more preferably between 15 and 45 ° C. . This is because if the temperature of the liquid or slurry during the coprecipitation reaction exceeds the range of 5 to 60 ° C., the NOx removal performance or durability of the catalyst is lowered.

チタン、ケイ素およびタングステンを含む複合酸化物であっても共沈法を用いないで調製した複合酸化物を本願発明のA成分の代わりに用いても発明の効果は得られない。   Even if it is a complex oxide containing titanium, silicon and tungsten, the effect of the invention cannot be obtained even if a complex oxide prepared without using the coprecipitation method is used instead of the component A of the present invention.

本発明の触媒B成分は第5属元素から選択されるバナジウム、ニオブおよびタンタルの少なくとも1種の元素の化合物であるが、酸化物の形態で触媒に含有されているのが除去性能の点から好ましい。特にバナジウム酸化物を含有するのが好ましく、NOx除去性能および耐久性に優れた触媒を得る事ができる。   The catalyst B component of the present invention is a compound of at least one element selected from the group 5 elements of vanadium, niobium and tantalum, but is contained in the catalyst in the form of an oxide from the viewpoint of removal performance. preferable. In particular, it is preferable to contain vanadium oxide, and a catalyst excellent in NOx removal performance and durability can be obtained.

触媒B成分の含有量も除去性能や耐久性に大きく影響し、本発明においては触媒A成分と触媒B成分の合計に対して酸化物換算で0.2〜10質量%であるが、より好ましくは0.3〜9質量%、更に好ましくは0.4〜8.5質量%であるのがよい。触媒B成分の含有量が0.2質量%未満では充分な除去性能が得られず、10質量%を超えて多くすると金属種のシンタリングによる性能低下を引き起こす可能性がある他、触媒上でのSOからSOへの酸化が促進される為に酸性硫安の蓄積が増加し、触媒寿命に悪影響を及ぼす恐れがあるからである。なお、触媒B成分としてバナジウム、ニオブ、タンタルのうちから複数の元素の化合物を用いる場合には、各化合物の酸化物換算での合計量が上記範囲にあるのがよい。また、触媒B成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられ、例えばバナジウム源としてはメタバナジン酸アンモニウムが好適に用いられ、ニオブ源としてはシュウ酸ニオブやそのアンモニウム塩を用いる事ができる。 The content of the catalyst B component also greatly affects the removal performance and durability. In the present invention, it is 0.2 to 10% by mass in terms of oxide with respect to the total of the catalyst A component and the catalyst B component, but more preferably Is 0.3 to 9% by mass, more preferably 0.4 to 8.5% by mass. If the content of the catalyst B component is less than 0.2% by mass, sufficient removal performance cannot be obtained, and if it exceeds 10% by mass, the performance may be deteriorated due to sintering of metal species. This is because the oxidation of SO 2 to SO 3 is promoted to increase the accumulation of acidic ammonium sulfate, which may adversely affect the catalyst life. In addition, when using the compound of a some element from vanadium, niobium, and a tantalum as a catalyst B component, it is good that the total amount in conversion of the oxide of each compound exists in the said range. Further, as starting materials for preparing the catalyst B component, oxides, hydroxides, inorganic salts, organic salts, and the like of each element are used. For example, ammonium metavanadate is preferably used as the vanadium source. As a source, niobium oxalate or its ammonium salt can be used.

触媒B成分の添加方法は特に限定されないが、触媒A成分を共沈法で得た後に添加する方法や触媒A成分と触媒B成分の原料を混合した後に共沈法で得る方法がある。   The method for adding the catalyst B component is not particularly limited, and there are a method for adding the catalyst A component after it is obtained by the coprecipitation method and a method for obtaining the catalyst B component by mixing the raw materials of the catalyst A component and the catalyst B component.

なお、本発明にかかる触媒の性能を損なわないものであれば更に他の化合物を添加することもできる。   In addition, another compound can also be added as long as the performance of the catalyst according to the present invention is not impaired.

また、本発明で用いる脱硝触媒の細孔容積は、全細孔容積が0.20〜0.70mL/gの範囲にあるのがよく、より好ましくは0.25〜0.60mL/g、更に好ましくは0.28〜0.50mL/gの範囲にあるのがよい。触媒の細孔容積が小さすぎると十分な触媒性能が得られず、大きすぎても触媒性能はそれほど向上しないが、触媒の機械的強度が低下してハンドリングに支障をきたすことや耐磨耗性が低くなるなどの弊害が生じるおそれがあるので好ましくない。   The pore volume of the denitration catalyst used in the present invention is such that the total pore volume is in the range of 0.20 to 0.70 mL / g, more preferably 0.25 to 0.60 mL / g, Preferably it is in the range of 0.28 to 0.50 mL / g. If the pore volume of the catalyst is too small, sufficient catalyst performance will not be obtained, and if it is too large, the catalyst performance will not improve so much, but the mechanical strength of the catalyst will be reduced, causing handling problems and wear resistance This is not preferable because there is a risk of adverse effects such as lowering.

本発明にかかる触媒調製方法としては、(1)触媒A成分にかかる複合酸化物または混合酸化物を上記手順で得た後、触媒B成分の水性液を加えニーダーなどで十分混合し所定の形状成形し乾燥、焼成する方法、(2)触媒A成分、触媒B成分の原料を一度に混合し、pH調整することで沈殿物を得た後、当該沈殿物を乾燥、焼成し、更に水性媒体を加えスラリーとした後に所定形状に成形する方法、(3)(2)で得られたスラリーを通常触媒用担体として用いられる担体に被覆することもできる。(4)なお、(1)、(2)で成形する場合、ハニカム、ペレット、粒体に成形し乾燥、焼成し触媒とすることもできる。   As the catalyst preparation method according to the present invention, (1) after obtaining the composite oxide or mixed oxide related to the catalyst A component by the above procedure, the aqueous solution of the catalyst B component is added and sufficiently mixed with a kneader or the like, (2) The catalyst A component and the catalyst B component raw materials are mixed at once, and the pH is adjusted to obtain a precipitate. Then, the precipitate is dried and fired, and further an aqueous medium. The slurry obtained in (3) and (2) can be coated on a carrier usually used as a catalyst carrier. (4) In addition, when forming by (1) and (2), it can also be formed into honeycombs, pellets and granules, dried and fired to form a catalyst.

上述した触媒調製方法において、乾燥条件は特に限定されず、水素、窒素、空気またはこれらの混合ガス中、50〜100℃、好ましくは60〜80℃の温度で、20〜500分間、好ましくは30〜100分間で行うことができる。また、焼成条件についても特に限定されず、水素、窒素、空気またはこれらの混合ガス中、300〜600℃、好ましくは400〜550℃の温度で、2〜50時間、好ましくは3〜10時間で行うことができる。   In the catalyst preparation method described above, the drying conditions are not particularly limited, and the temperature is 50 to 100 ° C., preferably 60 to 80 ° C. in hydrogen, nitrogen, air or a mixed gas thereof, preferably 20 to 500 minutes, preferably 30. Can be done in ~ 100 minutes. Also, the firing conditions are not particularly limited, and hydrogen, nitrogen, air, or a mixed gas thereof is 300 to 600 ° C, preferably 400 to 550 ° C, and 2 to 50 hours, preferably 3 to 10 hours. It can be carried out.

本発明にかかる触媒は、押し出し成形、打錠成形、転動造粒などにより、サドル状、ペレット、球体、ハニカム状に成形して用いることができる。またサドル状、ペレット、球体、ハニカム状の担体に脱硝触媒の成分を被覆して用いる事もできる。排ガス処理装置の圧力損失を少なくするにはハニカム状が好ましい。また、その調製においては各種金属化合物を用いた一般的な調製方法を用いる事ができ、例えば、触媒A成分の成形体に触媒B成分の溶液を含浸する方法や、触媒A成分の粉体に触媒B成分の溶液または粉体を混合した後に混練する方法などが挙げられるが、細孔容積の制御などの点から混練法が好適に用いられる。   The catalyst according to the present invention can be formed into a saddle, pellet, sphere, or honeycomb by extrusion molding, tableting, rolling granulation, or the like. Further, a saddle-shaped, pellet, sphere, or honeycomb-shaped carrier can be used by coating the components of the denitration catalyst. A honeycomb shape is preferable for reducing the pressure loss of the exhaust gas treatment apparatus. Further, in the preparation, a general preparation method using various metal compounds can be used. For example, a method of impregnating a molded product of the catalyst A component with a solution of the catalyst B component, or a powder of the catalyst A component Although the method of kneading after mixing the solution or powder of the catalyst B component is mentioned, the kneading method is suitably used from the viewpoint of controlling the pore volume.

本発明の排ガス処理方法は、前記本発明の触媒を用いて排ガス中のNOxを除去する排ガス処理方法であるが、このときの排ガスの処理温度は、180〜330℃、好ましくは200〜300℃、より好ましくは220〜290℃、さらに好ましくは230〜270℃の範囲にあるのがよい。排ガスの処理温度が180℃未満ではNOxの充分な除去効率が得られない他、酸性硫安の蓄積が多くなって触媒性能の低下が大きくなり、330℃を超えると触媒が熱的ダメージを受けて性能低下を引き起こす場合があるからである。SOxの被毒による触媒性能の劣化については、前記の排ガス処理の温度域において性能低下が抑制されるという効果を示す。特に排ガスの温度が300℃以下の温度域において、本願発明の触媒を用いた処理方法は従来触媒を用いた処理方法よりもSOx等の被毒に対する耐久性に優れた効果を示す。   The exhaust gas treatment method of the present invention is an exhaust gas treatment method for removing NOx in the exhaust gas using the catalyst of the present invention. At this time, the treatment temperature of the exhaust gas is 180 to 330 ° C, preferably 200 to 300 ° C. More preferably, it should be in the range of 220 to 290 ° C, more preferably 230 to 270 ° C. If the treatment temperature of the exhaust gas is less than 180 ° C, sufficient removal efficiency of NOx cannot be obtained, and the accumulation of acidic ammonium sulfate increases, resulting in a large decrease in catalyst performance. If the treatment temperature exceeds 330 ° C, the catalyst is thermally damaged. This is because performance may be degraded. About the deterioration of the catalyst performance due to the poisoning of SOx, an effect that the performance degradation is suppressed in the temperature range of the exhaust gas treatment is shown. In particular, in the temperature range where the temperature of the exhaust gas is 300 ° C. or lower, the treatment method using the catalyst of the present invention shows an effect superior in durability against poisoning such as SOx than the treatment method using the conventional catalyst.

本発明にかかる触媒が処理対象とする排ガスは窒素酸化物(NOx)を含むものであり、排ガス中のNOx濃度は5〜1000ppm(容量基準)であるのが好ましく、より好ましくは10〜500ppm、更に好ましくは20〜300ppmの範囲にあるのがよい。排ガス中のNOx濃度が5ppm未満では充分なNOx除去性能が発揮されず、一方、1000ppmを超えると排ガス中に硫黄化合物が含まれている場合、酸性硫安の蓄積量が増加して性能低下が大きくなるため好ましくはないからである。   The exhaust gas to be treated by the catalyst according to the present invention contains nitrogen oxides (NOx), and the NOx concentration in the exhaust gas is preferably 5 to 1000 ppm (volume basis), more preferably 10 to 500 ppm, More preferably, it is in the range of 20 to 300 ppm. If the NOx concentration in the exhaust gas is less than 5 ppm, sufficient NOx removal performance will not be exhibited. On the other hand, if it exceeds 1000 ppm, if sulfur compounds are contained in the exhaust gas, the amount of acidic ammonium sulfate will increase and the performance will deteriorate significantly This is because it is not preferable.

排ガス中に有機化合物を含んでいても良いが、有機化合物の濃度は3000ppm以下(容量基準)であるのが好ましく、より好ましくは1000ppm以下、更に好ましくは500ppm以下であるのがよい。排ガス中の有機化合物の濃度が3000ppmを超えると反応による発熱が大きくなり、触媒が熱的ダメージを受ける場合があるためである。   Although the exhaust gas may contain an organic compound, the concentration of the organic compound is preferably 3000 ppm or less (volume basis), more preferably 1000 ppm or less, and even more preferably 500 ppm or less. This is because if the concentration of the organic compound in the exhaust gas exceeds 3000 ppm, heat generated by the reaction increases and the catalyst may be thermally damaged.

本発明の排ガスを処理する方法においては排ガス中にアンモニアまたは尿素(アンモニア等とも称する)を添加する形態が好適に用いられる。アンモニア等の添加量は、窒素酸化物(NOx換算)1モルに対して、アンモニア換算(尿素の場合は1/2モル)で0.2〜2.0モル、好ましくは0.5〜1.0モルである。   In the method for treating exhaust gas of the present invention, a form in which ammonia or urea (also referred to as ammonia or the like) is added to the exhaust gas is preferably used. The addition amount of ammonia or the like is 0.2 to 2.0 mol, preferably 0.5 to 1. mol in terms of ammonia (1/2 mol in the case of urea) with respect to 1 mol of nitrogen oxide (in terms of NOx). 0 mole.

なお、有機ハロゲン化合物が排ガス中に含まれる場合はアンモニア等を加える必要はないが、アンモニア等が排ガス中に加えられても本発明にかかる触媒の効果は損なわれるものではない。   In addition, when an organic halogen compound is contained in the exhaust gas, it is not necessary to add ammonia or the like, but even if ammonia or the like is added to the exhaust gas, the effect of the catalyst according to the present invention is not impaired.

更に排ガス中に含まれる成分として酸素、水、SOxなどがある。例えば、排ガス中に酸素が存在する条件下で好適に用いられるが、この場合の酸素濃度は、0.1〜50容量%の範囲にあるのが好ましく、より好ましくは0.3〜20容量%、更に好ましくは0.5〜16容量%の範囲にあるのがよい。酸素濃度が0.1容量%未満では除去効率が低下し、50容量%を超えると副反応であるSO酸化が促進されるため、好ましくない。また、排ガス中に水分を含む場合には、その濃度は50容量%以下であるのが好ましく、より好ましくは40容量%以下、更に好ましくは30容量%以下であるのがよい。排ガス中の水分濃度が50容量%を超えると除去効率が低下する他、場合によっては性能低下が大きくなるからである。 Furthermore, oxygen, water, SOx, etc. are contained in the exhaust gas. For example, it is preferably used under conditions where oxygen is present in the exhaust gas. In this case, the oxygen concentration is preferably in the range of 0.1 to 50% by volume, more preferably 0.3 to 20% by volume. More preferably, it is in the range of 0.5 to 16% by volume. If the oxygen concentration is less than 0.1% by volume, the removal efficiency decreases, and if it exceeds 50% by volume, SO 2 oxidation as a side reaction is promoted, which is not preferable. When the exhaust gas contains moisture, the concentration is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 30% by volume or less. This is because when the moisture concentration in the exhaust gas exceeds 50% by volume, the removal efficiency is lowered and, in some cases, the performance is greatly lowered.

本発明の排ガスの処理方法は排ガス中に硫黄酸化物(SOx)を含有している場合に好適に用いることができる。そのときの排ガス中のSOx濃度は5〜5000ppm(容量基準)、好ましくは10〜2000ppm、より好ましくは50〜1000ppm、更に好ましくは100〜500ppmの範囲にあるのがよい。SOx濃度が0.1ppm以上である排ガスの処理において本発明の効果が発揮される。一方、排ガス中のSOx濃度が2000ppmを超えるとSOxによる性能低下が大きくなるため、好ましくない。また、SOxの中でもSOは特に性能低下に大きく寄与するが、その濃度は0.1〜200ppm、好ましくは0.5〜100ppm、より好ましくは1〜50ppm、更に好ましくは2〜30ppmの範囲にあるのがよい。排ガス中のSO濃度が200ppmを超えるとSOxによる性能低下が大きくなるため、好ましくない。 The exhaust gas treatment method of the present invention can be suitably used when sulfur oxide (SOx) is contained in the exhaust gas. The SOx concentration in the exhaust gas at that time should be in the range of 5 to 5000 ppm (volume basis), preferably 10 to 2000 ppm, more preferably 50 to 1000 ppm, and still more preferably 100 to 500 ppm. The effect of the present invention is exhibited in the treatment of exhaust gas having a SOx concentration of 0.1 ppm or more. On the other hand, if the SOx concentration in the exhaust gas exceeds 2000 ppm, performance degradation due to SOx becomes large, which is not preferable. In addition, among SOx, SO 3 contributes particularly greatly to performance degradation, but its concentration is in the range of 0.1 to 200 ppm, preferably 0.5 to 100 ppm, more preferably 1 to 50 ppm, and even more preferably 2 to 30 ppm. There should be. If the SO 3 concentration in the exhaust gas exceeds 200 ppm, the performance degradation due to SOx increases, which is not preferable.

また、本発明の排ガス処理に際しての空間速度は、100〜100,000h−1(STP)、好ましくは200〜50,000h−1(STP)、より好ましくは500〜20,000h−1(STP)の範囲にあるのがよい。空間速度が100,000h−1(STP)を超えるとNOxや有機ハロゲン化合物の充分な除去効率が得られず、100h−1(STP)未満では除去効率は大きく変わらないが排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって船舶への搭載に支障をきたすからである。更に、本発明の排ガス処理に際しての触媒層を通過するガスの線速度は、0.1〜10m/s(Normal)、好ましくは0.5〜7m/s(Normal)、より好ましくは0.7〜4m/s(Normal)の範囲にあるのがよい。線速度が0.1m/s(Normal)未満では充分な除去効率が得られず、10m/s(Normal)を超えると除去効率は大きく変わらないが、排ガス処理装置の圧力損失が高くなるからである。 Also, space velocity during the exhaust gas treatment of the present invention, 100~100,000h -1 (STP), preferably 200~50,000h -1 (STP), more preferably 500~20,000h -1 (STP) It is good to be in the range. Not sufficient removal efficiency is obtained of the space velocity exceeds 100,000h -1 (STP) NOx and organic halogen compounds, removal efficiency but does not change significantly the pressure loss of the exhaust gas treatment device is less than 100h -1 (STP) This is because the height of the apparatus becomes large and the apparatus itself becomes large, which hinders mounting on a ship. Furthermore, the linear velocity of the gas passing through the catalyst layer in the exhaust gas treatment of the present invention is 0.1 to 10 m / s (Normal), preferably 0.5 to 7 m / s (Normal), more preferably 0.7. It should be in the range of ˜4 m / s (Normal). If the linear velocity is less than 0.1 m / s (Normal), sufficient removal efficiency cannot be obtained, and if it exceeds 10 m / s (Normal), the removal efficiency does not change greatly, but the pressure loss of the exhaust gas treatment device increases. is there.

以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved.

(実施例1)
<Ti−Si−W三元系酸化物(WO含有量:6質量%)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)1.3kg、モノエタノールアミン0.6kgを水10リットル(以下、Lと表記)に混合・溶解させ、均一溶液を調製した。このタングステン含有溶液と、シリカゾル(スノーテックス−30(製品名)、日産化学社製、SiO2換算30質量%含有)3.3kgと、工業用アンモニア水(25質量%NH含有)134kgと、水100Lとの混合溶液に、硫酸チタニルの硫酸溶液(テイカ社製、TiOとして70g/L、HSOとして287g/L含有)254Lを、攪拌しながら徐々に滴下し、沈殿を生成させた。この際、液またはスラリーの温度が15〜45℃の範囲になるように制御した。その後、適量のアンモニア水を加えてpHを7に調整した。この共沈スラリーを約20時間静置し、水で充分洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、分級機で分級してTi−Si−W三元系酸化物の粉体を得た。このようにして調製したTi−Si−W三元系酸化物粉体の組成は、TiO:SiO:WO=89:5:6(質量比)であった。
<バナジウム酸化物の添加>
7Lの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.54kg、さらにモノエタノールアミン0.3kgを混合し、溶解させ、均一溶液を調製した。先に調製したTi−Si−W三元系酸化物粉体19.0kgをニーダーに投入後、有機バインダーなどの成形助剤とともにバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、外形80mm角、長さ500mm、目開き3.2mm、肉厚0.5mmのハニカム状に押し出し成形した。得られた成形物を空気を通風しながら60℃で50分間乾燥後、空気雰囲気下500℃で5時間焼成して触媒Aを得た。この触媒Aの組成は、TiO:SiO:WO:V=84.5:4.8:5.7:5.0(質量比)であり、全細孔容積は0.43mL/gであった。
(Example 1)
<Preparation of Ti-Si-W ternary oxide (WO 3 content: 6% by mass)>
A uniform solution was prepared by mixing and dissolving 1.3 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 0.6 kg of monoethanolamine in 10 liters of water (hereinafter referred to as L). This tungsten-containing solution, silica sol (Snowtex-30 (product name), manufactured by Nissan Chemical Industries, containing 30% by mass in terms of SiO 2 ) 3.3 kg, industrial ammonia water (containing 25% by mass NH 3 ) 134 kg, To a mixed solution with 100 L of water, 254 L of a sulfuric acid solution of titanyl sulfate (manufactured by Teika, containing 70 g / L as TiO 2 and 287 g / L as H 2 SO 4 ) was gradually added dropwise with stirring to form a precipitate. It was. At this time, the temperature of the liquid or slurry was controlled to be in the range of 15 to 45 ° C. Thereafter, an appropriate amount of aqueous ammonia was added to adjust the pH to 7. The coprecipitated slurry was allowed to stand for about 20 hours, washed thoroughly with water, filtered, and dried at 100 ° C. for 1 hour. Furthermore, it was fired at 500 ° C. for 5 hours in an air atmosphere, further pulverized using a hammer mill, and classified with a classifier to obtain a Ti—Si—W ternary oxide powder. The composition of the Ti—Si—W ternary oxide powder thus prepared was TiO 2 : SiO 2 : WO 3 = 89: 5: 6 (mass ratio).
<Addition of vanadium oxide>
A homogeneous solution was prepared by mixing and dissolving 1.29 kg of ammonium metavanadate, 1.54 kg of oxalic acid, and 0.3 kg of monoethanolamine in 7 L of water. After 19.0 kg of the Ti-Si-W ternary oxide powder prepared earlier was put into a kneader, a vanadium-containing solution was added together with a molding aid such as an organic binder, followed by thorough stirring. Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape having an outer diameter of 80 mm square, a length of 500 mm, an aperture of 3.2 mm, and a wall thickness of 0.5 mm. The obtained molded product was dried at 60 ° C. for 50 minutes while ventilating air, and then calcined at 500 ° C. for 5 hours in an air atmosphere to obtain Catalyst A. The composition of the catalyst A is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 84.5: 4.8: 5.7: 5.0 (mass ratio), and the total pore volume is 0.8. It was 43 mL / g.

(実施例2)
0.5Lの水にメタバナジン酸アンモニウム0.10kgとシュウ酸0.12kg、さらにモノエタノールアミン0.03kgを混合し、溶解させ、均一溶液を調製した。次に実施例1で調製したTi−Si−W三元系酸化物粉体19.9kgをニーダーに投入し、有機バインダーなどの成形助剤とともに先に調製したバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、実施例1と同様にして混練り、押し出し成形、乾燥、焼成を行い、触媒Bを得た。この触媒Bの組成は、TiO:SiO:WO:V=88.6:5.0:6.0:0.4(質量比)であり、全細孔容積は0.41mL/gであった。
(Example 2)
In 0.5 L of water, 0.10 kg of ammonium metavanadate, 0.12 kg of oxalic acid, and 0.03 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. Next, 19.9 kg of the Ti—Si—W ternary oxide powder prepared in Example 1 was put into a kneader, and the vanadium-containing solution prepared earlier was added together with a molding aid such as an organic binder, and the mixture was stirred well. . Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was kneaded, extruded, dried and fired in the same manner as in Example 1 to obtain Catalyst B. The composition of the catalyst B is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 88.6: 5.0: 6.0: 0.4 (mass ratio), and the total pore volume is 0.00. It was 41 mL / g.

(実施例3)
11Lの水にメタバナジン酸アンモニウム2.19kgとシュウ酸2.62kg、さらにモノエタノールアミン0.5kgを混合し、溶解させ、均一溶液を調製した。次に実施例1で調製したTi−Si−W三元系酸化物粉体18.3kgをニーダーに投入し、有機バインダーなどの成形助剤とともに先に調製したバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、実施例1と同様にして混練り、押し出し成形、乾燥、焼成を行い、触媒Cを得た。この触媒Cの組成は、TiO:SiO:WO:V=81.4:4.6:5.5:8.5(質量比)であり、全細孔容積は0.45mL/gであった。
(Example 3)
In 11 L of water, 2.19 kg of ammonium metavanadate, 2.62 kg of oxalic acid, and 0.5 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. Next, 18.3 kg of the Ti—Si—W ternary oxide powder prepared in Example 1 was put into a kneader, and the vanadium-containing solution prepared earlier was added together with a molding aid such as an organic binder, and the mixture was stirred well. . Furthermore, after mixing well with a blender while adding an appropriate amount of water, the mixture was kneaded, extruded, dried and fired in the same manner as in Example 1 to obtain Catalyst C. The composition of the catalyst C is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 81.4: 4.6: 5.5: 8.5 (mass ratio), and the total pore volume is 0.8. It was 45 mL / g.

(比較例1)
0.1Lの水にメタバナジン酸アンモニウム0.03kgとシュウ酸0.03kg、さらにモノエタノールアミン0.01kgを混合し、溶解させ、均一溶液を調製した。次に実施例1で調製したTi−Si−W三元系酸化物粉体20.0kgをニーダーに投入し、有機バインダーなどの成形助剤とともに先に調製したバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、実施例1と同様にして混練り、押し出し成形、乾燥、焼成を行い、触媒Dを得た。この触媒Dの組成は、TiO:SiO:WO:V=88.9:5.0:6.0:0.1(質量比)であり、全細孔容積は0.41mL/gであった。
(Comparative Example 1)
In 0.1 L of water, 0.03 kg of ammonium metavanadate and 0.03 kg of oxalic acid and 0.01 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. Next, 20.0 kg of the Ti—Si—W ternary oxide powder prepared in Example 1 was put into a kneader, and the vanadium-containing solution prepared earlier was added together with a molding aid such as an organic binder, followed by thorough stirring. . Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was kneaded, extruded, dried and fired in the same manner as in Example 1 to obtain Catalyst D. The composition of the catalyst D is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 88.9: 5.0: 6.0: 0.1 (mass ratio), and the total pore volume is 0.00. It was 41 mL / g.

(比較例2)
16Lの水にメタバナジン酸アンモニウム3.09kgとシュウ酸3.70kg、さらにモノエタノールアミン0.7kgを混合し、溶解させ、均一溶液を調製した。次に実施例1で調製したTi−Si−W三元系酸化物粉体17.6kgをニーダーに投入し、有機バインダーなどの成形助剤とともに先に調製したバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、実施例1と同様にして混練り、押し出し成形、乾燥、焼成を行い、触媒Eを得た。この触媒Eの組成は、TiO:SiO:WO:V=78.3:4.4:5.3:12.0(質量比)であり、全細孔容積は0.46mL/gであった。
(Comparative Example 2)
In 16 L of water, 3.09 kg of ammonium metavanadate, 3.70 kg of oxalic acid, and 0.7 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. Next, 17.6 kg of the Ti—Si—W ternary oxide powder prepared in Example 1 was put into a kneader, and the vanadium-containing solution prepared earlier was added together with a molding aid such as an organic binder, followed by thorough stirring. . Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was kneaded, extruded, dried and fired in the same manner as in Example 1 to obtain Catalyst E. The composition of the catalyst E is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 78.3: 4.4: 5.3: 12.0 (mass ratio), and the total pore volume is 0.8. It was 46 mL / g.

(比較例3)
7Lの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.54kg、さらにモノエタノールアミン0.3kgを混合し、溶解させ、均一溶液を調製した。
(Comparative Example 3)
A homogeneous solution was prepared by mixing and dissolving 1.29 kg of ammonium metavanadate, 1.54 kg of oxalic acid, and 0.3 kg of monoethanolamine in 7 L of water.

次に、実施例1で調製したTi−Si−W三元系酸化物粉体を用いる代わりに、TiO2粉体(DT−51(製品名)、Cristal Global社製)16.9kgとSiO2粉体(ニップシールLP(製品名)、東ソー・シリカ社製)1.0kgおよびパラタングステン酸アンモニウム(WOとして90重量%含有)1.3kgをニーダーに投入し、有機バインダーなどの成形助剤とともに先に調製したバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、実施例1と同様にして混練り、押し出し成形、乾燥、焼成を行い、触媒Fを得た。この触媒Fの組成は、TiO:SiO:WO:V=84.5:4.8:5.7:5.0(質量比)であり、全細孔容積は0.24mL/gであった。 Next, instead of using the Ti—Si—W ternary oxide powder prepared in Example 1, 16.9 kg of TiO 2 powder (DT-51 (product name), manufactured by Cristal Global) and SiO 2 1.0 kg of powder (nip seal LP (product name), manufactured by Tosoh Silica Co., Ltd.) and 1.3 kg of ammonium paratungstate (containing 90% by weight as WO 3 ) are put into a kneader, together with molding aids such as an organic binder. The vanadium containing solution prepared previously was added and stirred well. Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was kneaded, extruded, dried and fired in the same manner as in Example 1 to obtain Catalyst F. The composition of the catalyst F is TiO 2 : SiO 2 : WO 3 : V 2 O 5 = 84.5: 4.8: 5.7: 5.0 (mass ratio), and the total pore volume is 0.8. It was 24 mL / g.

(NOx除去試験)
実施例1〜3および比較例1〜3で得た触媒A〜Fを用い、下記条件でNOx除去性能の評価を行った。
(NOx removal test)
Using the catalysts A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3, the NOx removal performance was evaluated under the following conditions.

[供給ガス組成]
NOx:200ppm,NH:200ppm,SO:200ppm,SO:10ppm,O:13容量%,HO:10容量%,N:balance
[処理条件]
ガス温度:265℃,空間速度:18,000h−1(STP),ガス線速度:1.0m/s(Normal)
次に、触媒入口および触媒出口のNOx濃度を測定し、次式(数式1)に従ってNOx除去率を算出した。なお、測定は反応開始10時間後と200時間後に行った。結果を表1に示す。
[Supply gas composition]
NOx: 200ppm, NH 3: 200ppm , SO 2: 200ppm, SO 3: 10ppm, O 2: 13 volume%, H 2 O: 10 volume%, N 2: balance
[Processing conditions]
Gas temperature: 265 ° C., space velocity: 18,000 h −1 (STP), gas linear velocity: 1.0 m / s (Normal)
Next, the NOx concentrations at the catalyst inlet and the catalyst outlet were measured, and the NOx removal rate was calculated according to the following equation (Equation 1). The measurement was performed 10 hours and 200 hours after the start of the reaction. The results are shown in Table 1.

B成分の量が0.1質量%である触媒Dは初期性能が劣り、12質量%である触媒Eは触媒A〜Cと比べ初期性能は同程度であるが耐久性において劣ることが分かる。   It can be seen that the catalyst D in which the amount of the component B is 0.1% by mass has inferior initial performance, and the catalyst E having 12% by mass has the same initial performance as the catalysts A to C but inferior in durability.

[数式1]

Figure 2015181971
[Formula 1]
Figure 2015181971


Figure 2015181971
Figure 2015181971

本発明は、船舶用ディーゼル機関から発生する排ガス中に硫黄酸化物と窒素酸化物(NOx)を含む排ガスの処理において、排ガスの温度が低温度域においてもNOxを長時間にわたって安定的に処理することができ、特に排ガス中に硫黄酸化物が含まれているときであっても排ガス中に含まれるNOxを長時間にわたって安定的に処理することができる。   The present invention stably treats NOx over a long time even when the temperature of the exhaust gas is low, in the treatment of exhaust gas containing sulfur oxides and nitrogen oxides (NOx) in the exhaust gas generated from marine diesel engines. In particular, even when sulfur oxide is contained in the exhaust gas, NOx contained in the exhaust gas can be treated stably over a long period of time.

Claims (2)

船舶用ディーゼル機関からの排ガスを処理するための触媒であって、触媒A成分として、チタン、ケイ素およびタングステンの3種の化合物から共沈法によって得られる複合酸化物および/または混合酸化物、触媒B成分として、バナジウム、ニオブおよびタンタルの少なくとも1種の元素の化合物を含有し、かつ触媒B成分の含有量が触媒A成分と触媒B成分の合計に対して0.2〜10質量%(酸化物換算)であることを特徴とする船舶用ディーゼル機関からの排ガスを処理するための触媒。 A catalyst for treating exhaust gas from a marine diesel engine, a composite oxide and / or mixed oxide obtained by a coprecipitation method from three compounds of titanium, silicon and tungsten as a catalyst A component, a catalyst As the B component, a compound of at least one element of vanadium, niobium and tantalum is contained, and the content of the catalyst B component is 0.2 to 10% by mass (oxidation with respect to the total of the catalyst A component and the catalyst B component) A catalyst for treating exhaust gas from a marine diesel engine. 請求項1に記載の触媒を用いることを特徴とする船舶用ディーゼル機関からの排ガスを処理する方法。 A method for treating exhaust gas from a marine diesel engine, comprising using the catalyst according to claim 1.
JP2014057925A 2014-03-20 2014-03-20 Catalyst and method for treating marine exhaust gas Pending JP2015181971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057925A JP2015181971A (en) 2014-03-20 2014-03-20 Catalyst and method for treating marine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057925A JP2015181971A (en) 2014-03-20 2014-03-20 Catalyst and method for treating marine exhaust gas

Publications (1)

Publication Number Publication Date
JP2015181971A true JP2015181971A (en) 2015-10-22

Family

ID=54349173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057925A Pending JP2015181971A (en) 2014-03-20 2014-03-20 Catalyst and method for treating marine exhaust gas

Country Status (1)

Country Link
JP (1) JP2015181971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436456B2 (en) 2018-08-28 2024-02-21 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst for use in selective catalytic reduction (SCR) of nitrogen oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436456B2 (en) 2018-08-28 2024-02-21 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst for use in selective catalytic reduction (SCR) of nitrogen oxides

Similar Documents

Publication Publication Date Title
JP2008119651A (en) Catalyst for nitrogen oxide removal, and exhaust gas treating method
JP2013091045A (en) Exhaust gas treating method
JPH064126B2 (en) Exhaust gas purification method
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
JP2008024565A (en) Modified titanium oxide particle and its manufacturing method and exhaust gas treating catalyst using the same
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JP6591919B2 (en) Method for manufacturing honeycomb-type denitration catalyst
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP2006231281A (en) Exhaust gas-treating catalyst, its manufacturing method and exhaust gas-treating method
JPH11342334A (en) Nox removal catalyst, its production and method for removing nox using the same
JP4508597B2 (en) Exhaust gas treatment catalyst capable of SO3 reduction treatment, method for producing the same, and exhaust gas treatment method using the exhaust gas treatment catalyst
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP2015181971A (en) Catalyst and method for treating marine exhaust gas
WO2006114831A1 (en) Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
JP2016064358A (en) Marine exhaust gas treatment catalyst, and exhaust treatment method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2017177051A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JP4948331B2 (en) Ship exhaust gas treatment method