JP3838415B2 - NOx removal catalyst and exhaust gas treatment method using the same - Google Patents
NOx removal catalyst and exhaust gas treatment method using the same Download PDFInfo
- Publication number
- JP3838415B2 JP3838415B2 JP2000295551A JP2000295551A JP3838415B2 JP 3838415 B2 JP3838415 B2 JP 3838415B2 JP 2000295551 A JP2000295551 A JP 2000295551A JP 2000295551 A JP2000295551 A JP 2000295551A JP 3838415 B2 JP3838415 B2 JP 3838415B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- component
- exhaust gas
- denitration
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、脱硝触媒およびこれを用いた排ガスの処理方法に関する。特に、排ガス中の窒素酸化物(NOx)を除去するための脱硝触媒および排ガスの処理方法に関する。
【0002】
【従来の技術】
現在実用化されている排ガス中の窒素酸化物除去方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を脱硝触媒上で接触還元し、無害な窒素と水とに分解する選択的触媒還元(SCR)法が一般的である。
これに用いられる脱硝触媒としては、例えば特開平10−235206号公報に記載のチタン−バナジウム系触媒などが挙げられる。
このような脱硝触媒の用途の一つとして、例えば火力発電所から発生する燃焼排ガスの処理が挙げられるが、特に燃料として重油や石炭を用いた場合には、排ガス中に硫黄酸化物(SOx)や砒素など触媒活性を劣化させる成分が含まれており、触媒のランニングコストを低減させるためには、これら活性被毒成分による劣化を抑制することによって触媒寿命を向上させることが必要になる。
【0003】
【発明が解決しようとする課題】
したがって、本発明の課題は、脱硝性能に優れ、かつSOxや砒素などの被毒成分による活性劣化が少ない脱硝触媒と、これを用いた排ガスの処理方法とを提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明の脱硝触媒は、触媒A成分として、チタンとケイ素の複合酸化物からなる金属酸化物、触媒B成分として、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として、アルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含有し、窒素酸化物を含む排ガスを処理するための触媒であって、触媒A成分と触媒C成分の混合物に対し、触媒B成分を担持することにより調製されたものであり、前記触媒B成分の前記混合物への担持は触媒A成分と触媒C成分を粉体またはスラリーの状態で混合したものに触媒B成分の塩類またはその溶液を添加することでなされており、水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にあることを特徴とする。
【0005】
本発明の排ガスの処理方法は、窒素酸化物を含む排ガスを、上記脱硝触媒と接触させる方法である。
【0006】
【発明の実施の形態】
本発明者らは、チタン酸化物およびチタンとケイ素との複合酸化物のうち、少なくとも1種の酸化物を含有する触媒が基本的には高い脱硝活性を示すことを確認した上で、これに特定条件下でアルカリ土類金属化合物を加えることによって触媒活性の劣化を低減させることができることを見出し、この知見に基づいて本発明の脱硝触媒を完成するに至った。
触媒成分としてカルシウム、バリウムなどのアルカリ土類金属化合物を添加することによってSOxや砒素に対する触媒の耐久性が向上する理由は明らかでないが、アルカリ土類金属の硫酸塩は、活性成分であるバナジウムなどの硫酸塩化による失活、あるいは砒素との複合物の形成による失活を防ぐ効果があると推察される。また、アルカリ土類金属の酸化物は、酸性ガスであるSOxと反応してアルカリ土類金属の硫酸塩を形成し、活性成分の失活を防ぐものであると考えられる。
【0007】
本発明の脱硝触媒は、触媒A成分として、チタン酸化物およびチタンとケイ素の複合酸化物(以下、Ti−Si複合酸化物」という)よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として、アルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含有する。
触媒A成分のチタン酸化物の供給原料としては、酸化チタンのほか、焼成してチタン酸化物を生成するものであれば、無機および有機のいずれの化合物も使用することができる。例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物またはシュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を用いることができる。
【0008】
触媒A成分のTi−Si複合酸化物の調製に用いるチタン源としては、上記の無機および有機のいずれのチタン化合物も使用することができ、またケイ素源としては、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素などの無機ケイ素化合物およびテトラエチルシリケートなどの有機ケイ素化合物から適宜選択して使用することができる。
上記Ti−Si複合酸化物は、例えば、以下の手順(a)〜(d)によって調製することができる。
(a)シリカゾルとアンモニア水を混合し、硫酸チタンの硫酸水溶液を添加して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(b)硫酸チタン水溶液にケイ酸ナトリウム水溶液を添加し、反応して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(c)四塩化チタンの水−アルコール溶液にエチルシリケート(テトラエトキシシラン)を添加し、次いで加水分解することにより沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(d)酸化塩化チタン(オキシ三塩化チタン)とエチルシリケートとの水−アルコール溶液に、アンモニアを加えて沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
【0009】
上記の方法のうち、(a)の方法が特に好ましく、具体的には、アンモニア源、ケイ素源およびチタン源を水溶液またはゾル状態で各量が所定量(アンモニア源はNH3に、ケイ素源はSiO2に、そしてチタン源はTiO2に、それぞれ換算)になるように取る。ついで、アンモニア源とケイ素源を混合し、この混合液を10〜100℃に保ちながら、この混合液にチタン源を滴下して、pH2〜10で1〜50時間保持することにより、チタン−ケイ素の共沈物を生成し、この沈殿物をろ過し、充分に洗浄した後、80〜140℃で10分間から3時間乾燥し、300〜700℃で1〜10時間焼成すれば、目的とするTi−Si複合酸化物を得ることができる。
【0010】
触媒B成分のバナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物の供給原料としては、各々の酸化物のほかに、焼成によって酸化物を生成するものであれば、無機および有機のいずれの化合物も用いることができる。例えば、各々の金属を含む水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などを用いることができる。
触媒C成分として用いられるアルカリ土類金属としては、マグネシウム、カルシウム、バリウム等が挙げられるが、特にカルシウム、バリウムが好ましい。これらアルカリ土類金属の酸化物および/または硫酸塩の供給原料としては、酸化物、水酸化物、炭酸塩、硫酸塩などを用いることができる。
【0011】
本発明の脱硝触媒における各触媒成分の組成としては、触媒B成分が触媒A成分の0.1〜25重量%であることが好ましく、より好ましくは1〜25重量%である。触媒C成分は全触媒成分の0.5〜10重量%であることが好ましく、より好ましくは1〜5重量%である。触媒B成分の含有量が、触媒A成分の0.1重量%より少ないと脱硝活性が低く、一方25重量%を超えてもそれほど大きな活性の向上は認められず、場合によっては活性が低下することもある。また、触媒C成分の含有量が、全触媒成分の0.5重量%より少ないと排ガス中の被毒成分に対する耐久性を向上させる効果が十分得られず、一方、10重量%を超えると脱硝活性が低下する。
【0012】
本発明の脱硝触媒の水銀圧入法で測定した全細孔容積は、0.2〜0.6cm3/gの範囲にあることが好ましい。触媒の全細孔容積が0.2cm3/gよりも小さいと脱硝活性が低く、0.6cm3/gを超えると触媒の機械的強度が低くなるため、好ましくない。
本発明の脱硝触媒のBET法による比表面積は30〜250m2/g、好ましくは40〜200m2/gの範囲にあるのがよい。触媒の比表面積が30m2/gより小さいと脱硝活性が低くなり、一方250m2/gを超えてもそれほど大きな活性の向上は認められず、場合によっては触媒被毒成分の蓄積量が多くなって、触媒寿命に悪影響を及ぼすこともある。
【0013】
したがって、本発明の脱硝触媒においては、触媒A成分としてチタン酸化物およびTi−Si複合酸化物よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として触媒A成分の0.1〜25重量%のバナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として全触媒成分の0.5〜10重量%のアルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含み、しかも、水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にあり、BET法による比表面積が30〜250m2/gの範囲にある触媒が特に好適に用いられる。
【0014】
本発明の脱硝触媒の調製法としては、触媒A成分と触媒C成分の混合物に対し、触媒B成分を担持することが重要である。この方法で調製することで、触媒表面にアルカリ土類金属が露出する割合が低くなるため、アルカリ土類金属による触媒活性の低下を抑制しつつ、SOxや砒素などの被毒成分による活性劣化を防止することができる。
触媒A成分と触媒C成分の混合物は、それぞれの成分を粉体またはスラリーの状態で混合して調製してもよいし、各々の塩類の溶液の混合物から共沈させることによって調製してもよい。また、触媒A成分と触媒C成分の混合物に触媒B成分を担持させる方法としては、触媒A成分と触媒C成分の粉体またはスラリーの混合物に触媒B成分の塩類またはその溶液を添加する方法や、触媒A成分および触媒C成分よりなる成型体に触媒B成分の塩類の溶液を含浸担持させる方法を用いることができる。
【0015】
本発明の脱硝触媒の形状については特に制限はなく、板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状に成型して用いてもよく、またアルミナ、シリカ、コーディライト、チタニア、ステンレス金属などよりなる板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状の担体に担持して使用してもよい。
本発明の脱硝触媒は、各種排ガスの処理に用いられる。排ガスの組成については特に制限はないが、本発明の触媒は、ボイラ、焼却炉、ガスタービン、ディーゼルエンジンおよび各種工業プロセスから排出される窒素酸化物の分解活性に優れるため、これら窒素酸化物を含む排ガスの処理に好適に用いられる。
【0016】
本発明の脱硝触媒を用いて脱硝を行うには、本発明の脱硝触媒をアンモニアや尿素などの還元剤の存在下、排ガスと接触させ、排ガス中の窒素酸化物を還元除去する。この際の条件については、特に制限がなく、この種の反応に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよい。
なお、本発明の触媒を用いて脱硝を行う場合の排ガスの空間速度は、通常、100〜100000Hr-1(STP)であり、好ましくは200〜50000Hr-1(STP)である。100Hr-1未満では、処理装置が大きくなりすぎるため非効率となり、一方100000Hr-1を超えると分解効率が低下する。また、その際の温度は、130〜650℃であることが好ましい。排ガス温度が130℃より低いと脱硝効率が低下し、650℃を超えると活性成分のシンタリングなどの問題が起こる。また、排ガス中のSOx濃度は1%以下であるのがよい。排ガス中のSOx濃度が1%を超えると触媒の活性劣化が大きくなるからである。
【0017】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。
(実施例1)
10重量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20重量%のSiO2含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiO2として125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを20時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、粉体を得た。得られた粉体の組成はTiO2:SiO2=8.5:1.5(モル比)であり、粉体のX線回折チャートではTiO2やSiO2の明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するチタンとケイ素との複合酸化物(Ti−Si複合酸化物)であることが確認された。
【0018】
上記Ti−Si複合酸化物10kgと市販の酸化チタン粉体(DT−51(商品名)、ミレニアム社製)10kgおよび酸化カルシウム粉体0.5kgにメタバナジン酸アンモニウム2.1kg、シュウ酸2.4kgおよびモノエタノールアミン0.6kgを水7リットルに溶解させた溶液とパラタングステン酸アンモニウムの10%メチルアミン水溶液(三酸化タングステンとして400g/リットル)3リットルを加え、さらにフェノール樹脂(ベルパール(商品名)、カネボウ(株)製)1kgと成形助剤としてのデンプン0.5kgとを加えて混合し、ニーダーで混練りした後、押出成形機で外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、450℃で5時間空気雰囲気下において焼成し、触媒Aを得た。
【0019】
触媒Aの組成はTiO2:Ti−Si複合酸化物:V2O5:WO3:CaO=43:43:7:5:2(重量比)であった。
(実施例2)
実施例1において用いた酸化カルシウム粉体のかわりに硫酸カルシウム粉体1kgを添加したこと以外は実施例1に準じて、外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状触媒Bを調製した。
触媒Bの組成はTiO2:Ti−Si複合酸化物:V2O5:WO3:CaSO4=42:42:7:5:4(重量比)であった。
【0020】
(比較例1)
実施例1において用いた酸化カルシウム粉体を添加しなかったこと以外は実施例1に準じて、外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状触媒Cを調製した。触媒Cの組成は、TiO2:Ti−Si複合酸化物:V2O5:WO3=43.8:43.8:7.2:5.2(重量比)であった。
(比較例2)
比較例1で調製したハニカム状触媒Cに硝酸カルシウム水溶液を含浸したのち焼成することにより酸化カルシウムを担持させた触媒Dを準備した。触媒Dの組成は、TiO2:Ti−Si複合酸化物:V2O5:WO3:CaO=43:43:7:5:2(重量比)であった。
【0021】
(活性試験)
触媒A、B、CおよびDを用いて下記条件下で連続して反応を行い、各触媒の初期、1000時間後および2000時間後の脱硝活性を比較した。
<試験条件>
ガス組成
NOx:120ppm、NH3:120ppm、O2:12%
SO2:200ppm、H2O:10%、N2:バランス
ガス温度:210℃
空間速度(STP):10000Hr-1
なお、脱硝率は下記式にしたがって求めた。
【0022】
反応時間と脱硝率との関係を下記の表1に示した。
【0023】
【表1】
【0024】
【発明の効果】
本発明にかかる脱硝触媒は、脱硝性能に優れ、かつSOxや砒素などの被毒成分による活性劣化が少ないものである。
本発明にかかる排ガスの処理方法は、上記脱硝触媒を用いるため、窒素酸化物を効果的に除去でき、処理時の活性劣化が少ない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a denitration catalyst and an exhaust gas treatment method using the same. In particular, the present invention relates to a denitration catalyst for removing nitrogen oxides (NOx) in exhaust gas and a method for treating exhaust gas.
[0002]
[Prior art]
As a method of removing nitrogen oxides in exhaust gas currently in practical use, nitrogen oxides in exhaust gas are catalytically reduced on a denitration catalyst using a reducing agent such as ammonia or urea, and decomposed into harmless nitrogen and water. A selective catalytic reduction (SCR) process is common.
Examples of the denitration catalyst used for this include a titanium-vanadium catalyst described in JP-A-10-235206.
One of the applications of such a denitration catalyst is, for example, treatment of combustion exhaust gas generated from a thermal power plant. Particularly when heavy oil or coal is used as fuel, sulfur oxide (SOx) is contained in the exhaust gas. In order to reduce the running cost of the catalyst, it is necessary to improve the catalyst life by suppressing the deterioration due to these active poisoning components.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a denitration catalyst that is excellent in denitration performance and has little activity deterioration due to poisoning components such as SOx and arsenic, and an exhaust gas treatment method using the same.
[0004]
[Means for Solving the Problems]
To solve the above problems, the denitration catalyst of the present invention, as a catalyst component A, a metal oxide comprising a composite oxide of titanium and silicon, as a catalyst component B, vanadium, niobium, tantalum, the group consisting of molybdenum and tungsten An oxide of at least one metal selected from the above, containing at least one metal oxide and / or sulfate selected from alkaline earth metals as the catalyst C component, including nitrogen oxides A catalyst for treating exhaust gas, which is prepared by loading a catalyst B component on a mixture of a catalyst A component and a catalyst C component, and the loading of the catalyst B component on the mixture is a catalyst. It has been made by adding a salt or a solution thereof in the catalyst component B in a mixture of the a component and the catalyst component C in the powder or slurry, measured by mercury porosimetry Pore volume, characterized in that the range of 0.2~0.6cm 3 / g.
[0005]
The exhaust gas treatment method of the present invention is a method of contacting exhaust gas containing nitrogen oxides with the denitration catalyst.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have confirmed that a catalyst containing at least one oxide among titanium oxide and a composite oxide of titanium and silicon basically exhibits high denitration activity. It has been found that degradation of catalytic activity can be reduced by adding an alkaline earth metal compound under specific conditions, and based on this finding, the denitration catalyst of the present invention has been completed.
The reason why the durability of the catalyst against SOx and arsenic is improved by adding an alkaline earth metal compound such as calcium or barium as a catalyst component is not clear, but alkaline earth metal sulfate is an active component such as vanadium. It is presumed that there is an effect of preventing the deactivation due to sulfation of water or the deactivation due to the formation of a complex with arsenic. The alkaline earth metal oxide is considered to react with SOx, which is an acidic gas, to form an alkaline earth metal sulfate to prevent deactivation of the active ingredient.
[0007]
The denitration catalyst of the present invention comprises at least one metal oxide selected from the group consisting of titanium oxide and a composite oxide of titanium and silicon (hereinafter referred to as Ti-Si composite oxide) as the catalyst A component, As catalyst B component, an oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten, and as catalyst C component, at least one metal selected from alkaline earth metals Oxides and / or sulfates.
In addition to titanium oxide, any inorganic or organic compound can be used as the feedstock for the titanium oxide as the catalyst A component as long as it can be baked to produce titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride or titanium sulfate, or an organic titanium compound such as titanium oxalate or tetraisopropyl titanate can be used.
[0008]
As the titanium source used for the preparation of the catalyst A component Ti-Si composite oxide, any of the above inorganic and organic titanium compounds can be used, and as the silicon source, colloidal silica, water glass, fine particles can be used. It can be appropriately selected from inorganic silicon compounds such as silicon and silicon tetrachloride and organic silicon compounds such as tetraethyl silicate.
The Ti—Si composite oxide can be prepared, for example, by the following procedures (a) to (d).
(A) Silica sol and ammonia water are mixed, a sulfuric acid aqueous solution of titanium sulfate is added to cause precipitation, the obtained precipitate is washed and dried, and then calcined at 300 to 700 ° C.
(B) A sodium silicate aqueous solution is added to a titanium sulfate aqueous solution, reacted to cause precipitation, the obtained precipitate is washed and dried, and then fired at 300 to 700 ° C.
(C) Ethyl silicate (tetraethoxysilane) is added to a water-alcohol solution of titanium tetrachloride, followed by hydrolysis to form a precipitate. The resulting precipitate is washed and dried, and then heated to 300 to 700 ° C. Bake with.
(D) Ammonia is added to a water-alcohol solution of titanium oxide chloride (titanium oxytrichloride) and ethyl silicate to cause precipitation, and the resulting precipitate is washed and dried, and then calcined at 300 to 700 ° C. To do.
[0009]
Among the above methods, the method (a) is particularly preferable. Specifically, the ammonia source, the silicon source, and the titanium source are in an aqueous solution or a sol state, and each amount is a predetermined amount (the ammonia source is NH 3 , the silicon source is SiO 2 and the titanium source are converted to TiO 2 . Next, an ammonia source and a silicon source are mixed, and while keeping the mixed solution at 10 to 100 ° C., a titanium source is dropped into the mixed solution and kept at pH 2 to 10 for 1 to 50 hours, thereby obtaining titanium-silicon. After the precipitate is filtered and thoroughly washed, it is dried at 80 to 140 ° C. for 10 minutes to 3 hours and calcined at 300 to 700 ° C. for 1 to 10 hours. A Ti—Si composite oxide can be obtained.
[0010]
As a feedstock for the oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten as the component B of the catalyst, in addition to each oxide, an oxide is generated by firing. If so, both inorganic and organic compounds can be used. For example, hydroxides, ammonium salts, oxalates, halides, sulfates, nitrates, carbonates and the like containing each metal can be used.
Examples of the alkaline earth metal used as the catalyst component C include magnesium, calcium, barium and the like, and calcium and barium are particularly preferable. As a feedstock for these alkaline earth metal oxides and / or sulfates, oxides, hydroxides, carbonates, sulfates and the like can be used.
[0011]
As a composition of each catalyst component in the denitration catalyst of this invention, it is preferable that the catalyst B component is 0.1 to 25 weight% of a catalyst A component, More preferably, it is 1 to 25 weight%. The catalyst C component is preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight of the total catalyst component. If the content of the catalyst B component is less than 0.1% by weight of the catalyst A component, the denitration activity is low. Sometimes. Further, if the content of the catalyst C component is less than 0.5% by weight of the total catalyst components, the effect of improving the durability against poisoning components in the exhaust gas cannot be sufficiently obtained, while if it exceeds 10% by weight, denitration is performed. Activity is reduced.
[0012]
It is preferable that the total pore volume measured by the mercury intrusion method of the denitration catalyst of the present invention is in the range of 0.2 to 0.6 cm 3 / g. If the total pore volume of the catalyst is smaller than 0.2 cm 3 / g, the denitration activity is low, and if it exceeds 0.6 cm 3 / g, the mechanical strength of the catalyst is lowered, which is not preferable.
BET specific surface area of the denitration catalyst of the present invention is 30~250m 2 / g, preferably, from the 40 to 200 m 2 / g. If the specific surface area of the catalyst is less than 30 m 2 / g, the denitration activity will be low. On the other hand, if it exceeds 250 m 2 / g, no significant improvement in activity will be observed, and in some cases the accumulated amount of catalyst poisoning components will increase. Thus, the catalyst life may be adversely affected.
[0013]
Therefore, in the denitration catalyst of the present invention, the catalyst A component is at least one metal oxide selected from the group consisting of titanium oxide and Ti—Si composite oxide, and the catalyst B component is 0.1% of the catalyst A component. ~ 25 wt% of an oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten, 0.5 to 10 wt% of an alkaline earth metal of the total catalyst component as the catalyst C component The total pore volume measured by mercury porosimetry is in the range of 0.2 to 0.6 cm 3 / g. A catalyst having a specific surface area by the BET method in the range of 30 to 250 m 2 / g is particularly preferably used.
[0014]
In preparing the denitration catalyst of the present invention, it is important to support the catalyst B component on the mixture of the catalyst A component and the catalyst C component. By preparing by this method, the ratio of exposure of alkaline earth metal to the surface of the catalyst is reduced, so that the deterioration of the activity due to poisoning components such as SOx and arsenic is suppressed while suppressing the decrease in the catalytic activity due to the alkaline earth metal. Can be prevented.
The mixture of the catalyst A component and the catalyst C component may be prepared by mixing the respective components in the form of powder or slurry, or may be prepared by coprecipitation from a mixture of solutions of each salt. . As a method for supporting the catalyst B component on the mixture of the catalyst A component and the catalyst C component, a method of adding a salt of the catalyst B component or a solution thereof to a mixture of the powder or slurry of the catalyst A component and the catalyst C component, A method of impregnating and supporting a solution of a salt of the catalyst B component on a molded body composed of the catalyst A component and the catalyst C component can be used.
[0015]
The shape of the denitration catalyst of the present invention is not particularly limited, and may be used by molding into a desired shape selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, etc. It can be used by supporting it on a carrier having a desired shape selected from plate, corrugated, mesh, honeycomb, columnar, cylindrical, etc. made of alumina, silica, cordierite, titania, stainless steel, etc. Good.
The denitration catalyst of the present invention is used for treatment of various exhaust gases. The composition of the exhaust gas is not particularly limited, but the catalyst of the present invention is excellent in the decomposition activity of nitrogen oxides emitted from boilers, incinerators, gas turbines, diesel engines and various industrial processes. It is suitably used for the treatment of exhaust gas containing.
[0016]
In order to perform denitration using the denitration catalyst of the present invention, the denitration catalyst of the present invention is brought into contact with exhaust gas in the presence of a reducing agent such as ammonia or urea, and nitrogen oxides in the exhaust gas are reduced and removed. The conditions at this time are not particularly limited, and can be carried out under conditions generally used for this type of reaction. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, and the like.
Incidentally, the space velocity of the exhaust gas when performing denitration using the catalyst of the present invention is usually a 100~100000Hr -1 (STP), preferably 200~50000Hr -1 (STP). If it is less than 100 Hr −1 , the processing apparatus becomes too large to be inefficient, and if it exceeds 100000 Hr −1 , the decomposition efficiency is lowered. Moreover, it is preferable that the temperature in that case is 130-650 degreeC. When the exhaust gas temperature is lower than 130 ° C., the denitration efficiency is lowered, and when it exceeds 650 ° C., problems such as sintering of the active ingredient occur. The SOx concentration in the exhaust gas is preferably 1% or less. This is because when the SOx concentration in the exhaust gas exceeds 1%, the catalyst activity deteriorates greatly.
[0017]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
Example 1
After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by weight of SiO 2 ) to 700 liters of 10% by weight aqueous ammonia, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 20 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was baked at 500 ° C. to obtain a powder. The composition of the obtained powder was TiO 2 : SiO 2 = 8.5: 1.5 (molar ratio), and no obvious intrinsic peak of TiO 2 or SiO 2 was observed in the X-ray diffraction chart of the powder. It was confirmed by a broad diffraction peak that it was a composite oxide of titanium and silicon (Ti-Si composite oxide) having an amorphous microstructure.
[0018]
10 kg of the Ti-Si composite oxide, 10 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium) and 0.5 kg of calcium oxide powder, 2.1 kg of ammonium metavanadate, and 2.4 kg of oxalic acid A solution obtained by dissolving 0.6 kg of monoethanolamine in 7 liters of water and 3 liters of a 10% aqueous solution of ammonium paratungstate in methylamine (400 g / liter as tungsten trioxide) were added, and phenol resin (Bellepar (trade name)) was added. 1 kg of Kanebo Co., Ltd.) and 0.5 kg of starch as a molding aid were added and mixed. After kneading with a kneader, the outer shape was 80 mm square, the opening was 4.4 mm, and the wall thickness was 0.00. It was formed into a honeycomb shape having a length of 6 mm and a length of 500 mm. Subsequently, after drying at 80 degreeC, it baked in the air atmosphere at 450 degreeC for 5 hours, and the catalyst A was obtained.
[0019]
The composition of the catalyst A was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 : CaO = 43: 43: 7: 5: 2 (weight ratio).
(Example 2)
Except that 1 kg of calcium sulfate powder was added in place of the calcium oxide powder used in Example 1, the outer diameter was 80 mm square, the opening was 4.4 mm, the wall thickness was 0.6 mm, and the length was 500 mm. A honeycomb catalyst B was prepared.
The composition of the catalyst B was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 : CaSO 4 = 42: 42: 7: 5: 4 (weight ratio).
[0020]
(Comparative Example 1)
Except that the calcium oxide powder used in Example 1 was not added, a honeycomb catalyst C having an outer shape of 80 mm square, an opening of 4.4 mm, a wall thickness of 0.6 mm, and a length of 500 mm was obtained in the same manner as in Example 1. Prepared. The composition of the catalyst C was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 = 43.8: 43.8: 7.2: 5.2 (weight ratio).
(Comparative Example 2)
The honeycomb-shaped catalyst C prepared in Comparative Example 1 was impregnated with an aqueous calcium nitrate solution and then fired to prepare a catalyst D supporting calcium oxide. The composition of the catalyst D was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 : CaO = 43: 43: 7: 5: 2 (weight ratio).
[0021]
(Activity test)
Reactions were continuously performed using the catalysts A, B, C, and D under the following conditions, and the denitration activity of each catalyst at the initial stage, 1000 hours and 2000 hours was compared.
<Test conditions>
Gas composition NOx: 120 ppm, NH 3 : 120 ppm, O 2 : 12%
SO 2 : 200 ppm, H 2 O: 10%, N 2 : Balance gas temperature: 210 ° C
Space velocity (STP): 10000 Hr -1
The denitration rate was determined according to the following formula.
[0022]
The relationship between the reaction time and the denitration rate is shown in Table 1 below.
[0023]
[Table 1]
[0024]
【The invention's effect】
The denitration catalyst according to the present invention is excellent in denitration performance and has little activity deterioration due to poisoning components such as SOx and arsenic.
Since the exhaust gas treatment method according to the present invention uses the above denitration catalyst, nitrogen oxides can be effectively removed and there is little activity deterioration during the treatment.
Claims (2)
触媒A成分と触媒C成分の混合物に対し、触媒B成分を担持することにより調製されたものであり、
前記触媒B成分の前記混合物への担持は触媒A成分と触媒C成分を粉体またはスラリーの状態で混合したものに触媒B成分の塩類またはその溶液を添加することでなされており、
水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にある、
ことを特徴とする、脱硝触媒。As a catalyst component A, a metal oxide comprising a composite oxide of titanium and silicon, as a catalyst component B, vanadium, niobium, tantalum, an oxide of at least one metal selected from the group consisting of molybdenum and tungsten, the catalyst A catalyst for treating exhaust gas containing at least one metal oxide and / or sulfate selected from alkaline earth metals as component C and containing nitrogen oxides,
Prepared by supporting the catalyst B component on the mixture of the catalyst A component and the catalyst C component,
The catalyst B component is supported on the mixture by adding a salt of the catalyst B component or a solution thereof to a mixture of the catalyst A component and the catalyst C component in a powder or slurry state.
The total pore volume measured by the mercury intrusion method is in the range of 0.2 to 0.6 cm 3 / g ,
A denitration catalyst characterized by that .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000295551A JP3838415B2 (en) | 2000-09-28 | 2000-09-28 | NOx removal catalyst and exhaust gas treatment method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000295551A JP3838415B2 (en) | 2000-09-28 | 2000-09-28 | NOx removal catalyst and exhaust gas treatment method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002102696A JP2002102696A (en) | 2002-04-09 |
JP3838415B2 true JP3838415B2 (en) | 2006-10-25 |
Family
ID=18777961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000295551A Expired - Fee Related JP3838415B2 (en) | 2000-09-28 | 2000-09-28 | NOx removal catalyst and exhaust gas treatment method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3838415B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5457129B2 (en) * | 2009-10-06 | 2014-04-02 | バブコック日立株式会社 | NOx removal catalyst and method for producing the same |
JP2013193938A (en) * | 2012-03-21 | 2013-09-30 | Nippon Shokubai Co Ltd | Denitration catalyst, method of preparing the same, and method of denitration |
JP2017177051A (en) * | 2016-03-31 | 2017-10-05 | 株式会社日本触媒 | Exhaust gas treatment catalyst and exhaust gas treatment method |
-
2000
- 2000-09-28 JP JP2000295551A patent/JP3838415B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002102696A (en) | 2002-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013091045A (en) | Exhaust gas treating method | |
JP4113090B2 (en) | Exhaust gas treatment method | |
JP2003251180A (en) | Catalyst for removing nitrogen oxide, manufacturing method therefor, and method for removing nitrogen oxide | |
KR100456748B1 (en) | Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases | |
JP2015182067A (en) | Catalyst and method for treating marine exhaust gas | |
JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
JP5164821B2 (en) | Nitrogen oxide selective catalytic reduction catalyst | |
JP3838415B2 (en) | NOx removal catalyst and exhaust gas treatment method using the same | |
JP4798909B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
JP3337634B2 (en) | Denitration catalyst, its preparation method, and denitration method | |
JP4499513B2 (en) | Method for treating exhaust gas containing nitrogen oxides and odor components | |
JP3749078B2 (en) | NOx removal catalyst and NOx removal method | |
JP4499511B2 (en) | Method for treating exhaust gas containing nitrogen oxides | |
JP3893014B2 (en) | Exhaust gas treatment catalyst, its production method and exhaust gas treatment method | |
JPH0824651A (en) | Ammonia decomposition catalyst and method for decomposing ammonia using the same | |
JP3984122B2 (en) | NOx removal catalyst, NOx removal method and method | |
JP3893020B2 (en) | Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same | |
JP6261260B2 (en) | Ship exhaust gas treatment catalyst and exhaust gas treatment method | |
JP3495548B2 (en) | Reduction method of sulfur trioxide | |
JP3860734B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JP3739659B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method | |
JP2743336B2 (en) | Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas | |
JP4948331B2 (en) | Ship exhaust gas treatment method | |
JPH08257409A (en) | Catalyst for removing nitrogen oxide and removing method of nitrogen oxide using the same | |
JP2012206058A (en) | Denitration catalyst and denitrification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051202 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051207 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060726 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130811 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |