JP3893020B2 - Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same - Google Patents

Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same Download PDF

Info

Publication number
JP3893020B2
JP3893020B2 JP2000295550A JP2000295550A JP3893020B2 JP 3893020 B2 JP3893020 B2 JP 3893020B2 JP 2000295550 A JP2000295550 A JP 2000295550A JP 2000295550 A JP2000295550 A JP 2000295550A JP 3893020 B2 JP3893020 B2 JP 3893020B2
Authority
JP
Japan
Prior art keywords
catalyst
component
exhaust gas
titanium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000295550A
Other languages
Japanese (ja)
Other versions
JP2002102695A (en
Inventor
敦 森田
信之 正木
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000295550A priority Critical patent/JP3893020B2/en
Publication of JP2002102695A publication Critical patent/JP2002102695A/en
Application granted granted Critical
Publication of JP3893020B2 publication Critical patent/JP3893020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機ハロゲン化合物の除去用触媒およびこれを用いた排ガスの処理方法に関する。特に、排ガス中のダイオキシン類などの毒性有機ハロゲン化合物を除去するための有機ハロゲン化合物の除去用触媒および排ガスの処理方法に関する。
【0002】
【従来の技術】
産業廃棄物や都市廃棄物を処理する焼却施設から発生する排ガス中にはダイオキシン類、PCB、クロロフェノールなどの極微量の毒性有機ハロゲン化合物が含まれており、特にダイオキシン類は環境ホルモン物質として挙げられることからも、これらを排ガス中から除去することは、近年、重要な課題である。
ダイオキシン類などの有機ハロゲン化合物を処理する手段として、コストや処理効率の点から触媒による分解処理が近年注目を集めており、これに用いられる触媒としては、例えば特開平10−235191号公報に記載のチタン−バナジウム系触媒などが挙げられる。
【0003】
一般に廃棄物焼却施設から発生する排ガス中には、硫黄酸化物(SOx)や砒素など触媒活性を劣化させる成分が含まれているが、触媒のランニングコストを低減させるためには、これら活性被毒成分による劣化を抑制することによって触媒寿命を向上させることが必要になる。
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、有機ハロゲン化合物の除去性能に優れ、かつSOxや砒素などの被毒成分による活性劣化が少ない有機ハロゲン化合物の除去用触媒と、排ガスの処理方法とを提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明にかかる有機ハロゲン化合物の除去用触媒は、廃棄物焼却施設から発生する排ガス中の有機ハロゲン化合物を除去するために用いられる触媒であって、触媒A成分として、チタン酸化物およびチタンとケイ素の複合酸化物よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として、アルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含有し、触媒B成分の触媒A成分に対する割合が0.1〜25重量%、触媒C成分の全触媒成分に対する割合が0.5〜10重量%であるとともに、水銀圧入法で測定した全細孔容積が0.2〜0.6cm/gの範囲にある、ことを特徴とする
本発明にかかる排ガスの処理方法は、廃棄物焼却施設から発生する、有機ハロゲン化合物を含む排ガスを、上記本発明の触媒と接触させるようにする。
【0006】
【発明の実施の形態】
本発明者は、チタン酸化物およびチタンとケイ素との複合酸化物のうち、少なくとも1種の酸化物を含有する触媒が基本的には高い有機ハロゲン化合物の分解において高い活性を示すことを確認した上で、これにアルカリ土類金属化合物を加えることによって触媒活性の劣化を低減させることができることを見出し、この知見に基づいて本発明を完成するに至った。
触媒成分としてアルカリ土類金属化合物を添加することによってSOxや砒素に対する触媒の耐久性が向上する理由は明らかでないが、アルカリ土類金属の硫酸塩は、活性成分であるバナジウムなどの硫酸塩化による失活、あるいは砒素との複合物の形成による失活を防ぐ効果があると推察される。また、アルカリ土類金属の酸化物は、酸性ガスであるSOxと反応してアルカリ土類金属の硫酸塩を形成し、活性成分の失活を防ぐものであると考えられる。
【0007】
本発明の触媒は、触媒A成分として、チタン酸化物およびチタンとケイ素の複合酸化物(以下、Ti−Si複合酸化物」という)よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として、アルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含有する。
触媒A成分のチタン酸化物の供給原料としては、酸化チタンのほか、焼成してチタン酸化物を生成するものであれば、無機および有機のいずれの化合物も使用することができる。例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物またはシュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を用いることができる。
【0008】
触媒A成分のTi−Si複合酸化物の調製に用いるチタン源としては、上記の無機および有機のいずれのチタン化合物も使用することができ、またケイ素源としては、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素などの無機ケイ素化合物およびテトラエチルシリケートなどの有機ケイ素化合物から適宜選択して使用することができる。
上記Ti−Si複合酸化物は、例えば、以下の手順(a)〜(d)によって調製することができる。
(a)シリカゾルとアンモニア水を混合し、硫酸チタンの硫酸水溶液を添加して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(b)硫酸チタン水溶液にケイ酸ナトリウム水溶液を添加し、反応して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。(c)四塩化チタンの水−アルコール溶液にエチルシリケート(テトラエトキシシラン)を添加し、次いで加水分解することにより沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(d)酸化塩化チタン(オキシ三塩化チタン)とエチルシリケートとの水−アルコール溶液に、アンモニアを加えて沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
【0009】
上記の方法のうち、(a)の方法が特に好ましく、具体的には、アンモニア源、ケイ素源およびチタン源を水溶液またはゾル状態で各量が所定量(アンモニア源はNH3に、ケイ素源はSiO2に、そしてチタン源はTiO2に、それぞれ換算)になるように取る。ついで、アンモニア源とケイ素源を混合し、この混合液を10〜100℃に保ちながら、この混合液にチタン源を滴下して、pH2〜10で1〜50時間保持することにより、チタン−ケイ素の共沈物を生成し、この沈殿物をろ過し、充分に洗浄した後、80〜140℃で10分間から3時間乾燥し、300〜700℃で1〜10時間焼成すれば、目的とするTi−Si複合酸化物を得ることができる。
【0010】
触媒B成分のバナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物の供給原料としては、各々の酸化物のほかに、焼成によって酸化物を生成するものであれば、無機および有機のいずれの化合物も用いることができる。例えば、各々の金属を含む水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などを用いることができる。
触媒C成分として用いられるアルカリ土類金属としては、マグネシウム、カルシウム、バリウム等が挙げられるが、特にカルシウム、バリウムが好ましい。これらアルカリ土類金属の酸化物および/または硫酸塩の供給原料としては、酸化物、水酸化物、炭酸塩、硫酸塩などを用いることができる。
【0011】
本発明の触媒における各触媒成分の組成としては、触媒B成分が触媒A成分の0.1〜25重量%であり、好ましくは1〜25重量%である。触媒C成分全触媒成分の0.5〜10重量%であり、好ましくは1〜5重量%である。触媒B成分の含有量が、触媒A成分の0.1重量%より少ないと有機ハロゲン化合物の分解活性が低く、一方25重量%を超えてもそれほど大きな活性の向上は認められず、場合によっては活性が低下することもある。また、触媒C成分の含有量が、全触媒成分の0.5重量%より少ないと排ガス中の被毒成分に対する耐久性を向上させる効果が十分得られず、一方、10重量%を超えると有機ハロゲン化合物の分解活性が低下する。
【0012】
本発明の触媒の水銀圧入法で測定した全細孔容積は、0.2〜0.6cm/gの範囲にある。触媒の全細孔容積が0.2cm/gよりも小さいと有機ハロゲン化合物の分解活性が低く、0.6cm/gを超えると触媒の機械的強度が低くなるため、好ましくない。
本発明の触媒のBET法による比表面積は30〜250m/g、好ましくは40〜200m/gの範囲にあるのがよい。触媒の比表面積が30m/gより小さいと有機ハロゲン化合物の分解活性が低くなり、一方250m/gを超えてもそれほど大きな活性の向上は認められず、場合によっては触媒被毒成分の蓄積量が多くなって、触媒寿命に悪影響を及ぼすこともある。
【0013】
したがって、本発明の触媒においては、触媒A成分としてチタン酸化物およびTi−Si複合酸化物よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として触媒A成分の0.1〜25重量%のバナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として全触媒成分の0.5〜10重量%のアルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含み、しかも、水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にあり、BET法による比表面積が30〜250m2/gの範囲にある触媒が特に好適に用いられる。
【0014】
本発明の触媒の調製法としては、特に限定されないが、触媒A成分と触媒C成分の混合物に対し、触媒B成分を担持させる方法が好ましい。この方法で調製することで、触媒表面にアルカリ土類金属が露出する割合が低くなるため、アルカリ土類金属による触媒活性の低下を抑制しつつ、SOxや砒素などの被毒成分による活性劣化を防止することができる。
触媒A成分と触媒C成分の混合物は、それぞれの成分を粉体またはスラリーの状態で混合して調製してもよいし、各々の塩類の溶液の混合物から共沈させることによって調製してもよい。また、触媒A成分と触媒C成分の混合物に触媒B成分を担持させる方法としては、触媒A成分と触媒C成分の粉体またはスラリーの混合物に触媒B成分の塩類またはその溶液を添加する方法や、触媒A成分および触媒C成分よりなる成型体に触媒B成分の塩類の溶液を含浸担持させる方法を用いることができる。
【0015】
本発明の触媒の形状については特に制限はなく、板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状に成型して用いてもよく、またアルミナ、シリカ、コーディライト、チタニア、ステンレス金属などよりなる板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状の担体に担持して使用してもよい。
本発明の触媒は、産業廃棄物や都市廃棄物を処理する焼却施設から発生する、有機ハロゲン化合物を含有する排ガスの処理に好適に用いられる。中でも、有機ハロゲン化合物として、ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちの少なくとも1種(いわゆるダイオキシン類)を含む排ガスの処理に特に有用である。
【0016】
本発明の触媒を用いて有機ハロゲン化合物の処理を行うには、本発明の触媒を、排ガスと接触させ、排ガス中の有機ハロゲン化合物を分解除去する。この際の条件については、特に制限がなく、この種の反応に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよい。
なお、本発明の触媒を用いて有機ハロゲン化合物の処理を行う場合の排ガスの空間速度は、通常、100〜100000Hr-1(STP)であり、好ましくは200〜50000Hr-1(STP)である。100Hr-1未満では、処理装置が大きくなりすぎるため非効率となり、一方100000Hr-1を超えると分解効率が低下する。また、その際の温度は、130〜500℃であることが好ましい。排ガス温度が130℃より低いと分解効率が低下し、500℃を超えると活性成分のシンタリングなどの問題が起こる。また、排ガス中のSOx濃度は1000ppm以下であるのがよい。排ガス中のSOx濃度が1000ppmを超えると触媒の活性劣化が大きくなるからである。
【0017】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。
(実施例1)
10重量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20重量%のSiO2含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiO2として125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを3時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、粉体を得た。得られた粉体の組成はTiO2:SiO2=8.5:1.5(モル比)であり、粉体のX線回折チャートではTiO2やSiO2の明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するチタンとケイ素との複合酸化物(Ti−Si複合酸化物)であることが確認された。
【0018】
上記Ti−Si複合酸化物10kgと市販の酸化チタン粉体(DT−51(商品名)、ミレニアム社製)10kgおよび酸化カルシウム粉体0.5kgにメタバナジン酸アンモニウム2.1kg、シュウ酸2.4kgおよびモノエタノールアミン0.6kgを水7リットルに溶解させた溶液とパラタングステン酸アンモニウムの10%メチルアミン水溶液(三酸化タングステンとして400g/リットル)3リットルを加え、さらにフェノール樹脂(ベルパール(商品名)、カネボウ(株)製)1kgと成形助剤としてのデンプン0.5kgとを加えて混合し、ニーダーで混練りした後、押出成形機で外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、450℃で5時間空気雰囲気下において焼成し、触媒Aを得た。
【0019】
触媒Aの組成はTiO2:Ti−Si複合酸化物:V25:WO3:CaO=43:43:7:5:2(重量比)であった。
(実施例2)
実施例1において用いた酸化カルシウム粉体のかわりに硫酸カルシウム粉体1kgを添加したこと以外は、実施例1と同様にして、外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状触媒Bを調製した。
触媒Bの組成はTiO2:Ti−Si複合酸化物:V25:WO3:CaSO4=42:42:7:5:4(重量比)であった。
【0020】
(実施例3)
実施例1において用いたパラタングステン酸アンモニウムメチルアミン水溶液のかわりに、パラモリブデン酸アンモニウム1.47kgとモノエタノールアミン0.3kgを水3リットルに溶解した溶液を添加するようにした以外は、実施例1と同様にして、ハニカム状触媒Cを調製した。
触媒Cの組成はTiO2:Ti−Si複合酸化物:V25:MoO3:CaO=43:43:7:5:2(重量比)であった。
(比較例1)
実施例1において用いた酸化カルシウム粉体を添加しなかったこと以外は、実施例1と同様にして、外形80mm角、目開き4.4mm、肉厚0.6mm、長さ500mmのハニカム状触媒Dを調製した。
【0021】
触媒Dの組成はTiO2:Ti−Si複合酸化物:V25:WO3=43.8:43.8:7.2:5.2(重量比)であった。
(活性試験)
触媒A、B、CおよびDを用いるとともに、有機ハロゲン化合物としてクロロトルエン(CT)を用いて、下記条件下で連続して反応を行い、各触媒の初期、1000時間後および2000時間後のCT分解活性を比較した。
<試験条件>
ガス組成
CT:30ppm、O2:10%、SO2:300ppm、H2O:15%
2:バランス
ガス温度:180℃
空間速度(STP):5000Hr-1
なお、CT分解率は下記式にしたがって求めた。
【0022】
CT分解率(%)=〔(反応器入口CT濃度)−(反応器出口CT濃度)〕÷(反応器入口CT濃度)×100
反応時間とCT分解率との関係を下の表1に示した。
【0023】
【表1】

Figure 0003893020
【0024】
【発明の効果】
本発明にかかる有機ハロゲン化合物の除去用触媒は、有機ハロゲン化合物の除去性能に優れ、かつSOxや砒素などの被毒成分による活性劣化が少ないものである。
本発明にかかる排ガスの処理方法は、上記有機ハロゲン化合物の除去用触媒を用いるため、有機ハロゲン化合物を効果的に除去でき、処理時の活性劣化が少ない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic halogen compound removal catalyst and an exhaust gas treatment method using the same. In particular, the present invention relates to a catalyst for removing organic halogen compounds for removing toxic organic halogen compounds such as dioxins in exhaust gas and a method for treating exhaust gas.
[0002]
[Prior art]
Exhaust gas generated from incineration facilities that treat industrial and municipal waste contains trace amounts of toxic organic halogen compounds such as dioxins, PCBs, and chlorophenols. Dioxins are listed as environmental hormone substances. Therefore, it has been an important issue in recent years to remove them from the exhaust gas.
As a means for treating organic halogen compounds such as dioxins, decomposition treatment with a catalyst has recently attracted attention in terms of cost and treatment efficiency. As a catalyst used for this, for example, described in JP-A-10-235191 And titanium-vanadium catalysts.
[0003]
In general, exhaust gas generated from waste incineration facilities contains components that degrade catalyst activity, such as sulfur oxide (SOx) and arsenic. To reduce the running cost of the catalyst, these active poisons are used. It is necessary to improve the catalyst life by suppressing deterioration due to components.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a catalyst for removing an organic halogen compound that is excellent in the performance of removing an organic halogen compound and has little activity deterioration due to poisoning components such as SOx and arsenic, and an exhaust gas treatment method. is there.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the catalyst for removing an organic halogen compound according to the present invention is a catalyst used for removing an organic halogen compound in exhaust gas generated from a waste incineration facility, and as a catalyst A component, At least one metal oxide selected from the group consisting of titanium oxide and a composite oxide of titanium and silicon, and at least one selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten as the catalyst B component The metal oxide and the catalyst C component contain at least one metal oxide and / or sulfate selected from alkaline earth metals, and the ratio of the catalyst B component to the catalyst A component is 0. 1 to 25% by weight, the ratio of catalyst C component to all catalyst components is 0.5 to 10% by weight, and the total pores measured by mercury porosimetry Product is in the range of 0.2~0.6cm 3 / g, characterized in that.
In the exhaust gas treatment method according to the present invention, exhaust gas containing an organic halogen compound generated from a waste incineration facility is brought into contact with the catalyst of the present invention.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has confirmed that a catalyst containing at least one oxide among titanium oxide and a composite oxide of titanium and silicon basically exhibits high activity in decomposition of a high organohalogen compound. From the above, it has been found that degradation of catalytic activity can be reduced by adding an alkaline earth metal compound thereto, and the present invention has been completed based on this finding.
The reason why the durability of the catalyst against SOx and arsenic is improved by adding an alkaline earth metal compound as a catalyst component is not clear, but alkaline earth metal sulfates are lost due to sulfation of active components such as vanadium. It is presumed that there is an effect to prevent deactivation due to active or formation of a composite with arsenic. The alkaline earth metal oxide is considered to react with SOx, which is an acidic gas, to form an alkaline earth metal sulfate to prevent deactivation of the active ingredient.
[0007]
The catalyst of the present invention comprises at least one metal oxide selected from the group consisting of titanium oxide and a composite oxide of titanium and silicon (hereinafter referred to as Ti-Si composite oxide) as the catalyst A component, catalyst As the B component, an oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten, and as the catalyst C component, at least one metal selected from alkaline earth metals Contains oxides and / or sulfates.
In addition to titanium oxide, any inorganic or organic compound can be used as the feedstock for the titanium oxide as the catalyst A component as long as it can be baked to produce titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride or titanium sulfate, or an organic titanium compound such as titanium oxalate or tetraisopropyl titanate can be used.
[0008]
As the titanium source used for the preparation of the catalyst A component Ti-Si composite oxide, any of the above inorganic and organic titanium compounds can be used, and as the silicon source, colloidal silica, water glass, fine particles can be used. It can be appropriately selected from inorganic silicon compounds such as silicon and silicon tetrachloride and organic silicon compounds such as tetraethyl silicate.
The Ti—Si composite oxide can be prepared, for example, by the following procedures (a) to (d).
(A) Silica sol and ammonia water are mixed, a sulfuric acid aqueous solution of titanium sulfate is added to cause precipitation, and the obtained precipitate is washed and dried, and then baked at 300 to 700 ° C.
(B) A sodium silicate aqueous solution is added to a titanium sulfate aqueous solution and reacted to cause precipitation. The obtained precipitate is washed and dried, and then baked at 300 to 700 ° C. (C) Ethyl silicate (tetraethoxysilane) is added to a water-alcohol solution of titanium tetrachloride and then hydrolyzed to form a precipitate. The resulting precipitate is washed and dried, and then 300 to 700 ° C. Bake with.
(D) Ammonia is added to a water-alcohol solution of titanium oxide chloride (titanium oxytrichloride) and ethyl silicate to cause precipitation. The resulting precipitate is washed and dried, and then calcined at 300 to 700 ° C. To do.
[0009]
Among the above methods, the method (a) is particularly preferable. Specifically, the ammonia source, the silicon source, and the titanium source are in an aqueous solution or a sol state, and each amount is a predetermined amount (the ammonia source is NH 3 , the silicon source is SiO 2 and the titanium source are converted to TiO 2 . Next, an ammonia source and a silicon source are mixed, and while keeping the mixed solution at 10 to 100 ° C., a titanium source is dropped into the mixed solution and kept at pH 2 to 10 for 1 to 50 hours, thereby obtaining titanium-silicon. After the precipitate is filtered and thoroughly washed, it is dried at 80 to 140 ° C. for 10 minutes to 3 hours and calcined at 300 to 700 ° C. for 1 to 10 hours. A Ti—Si composite oxide can be obtained.
[0010]
As a feedstock for the oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten as the component B of the catalyst, in addition to each oxide, an oxide is generated by firing. If so, both inorganic and organic compounds can be used. For example, hydroxides, ammonium salts, oxalates, halides, sulfates, nitrates, carbonates and the like containing each metal can be used.
Examples of the alkaline earth metal used as the catalyst component C include magnesium, calcium, barium and the like, and calcium and barium are particularly preferable. As a feedstock for these alkaline earth metal oxides and / or sulfates, oxides, hydroxides, carbonates, sulfates and the like can be used.
[0011]
The composition of each catalyst component in the catalyst of the present invention, catalyst B component Ri 0.1 to 25 wt% der catalyst component A, good Mashiku is 1 to 25 wt%. Catalyst component C is Ri 0.5 to 10 wt% der of the total catalyst component, good Mashiku is from 1 to 5 wt%. If the content of the catalyst B component is less than 0.1% by weight of the catalyst A component, the decomposition activity of the organohalogen compound is low. On the other hand , if the content exceeds 25% by weight , no significant improvement in activity is observed. May be less active. Further, if the content of the catalyst C component is less than 0.5% by weight of the total catalyst components, the effect of improving the durability against poisoning components in the exhaust gas cannot be sufficiently obtained, while if it exceeds 10% by weight, organic The decomposition activity of the halogen compound is reduced.
[0012]
Total pore volume measured by mercury porosimetry of the catalyst of the present invention, area by the near of 0.2~0.6cm 3 / g. When the total pore volume of the catalyst is smaller than 0.2 cm 3 / g, the decomposition activity of the organic halogen compound is low, and when it exceeds 0.6 cm 3 / g, the mechanical strength of the catalyst is lowered, which is not preferable.
BET specific surface area of the catalyst of the present invention is 30~250m 2 / g, preferably, from the 40 to 200 m 2 / g. When the specific surface area of the catalyst is smaller than 30 m 2 / g, the decomposition activity of the organic halogen compound is lowered. On the other hand , when the specific surface area exceeds 250 m 2 / g, no significant improvement in activity is observed. The accumulated amount may increase and adversely affect the catalyst life.
[0013]
Therefore, in the catalyst of the present invention, the catalyst A component is at least one metal oxide selected from the group consisting of titanium oxide and Ti—Si composite oxide, and the catalyst B component is 0.1 to 0.1% of the catalyst A component. 25% by weight of an oxide of at least one metal selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten, and 0.5 to 10% by weight of the alkaline earth metal of the total catalyst component as the catalyst C component An oxide and / or sulfate of at least one metal selected from the above, and the total pore volume measured by mercury porosimetry is in the range of 0.2 to 0.6 cm 3 / g; A catalyst having a specific surface area in the range of 30 to 250 m 2 / g is particularly preferably used.
[0014]
The method for preparing the catalyst of the present invention is not particularly limited, but a method in which the catalyst B component is supported on a mixture of the catalyst A component and the catalyst C component is preferable. By preparing by this method, the ratio of exposure of alkaline earth metal to the surface of the catalyst is reduced, so that the deterioration of the activity due to poisoning components such as SOx and arsenic is suppressed while suppressing the decrease in catalytic activity due to the alkaline earth metal. Can be prevented.
The mixture of the catalyst A component and the catalyst C component may be prepared by mixing the respective components in the form of powder or slurry, or may be prepared by coprecipitation from a mixture of solutions of each salt. . As a method for supporting the catalyst B component on the mixture of the catalyst A component and the catalyst C component, a method of adding a salt of the catalyst B component or a solution thereof to a mixture of the powder or slurry of the catalyst A component and the catalyst C component, A method of impregnating and supporting a solution of a salt of the catalyst B component on a molded body composed of the catalyst A component and the catalyst C component can be used.
[0015]
The shape of the catalyst of the present invention is not particularly limited, and may be used by molding into a desired shape selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, and the like. In addition, it may be used by being supported on a carrier having a desired shape selected from a plate shape, corrugated plate shape, net shape, honeycomb shape, columnar shape, cylindrical shape made of silica, cordierite, titania, stainless steel, etc. .
The catalyst of the present invention is suitably used for the treatment of exhaust gas containing an organic halogen compound generated from an incineration facility for treating industrial waste and municipal waste. Among them, it is particularly useful for treating exhaust gas containing at least one of polyhalogenated dibenzodioxins, polyhalogenated dibenzofurans and polyhalogenated biphenyls (so-called dioxins) as the organic halogen compound.
[0016]
In order to treat the organic halogen compound using the catalyst of the present invention, the catalyst of the present invention is brought into contact with exhaust gas to decompose and remove the organic halogen compound in the exhaust gas. The conditions at this time are not particularly limited, and can be carried out under conditions generally used for this type of reaction. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, and the like.
Incidentally, the space velocity of the exhaust gas in the case of performing the processing of the organohalogen compounds using the catalyst of the present invention is usually a 100~100000Hr -1 (STP), preferably 200~50000Hr -1 (STP). If it is less than 100 Hr −1 , the processing apparatus becomes too large to be inefficient, and if it exceeds 100000 Hr −1 , the decomposition efficiency is lowered. Moreover, it is preferable that the temperature in that case is 130-500 degreeC. When the exhaust gas temperature is lower than 130 ° C., the decomposition efficiency decreases, and when it exceeds 500 ° C., problems such as sintering of the active ingredient occur. The SOx concentration in the exhaust gas is preferably 1000 ppm or less. This is because when the SOx concentration in the exhaust gas exceeds 1000 ppm, the catalyst activity deteriorates greatly.
[0017]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
Example 1
After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by weight of SiO 2 ) to 700 liters of 10% by weight aqueous ammonia, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 3 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was baked at 500 ° C. to obtain a powder. The composition of the obtained powder was TiO 2 : SiO 2 = 8.5: 1.5 (molar ratio), and no obvious intrinsic peak of TiO 2 or SiO 2 was observed in the X-ray diffraction chart of the powder. It was confirmed by a broad diffraction peak that it was a composite oxide of titanium and silicon (Ti-Si composite oxide) having an amorphous microstructure.
[0018]
10 kg of the Ti-Si composite oxide, 10 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium) and 0.5 kg of calcium oxide powder, 2.1 kg of ammonium metavanadate, and 2.4 kg of oxalic acid A solution obtained by dissolving 0.6 kg of monoethanolamine in 7 liters of water and 3 liters of a 10% aqueous solution of ammonium paratungstate in methylamine (400 g / liter as tungsten trioxide) were added, and phenol resin (Bellepar (trade name)) was added. 1 kg of Kanebo Co., Ltd.) and 0.5 kg of starch as a molding aid were added and mixed. After kneading with a kneader, the outer shape was 80 mm square, the opening was 4.4 mm, and the wall thickness was 0.00. It was formed into a honeycomb shape having a length of 6 mm and a length of 500 mm. Subsequently, after drying at 80 degreeC, it baked in the air atmosphere at 450 degreeC for 5 hours, and the catalyst A was obtained.
[0019]
The composition of the catalyst A was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 : CaO = 43: 43: 7: 5: 2 (weight ratio).
(Example 2)
Except that 1 kg of calcium sulfate powder was added in place of the calcium oxide powder used in Example 1, the outer shape was 80 mm square, the opening was 4.4 mm, the wall thickness was 0.6 mm, and the length was the same as in Example 1. A honeycomb catalyst B having a thickness of 500 mm was prepared.
The composition of the catalyst B was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 : CaSO 4 = 42: 42: 7: 5: 4 (weight ratio).
[0020]
(Example 3)
In place of the aqueous solution of ammonium paratungstate methylamine used in Example 1, a solution prepared by dissolving 1.47 kg of ammonium paramolybdate and 0.3 kg of monoethanolamine in 3 liters of water was added. In the same manner as in No. 1, a honeycomb catalyst C was prepared.
The composition of the catalyst C was TiO 2 : Ti—Si composite oxide: V 2 O 5 : MoO 3 : CaO = 43: 43: 7: 5: 2 (weight ratio).
(Comparative Example 1)
Except that the calcium oxide powder used in Example 1 was not added, a honeycomb-shaped catalyst having an outer shape of 80 mm square, an opening of 4.4 mm, a wall thickness of 0.6 mm, and a length of 500 mm was the same as in Example 1. D was prepared.
[0021]
The composition of the catalyst D was TiO 2 : Ti—Si composite oxide: V 2 O 5 : WO 3 = 43.8: 43.8: 7.2: 5.2 (weight ratio).
(Activity test)
Using catalysts A, B, C, and D and using chlorotoluene (CT) as an organic halogen compound, the reaction is continuously performed under the following conditions. The initial CT, 1000 hours, and 2000 hours of each catalyst The degradation activity was compared.
<Test conditions>
Gas composition CT: 30 ppm, O 2 : 10%, SO 2 : 300 ppm, H 2 O: 15%
N 2 : Balance gas temperature: 180 ° C
Space velocity (STP): 5000Hr -1
The CT decomposition rate was determined according to the following formula.
[0022]
CT decomposition rate (%) = [(reactor inlet CT concentration) − (reactor outlet CT concentration)] ÷ (reactor inlet CT concentration) × 100
The relationship between reaction time and CT decomposition rate is shown in Table 1 below.
[0023]
[Table 1]
Figure 0003893020
[0024]
【The invention's effect】
The catalyst for removing an organic halogen compound according to the present invention is excellent in removal performance of an organic halogen compound and has little activity deterioration due to poisoning components such as SOx and arsenic.
Since the exhaust gas treatment method according to the present invention uses the above-mentioned catalyst for removing an organic halogen compound, the organic halogen compound can be effectively removed, and the activity degradation during the treatment is small.

Claims (2)

廃棄物焼却施設から発生する排ガス中の有機ハロゲン化合物を除去するために用いられる触媒であって、
触媒A成分として、チタン酸化物およびチタンとケイ素の複合酸化物よりなる群から選ばれた少なくとも1種の金属酸化物、触媒B成分として、バナジウム、ニオブ、タンタル、モリブデンおよびタングステンよりなる群から選ばれた少なくとも1種の金属の酸化物、触媒C成分として、アルカリ土類金属の中から選ばれた少なくとも1種の金属の酸化物および/または硫酸塩を含有し、触媒B成分の触媒A成分に対する割合が0.1〜25重量%、触媒C成分の全触媒成分に対する割合が0.5〜10重量%であるとともに、水銀圧入法で測定した全細孔容積が0.2〜0.6cm/gの範囲にある、
ことを特徴とする、有機ハロゲン化合物の除去用触媒。
A catalyst used to remove organohalogen compounds in exhaust gas generated from waste incineration facilities,
The catalyst A component is at least one metal oxide selected from the group consisting of titanium oxide and a composite oxide of titanium and silicon, and the catalyst B component is selected from the group consisting of vanadium, niobium, tantalum, molybdenum and tungsten. At least one metal oxide selected from alkaline earth metals and / or sulfate as catalyst C component, and catalyst A component of catalyst B component Is 0.1 to 25 wt%, the ratio of catalyst C component to all catalyst components is 0.5 to 10 wt%, and the total pore volume measured by mercury porosimetry is 0.2 to 0.6 cm. In the range of 3 / g,
A catalyst for removing an organic halogen compound.
廃棄物焼却施設から発生する、有機ハロゲン化合物を含む排ガスを、請求項1に記載の触媒と接触させるようにする、排ガスの処理方法。 A method for treating exhaust gas, wherein an exhaust gas containing an organic halogen compound generated from a waste incineration facility is brought into contact with the catalyst according to claim 1.
JP2000295550A 2000-09-28 2000-09-28 Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same Expired - Fee Related JP3893020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295550A JP3893020B2 (en) 2000-09-28 2000-09-28 Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295550A JP3893020B2 (en) 2000-09-28 2000-09-28 Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same

Publications (2)

Publication Number Publication Date
JP2002102695A JP2002102695A (en) 2002-04-09
JP3893020B2 true JP3893020B2 (en) 2007-03-14

Family

ID=18777960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295550A Expired - Fee Related JP3893020B2 (en) 2000-09-28 2000-09-28 Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same

Country Status (1)

Country Link
JP (1) JP3893020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771961B (en) * 2016-03-10 2018-06-19 浙江大学 A kind of CeO2Nanotube supported denitrating catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2002102695A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
KR100418225B1 (en) Catalyst and process for removing organohalogen compounds
KR20050039582A (en) Method for treating exhaust gas
JP4113090B2 (en) Exhaust gas treatment method
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP4822740B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3893020B2 (en) Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3739032B2 (en) Catalyst for removing organic halogen compound, method for producing the same, and method for removing organic halogen compound
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP3920612B2 (en) Exhaust gas treatment method
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4002437B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4173707B2 (en) Catalyst for removing organic halogen compound and method for removing organic halogen compound
JP3984121B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method using the catalyst
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2005125213A (en) Exhaust gas treatment method
JP4098697B2 (en) Exhaust gas treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees