JP4499511B2 - Method for treating exhaust gas containing nitrogen oxides - Google Patents

Method for treating exhaust gas containing nitrogen oxides Download PDF

Info

Publication number
JP4499511B2
JP4499511B2 JP2004256690A JP2004256690A JP4499511B2 JP 4499511 B2 JP4499511 B2 JP 4499511B2 JP 2004256690 A JP2004256690 A JP 2004256690A JP 2004256690 A JP2004256690 A JP 2004256690A JP 4499511 B2 JP4499511 B2 JP 4499511B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nitrogen oxides
composite oxide
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004256690A
Other languages
Japanese (ja)
Other versions
JP2006068661A (en
Inventor
光晴 萩
広樹 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2004256690A priority Critical patent/JP4499511B2/en
Publication of JP2006068661A publication Critical patent/JP2006068661A/en
Application granted granted Critical
Publication of JP4499511B2 publication Critical patent/JP4499511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は窒素酸化物を含む排ガスの処理方法に関し、詳しくは排ガス中の窒素酸化物をアンモニア、尿素などの還元剤を用い、150℃以上200℃未満という低温度域にて、効率よく還元除去する方法に関する。   The present invention relates to a method for treating exhaust gas containing nitrogen oxides, and in particular, efficiently reduces and removes nitrogen oxides in exhaust gases using a reducing agent such as ammonia and urea in a low temperature range of 150 ° C. or higher and lower than 200 ° C. On how to do.

現在、火力発電所、ゴミ焼却炉などから排出される排ガス中の窒素酸化物を除去する方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元し、無害な窒素と水とに分解する選択的触媒還元(SCR)法が一般的である。これに用いられる窒素酸化物除去用触媒(脱硝触媒)としては、チタニア担体、チタン(Ti)とケイ素(Si)とからなる二元複合酸化物担体などのチタンを含む酸化物担体にバナジウム(V)、タングステン(W)、モリブデン(Mo)などの金属酸化物を担持してなる触媒が実用されているが、これらの触媒はその使用温度が200℃以上、通常は250℃以上の高温下で効率的な脱硝機能を発揮するよう設計されてなるものである。一方、近年、廃棄物のサーマルリサイクル利用が検討され、廃棄物を燃焼して得られる熱エネルギーを各種用途に利用することが図られている。この各種のサーマルリサイクル設備から排出されるガス中の窒素酸化物を除去する要求が多くなっているが、この種の設備の排ガス温度は200℃以下と低温であり、上記した従来の高温型の脱硝触媒では充分その機能を発揮できないという問題がある。   Currently, as a method of removing nitrogen oxides in exhaust gas discharged from thermal power plants, garbage incinerators, etc., nitrogen oxides in exhaust gas are catalytically reduced on the catalyst using a reducing agent such as ammonia or urea. A selective catalytic reduction (SCR) process that decomposes into harmless nitrogen and water is common. As a catalyst for removing nitrogen oxide (denitration catalyst) used for this, an oxide carrier containing titanium such as a titania carrier, a binary composite oxide carrier made of titanium (Ti) and silicon (Si), vanadium (V ), Tungsten (W), molybdenum (Mo) and other metal oxide catalysts are put into practical use. These catalysts are used at a high temperature of 200 ° C. or higher, usually 250 ° C. or higher. It is designed to exhibit an efficient denitration function. On the other hand, in recent years, utilization of thermal recycling of waste has been studied, and thermal energy obtained by burning waste is used for various purposes. There is an increasing demand to remove nitrogen oxides in the gas discharged from these various thermal recycling facilities, but the exhaust gas temperature of this type of facility is as low as 200 ° C. or less, and the conventional high temperature type described above is used. There is a problem that a denitration catalyst cannot sufficiently perform its function.

従来、この低温型の脱硝触媒として、種々の触媒系が提案されているが、その中で、チタン酸化物を担体としマンガン(Mn)などの卑金属酸化物を主たる活性成分として担持してなる触媒としては、硝酸根の含有量を0.1質量%以下と極力少なくしたチタン酸化物担体にマンガン酸化物を担持した触媒が、またこの触媒の存在下に150〜300℃の温度域でアンモニアにより脱硝処理する方法が提案されている(特許文献1参照)。しかし、マンガン触媒の目的はNOをNO2に変換する酸化目的の酸化触媒であり、脱硝機能があるとは記載されていない。   Conventionally, various catalyst systems have been proposed as this low-temperature denitration catalyst. Among them, a catalyst comprising a titanium oxide as a carrier and a base metal oxide such as manganese (Mn) as a main active component. As a catalyst, a catalyst in which a manganese oxide is supported on a titanium oxide support whose content of nitrate radical is as low as 0.1% by mass or less is used, and in the presence of this catalyst, ammonia is used in a temperature range of 150 to 300 ° C. A method of denitration treatment has been proposed (see Patent Document 1). However, the purpose of the manganese catalyst is an oxidation catalyst for the purpose of converting NO into NO2, and it is not described that it has a denitration function.

また、200〜500℃の温度域でアンモニア等の存在下脱硝する触媒として、TiおよびSiからなる二元系複合酸化物を担体として、V、W、Mo、Mn、Cu、Cr、CeおよびSnからなる群から選択される少なくとも一種の元素の酸化物を担持してなる触媒が提案されている(特許文献2参照)。しかし、この文献には、上記触媒系を200℃未満の温度域で使用した場合の脱硝性能に関しての開示はない。   Further, as a catalyst for denitration in the presence of ammonia or the like in the temperature range of 200 to 500 ° C., a binary composite oxide composed of Ti and Si is used as a support, and V, W, Mo, Mn, Cu, Cr, Ce and Sn There has been proposed a catalyst comprising an oxide of at least one element selected from the group consisting of (see Patent Document 2). However, this document does not disclose the denitration performance when the catalyst system is used in a temperature range below 200 ° C.

また、200〜250℃の温度域で炭化水素類、アンモニア等の還元剤の存在下、排ガス流れに対して上流側にTi−Mn系、Ti−Cr系などの窒素酸化物(NO)酸化触媒を配置しその後流側に脱硝触媒を配置してなる触媒装置を用いて脱硝する方法が提案されている(特許文献3参照)。しかし、この文献にはTi−Mn系、Ti−Cr系などのNO酸化触媒について、触媒組成、触媒調製法などに関する具体的記載が無く、この触媒が如何なる触媒か特定できない。   Further, in the temperature range of 200 to 250 ° C., in the presence of a reducing agent such as hydrocarbons and ammonia, a nitrogen oxide (NO) oxidation catalyst such as Ti—Mn or Ti—Cr upstream of the exhaust gas flow. And a method of denitration using a catalyst device in which a denitration catalyst is arranged on the downstream side has been proposed (see Patent Document 3). However, in this document, there is no specific description regarding the catalyst composition, the catalyst preparation method, and the like for the NO oxidation catalyst such as Ti—Mn and Ti—Cr, and it is not possible to specify what the catalyst is.

特開平9−155190号公報(特許請求の範囲)JP-A-9-155190 (Claims) 特公平5−87291号公報(特許請求の範囲、実施例9、10、11)Japanese Patent Publication No. 5-87291 (Claims, Examples 9, 10, and 11) 特開平8−103636号公報(特許請求の範囲)JP-A-8-103636 (Claims)

本発明の課題は、排ガス中の窒素酸化物を、触媒の存在下に、還元剤を用い、排ガス温度が150℃以上200℃未満という低温度域で、しかもアンモニアの分解を抑制しながら、効率よく還元除去する方法を提供することにある。   An object of the present invention is to use nitrogen oxides in exhaust gas in the low temperature range of 150 ° C. or more and less than 200 ° C. using a reducing agent in the presence of a catalyst, and while suppressing decomposition of ammonia, It is to provide a method for reducing and removing well.

本発明者らの研究によれば、触媒として、(A)チタンとケイ素との複合酸化物および(B)マンガンの酸化物からなる触媒を用いると上記課題を解決できることを見出し、この知見に基づいて本発明を完成するに至った。   According to the study by the present inventors, it has been found that the above problem can be solved by using a catalyst comprising (A) a composite oxide of titanium and silicon and (B) an oxide of manganese as a catalyst. The present invention has been completed.

すなわち、本発明は、排ガス中の窒素酸化物を触媒の存在下にアンモニアにより還元除去する排ガスの処理方法において、排ガスを150℃以上200℃未満の温度で、(A)チタンとケイ素との複合酸化物および(B)マンガンの酸化物からなる触媒に接触させることを特徴とする窒素酸化物を含む排ガスの処理方法である。   That is, the present invention provides an exhaust gas treatment method in which nitrogen oxides in exhaust gas are reduced and removed with ammonia in the presence of a catalyst, and the exhaust gas is treated at a temperature of 150 ° C. or higher and lower than 200 ° C. (A) a composite of titanium and silicon. A method for treating exhaust gas containing nitrogen oxides, characterized by contacting with a catalyst comprising an oxide and an oxide of (B) manganese.

本発明の方法によれば、150℃以上200℃未満という低温度域で、アンモニア等を分解により損失することなく、排ガス中の窒素酸化物を効率よく還元除去することができる。   According to the method of the present invention, nitrogen oxides in exhaust gas can be efficiently reduced and removed in a low temperature range of 150 ° C. or higher and lower than 200 ° C. without losing ammonia or the like by decomposition.

本発明で用いる触媒は、(A)チタンとケイ素との複合酸化物(以下、Ti−Si複合酸化物という。)および(B)マンガンの酸化物からなる触媒である。
The catalyst used in the present invention is a catalyst comprising (A) a composite oxide of titanium and silicon (hereinafter referred to as Ti-Si composite oxide) and (B) an oxide of manganese.

上記成分(A)のTi−Si複合酸化物およびTi−Zr複合酸化物はともに一般によく知られているものであり、従来から知られている方法に従って容易に調製することができる。   Both the Ti-Si composite oxide and Ti-Zr composite oxide of the component (A) are generally well known and can be easily prepared according to conventionally known methods.

チタン源としては、酸化チタンのほか、焼成してチタン酸化物を生成するものであれば、無機および有機のいずれの化合物も使用することができる。例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物、またはシュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を用いることができる。   As the titanium source, in addition to titanium oxide, any inorganic and organic compound can be used as long as it can be baked to produce a titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride or titanium sulfate, or an organic titanium compound such as titanium oxalate or tetraisopropyl titanate can be used.

ケイ素源としては、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素などの無機ケイ素化合物、およびテトラエチルシリケートなどの有機ケイ素化合物を用いることができる。   As the silicon source, colloidal silica, water glass, fine silicon, inorganic silicon compounds such as silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate can be used.

また、ジルコニウム源としては、塩化ジルコニウム、硫酸ジルコニウムなどの無機ジルコニウム化合物、およびシュウ酸ジルコニウムなどの有機ジルコニウム化合物を用いることができる。   As the zirconium source, inorganic zirconium compounds such as zirconium chloride and zirconium sulfate, and organic zirconium compounds such as zirconium oxalate can be used.

上記Ti−Si複合酸化物は、例えば、以下の手順(a)〜(d)によって調製することができる。
(a)シリカゾルとアンモニア水を混合し、硫酸チタンの硫酸水溶液を添加して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(b)硫酸チタン水溶液にケイ酸ナトリウム水溶液を添加し、反応して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(c)四塩化チタンの水−アルコール溶液にエチルシリケート(テトラエトキシシラン)を添加し、次いで加水分解することにより沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(d)酸化塩化チタン(オキシ三塩化チタン)とエチルシリケートとの水−アルコール溶液に、アンモニアを加えて沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
The Ti—Si composite oxide can be prepared, for example, by the following procedures (a) to (d).
(A) Silica sol and ammonia water are mixed, a sulfuric acid aqueous solution of titanium sulfate is added to cause precipitation, and the obtained precipitate is washed and dried, and then baked at 300 to 700 ° C.
(B) A sodium silicate aqueous solution is added to a titanium sulfate aqueous solution and reacted to cause precipitation. The obtained precipitate is washed and dried, and then baked at 300 to 700 ° C.
(C) Ethyl silicate (tetraethoxysilane) is added to a water-alcohol solution of titanium tetrachloride and then hydrolyzed to form a precipitate. The resulting precipitate is washed and dried, and then 300 to 700 ° C. Bake with.
(D) Ammonia is added to a water-alcohol solution of titanium oxide chloride (titanium oxytrichloride) and ethyl silicate to cause precipitation. The resulting precipitate is washed and dried, and then calcined at 300 to 700 ° C. To do.

上記の方法のうち、(a)の方法が特に好ましく、具体的には、アンモニア源、ケイ素源およびチタン源を水溶液またはゾル状態で各量が所定量(アンモニア源はNHに、ケイ素源はSiOに、そしてチタン源はTiOに、それぞれ換算)になるように取る。ついで、アンモニア源とケイ素源とを混合し、この混合液を10〜100℃に保ちながら、この混合液にチタン源を滴下して、pH2〜10で1〜50時間保持することにより、チタン−ケイ素の共沈物を生成し、この沈殿物をろ過し、充分に洗浄した後、80〜140℃で10分間から3時間乾燥し、300〜700℃で1〜10時間焼成することにより、目的とするTi−Si複合酸化物を得ることができる。 Among the above methods, the method (a) is particularly preferable. Specifically, the ammonia source, the silicon source and the titanium source are each in an aqueous solution or a sol state, and each amount is a predetermined amount (the ammonia source is NH 3 , the silicon source is SiO 2 and the titanium source are converted to TiO 2 . Next, an ammonia source and a silicon source were mixed, and while maintaining the mixed solution at 10 to 100 ° C., a titanium source was dropped into the mixed solution and kept at pH 2 to 10 for 1 to 50 hours. A silicon coprecipitate is produced, and this precipitate is filtered, washed thoroughly, dried at 80 to 140 ° C. for 10 minutes to 3 hours, and calcined at 300 to 700 ° C. for 1 to 10 hours. A Ti—Si composite oxide can be obtained.

また、Ti−Zr複合酸化物の調製は上記Ti−Si複合酸化物の調製法に準じて行えばよく、シリカ源の代わりに水溶性ジルコニウム化合物などをジルコニウム源として使用して調製すればよい。   The Ti—Zr composite oxide may be prepared in accordance with the above-described method for preparing the Ti—Si composite oxide, and may be prepared using a water-soluble zirconium compound or the like as the zirconium source instead of the silica source.

上記Ti−Si複合酸化物またはTi−Zr複合酸化物における、ケイ素またはジルコニウムの酸化物の含有量は、チタン酸化物に対し、0.5〜 60モル%、好ましくは1.5〜60モル%、より好ましくは1.5〜45モル%である(チタン、ケイ素およびジルコニウムはそれぞれTiO、SiOおよびZrOとして換算)。 The content of silicon or zirconium oxide in the Ti-Si composite oxide or Ti-Zr composite oxide is 0.5 to 60 mol%, preferably 1.5 to 60 mol%, relative to the titanium oxide. , more preferably from 1.5 to 45 mol% (titanium, in terms of each silicon and zirconium as TiO 2, SiO 2 and ZrO 2).

成分(B)のマンガン源としては、マンガン酸化物のほかに、焼成によって酸化物を生成するものであれば、無機および有機のいずれの化合物も用いることができる。例えば、マンガンを含む水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などを用いることができる。   As the manganese source of component (B), in addition to manganese oxide, any inorganic and organic compounds can be used as long as they generate oxides by firing. For example, manganese-containing hydroxides, ammonium salts, oxalates, halides, sulfates, nitrates, carbonates, and the like can be used.

本発明の上記成分(A)および(B)からなる触媒の調製法としては、通常の含浸担持法、混練法、浸漬法など通常この分野で採用されている公知の方法から適宜選択することができる。例えば、成分(A)および(B)の混合物の粉体を得た後、所望の形状に成形する。その際、それぞれの成分を粉体またはスラリーの状態で混合して調製してもよいし、各々の塩類の溶液の混合物から共沈させることによって調製してもよい。また、成分(A)に成分(B)を担持させる方法としては、成分(A)の粉体またはスラリーの混合物に成分(B)の塩類またはその溶液を添加する方法や、成分(A)からなる成型体に成分(B)の塩類の溶液を含浸担持させる方法を用いることができる。   The method for preparing the catalyst comprising the above components (A) and (B) of the present invention may be appropriately selected from known methods usually employed in this field, such as a normal impregnation supporting method, a kneading method and a dipping method. it can. For example, after obtaining a powder of a mixture of components (A) and (B), it is molded into a desired shape. In that case, each component may be prepared by mixing in the form of powder or slurry, or may be prepared by coprecipitation from a mixture of solutions of each salt. In addition, as a method of supporting the component (B) on the component (A), a method of adding the salt of the component (B) or a solution thereof to the powder or slurry mixture of the component (A), or from the component (A) A method of impregnating and supporting a solution of the salt of component (B) on the resulting molded body can be used.

本発明の触媒の組成については、成分(A)および(B)を含む触媒の場合、成分(B)は、成分(A)の質量基準で、0.1〜40質量%、好ましくは1〜40質量%である[Ti−Si複合酸化物、Ti−Zr複合酸化物は全質量、マンガンはMnOとして換算]。成分(B)の含有量が、成分(A)の0.1質量%より少ないと脱硝活性が低く、一方40質量%を超えてもそれほど大きな活性の向上は認められず、場合によっては活性が低下することもある。 About the composition of the catalyst of this invention, in the case of the catalyst containing component (A) and (B), component (B) is 0.1-40 mass% on the mass reference | standard of component (A), Preferably it is 1- 40% by mass [Ti-Si composite oxide, Ti-Zr composite oxide is the total mass, and manganese is converted as MnO 2 ]. When the content of the component (B) is less than 0.1% by mass of the component (A), the denitration activity is low. On the other hand, when the content exceeds 40% by mass, no significant improvement in activity is observed, and in some cases the activity is It may decrease.

本発明の触媒の水銀圧入法で測定した全細孔容積は、0.2〜0.6cm3 /gの範囲にあることが好ましい。触媒の全細孔容積が0.2cm3/gよりも小さいと脱硝活性が低く、一方0.6cm3/gを超えると触媒の機械的強度が低くなるため、好ましくない。本発明の触媒のBET法による比表面積は30〜250m2/g、好ましくは40〜200m2/gの範囲にあるのがよい。触媒の比表面積が30m2/gより小さいと脱硝活性が低くなり、一方250m2/gを超えてもそれほど大きな活性の向上は認められず、場合によっては触媒被毒成分の蓄積量が多くなって、触媒寿命に悪影響を及ぼすこともある。 The total pore volume of the catalyst of the present invention measured by mercury porosimetry is preferably in the range of 0.2 to 0.6 cm 3 / g. If the total pore volume of the catalyst is smaller than 0.2 cm 3 / g, the denitration activity is low, while if it exceeds 0.6 cm 3 / g, the mechanical strength of the catalyst is lowered, which is not preferable. BET specific surface area of the catalyst of the present invention is 30~250m 2 / g, preferably, from the 40 to 200 m 2 / g. If the specific surface area of the catalyst is less than 30 m 2 / g, the denitration activity will be low. On the other hand, if it exceeds 250 m 2 / g, no significant improvement in activity will be observed, and in some cases the accumulated amount of catalyst poisoning components will increase. Thus, the catalyst life may be adversely affected.

したがって、本発明の触媒においては、成分(B)を成分(A)の0.1〜40質量%の割合で含み、あるいは更に成分(C)を成分(A)の0.1〜25質量%含み、しかも、水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にあり、BET法による比表面積が30〜250m2/gの範囲にある触媒が特に好適に用いられる。 Therefore, in the catalyst of this invention, a component (B) is included in the ratio of 0.1-40 mass% of a component (A), or a component (C) is further 0.1-25 mass% of a component (A). In particular, a catalyst having a total pore volume measured by mercury porosimetry in the range of 0.2 to 0.6 cm 3 / g and a specific surface area by the BET method in the range of 30 to 250 m 2 / g is particularly preferable. Used for.

本発明の触媒の形状については特に制限はなく、板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状に成型して用いてもよく、またアルミナ、シリカ、コーディライト、チタニア、ステンレス金属などよりなる板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状の担体に担持して使用してもよい。   The shape of the catalyst of the present invention is not particularly limited, and may be used by molding into a desired shape selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, and the like. In addition, it may be used by being supported on a carrier having a desired shape selected from a plate shape, corrugated plate shape, net shape, honeycomb shape, columnar shape, cylindrical shape made of silica, cordierite, titania, stainless steel, etc. .

本発明の触媒は、窒素酸化物を含む各種排ガスの処理に用いられる。排ガスの組成については特に制限はないが、本発明の触媒は、ボイラ、焼却炉、ガスタービン、ディーゼルエンジンおよび各種工業プロセスから排出される窒素酸化物の分解活性に優れるため、これら窒素酸化物を含む排ガスの処理に好適に用いられる。   The catalyst of the present invention is used for treating various exhaust gases containing nitrogen oxides. The composition of the exhaust gas is not particularly limited. It is suitably used for the treatment of exhaust gas containing.

本発明の脱硝処理は、触媒として上記本発明の触媒を用いる点を除けば、一般に知られている方法に従って行うことができる。具体的には、窒素酸化物を含む排ガスを、窒素酸化物を還元除去するに必要な量のアンモニアとともに、本発明の触媒に接触させればよい。この際の条件については、特に制限がなく、脱硝処理に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよい。なお、本発明の脱硝処理を行う際の排ガスの空間速度は、通常、100〜100000Hr- 1(STP)であり、好ましくは200〜50000Hr- 1(STP)である。100Hr- 1未満では、処理装置が大きくなりすぎるため非効率となり、一方100000Hr- 1を超えると分解効率が低下する。 The denitration treatment of the present invention can be performed according to a generally known method except that the catalyst of the present invention is used as a catalyst. Specifically, exhaust gas containing nitrogen oxides may be brought into contact with the catalyst of the present invention together with an amount of ammonia necessary for reducing and removing nitrogen oxides. The conditions at this time are not particularly limited, and can be carried out under conditions generally used for denitration treatment. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, and the like. Incidentally, the space velocity of the exhaust gas when performing the denitration process of the present invention is usually, 100~100000Hr - a 1 (STP), preferably 200~50000Hr - a 1 (STP). 100 hr - it is less than 1, the processing apparatus becomes inefficient because too large, whereas 100000Hr - 1 and more than decomposition efficiency is lowered.

本発明の脱硝処理を行う際の排ガスの温度は、150℃以上200℃未満であり、好ましくは170〜200℃未満である。排ガス温度が150℃より低いと脱硝効率が低下して好ましくない。本発明にかかる還元剤(アンモニア等とも記載する)は窒素酸化物を還元しうるものであり、好ましくはアンモニア及び/又は尿素であり、排ガス処理温度を考慮すると更に好ましくはアンモニアである。   The temperature of the exhaust gas when performing the denitration treatment of the present invention is 150 ° C. or more and less than 200 ° C., preferably 170 to 200 ° C. If the exhaust gas temperature is lower than 150 ° C., the denitration efficiency is lowered, which is not preferable. The reducing agent (also referred to as ammonia or the like) according to the present invention is capable of reducing nitrogen oxides, preferably ammonia and / or urea, and more preferably ammonia in consideration of the exhaust gas treatment temperature.

なお、排ガス中の硫黄酸化物(SOx)濃度は1%以下であるのがよい。排ガス中のSOx濃度が1%を超えると触媒の活性劣化が大きくなるからである。   The sulfur oxide (SOx) concentration in the exhaust gas is preferably 1% or less. This is because when the SOx concentration in the exhaust gas exceeds 1%, the catalyst activity deteriorates greatly.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

触媒調製例1Catalyst preparation example 1

10質量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20質量%のSiO含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiOとして125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを20時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、粉体を得た。得られた粉体の組成は、TiO:SiO=8.5:1.5(モル比)であり、粉体のX線回折チャートではTiOやSiOの明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するチタンとケイ素との複合酸化物(Ti−Si複合酸化物)であることが確認された。 After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by mass of SiO 2 ) to 700 L of 10% by mass ammonia water, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 20 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was baked at 500 ° C. to obtain a powder. The composition of the obtained powder is TiO 2 : SiO 2 = 8.5: 1.5 (molar ratio), and clear intrinsic peaks of TiO 2 and SiO 2 are recognized in the X-ray diffraction chart of the powder. In addition, it was confirmed by a broad diffraction peak that it was a composite oxide of titanium and silicon (Ti-Si composite oxide) having an amorphous microstructure.

上記Ti−Si複合酸化物10kgにメタバナジン酸アンモニウム2.1kg、シュウ酸2.4kgおよびモノエタノールアミン0.6kgを水7リットルに溶解させた溶液とパラタングステン酸アンモニウムに10%メチルアミン水溶液(三酸化タングステンとして400g/リットル)3リットルを加え、さらに成形助剤としての有機バインダー(デンプン0.5kg)を加えて混合し、さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、ハニカム状に押出成形した。形状は目開き4.35mm、肉厚0.6mm、長さ500mmの格子状に成形した。次いで、得られた成形物を80℃で乾燥した後、450℃で5時間空気雰囲気下において焼成して、バナジウム・タングステン(V・W)担持Ti−Si複合酸化物成形体を得た。   A solution prepared by dissolving 2.1 kg of ammonium metavanadate, 2.4 kg of oxalic acid and 0.6 kg of monoethanolamine in 7 liters of water and 10% methylamine aqueous solution (three Add 3 liters of tungsten oxide (400 g / liter), add organic binder (0.5 kg of starch) as a molding aid, mix, mix well with blender while adding appropriate amount of water, then use continuous kneader The mixture was kneaded and extruded into a honeycomb shape. The shape was formed into a lattice shape having an opening of 4.35 mm, a thickness of 0.6 mm, and a length of 500 mm. Next, the obtained molded product was dried at 80 ° C. and then fired at 450 ° C. in an air atmosphere for 5 hours to obtain a vanadium / tungsten (V · W) -supported Ti—Si composite oxide molded body.

次いで、上記V・W担持Ti−Si複合酸化物成形体を硝酸マンガン[Mn(NO・6HO]水溶液(300g−Mn/リットル)に含浸し、その後120℃で乾燥し、420℃で3時間焼成して触媒(a)を得た。この触媒(a)の組成は、Ti−Si複合酸化物:V:WO:MnO=67.5:3.75:3.75:25(質量比)(成分(B)/成分(A)=37.0質量%、成分(C)/成分(A)=11.1質量%)であった。 Next, the V · W-supported Ti—Si composite oxide compact was impregnated with an aqueous manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] solution (300 g-Mn / liter), and then dried at 120 ° C. The catalyst (a) was obtained by calcination at 3 ° C. for 3 hours. The composition of the catalyst (a) is Ti—Si composite oxide: V 2 O 5 : WO 3 : MnO 2 = 67.5: 3.75: 3.75: 25 (mass ratio) (component (B) / Component (A) = 37.0% by mass, Component (C) / Component (A) = 11.1% by mass).

触媒調製例2Catalyst preparation example 2

触媒調製例1で得られたV・W担持Ti−Si複合酸化物成形体を硝酸マンガン[Mn(NO・6HO]水溶液(200g−Mn/リットル)に含浸し、その後120℃で乾燥し、420℃で3時間焼成して触媒(b)を得た。この触媒(b)の組成は、Ti−Si複合酸化物:V:WO:MnO=76.5:4.25:4.25:15(質量比)(成分(B)/成分(A)=19.6質量%、成分(C)/成分(A)=11.1質量%)であった。 The V · W-supported Ti—Si composite oxide molded body obtained in Catalyst Preparation Example 1 was impregnated with a manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] aqueous solution (200 g-Mn / liter), and then 120 ° C. And dried at 420 ° C. for 3 hours to obtain a catalyst (b). The composition of the catalyst (b) is Ti—Si composite oxide: V 2 O 5 : WO 3 : MnO 2 = 76.5: 4.25: 4.25: 15 (mass ratio) (component (B) / Component (A) = 19.6% by mass, Component (C) / Component (A) = 11.1% by mass).

触媒調製例3Catalyst preparation example 3

10質量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20質量%のSiO含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiOとして125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを20時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、粉体を得た。得られた粉体の組成は、TiO:SiO=8.5:1.5(モル比)であり、粉体のX線回折チャートではTiOやSiOの明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するチタンとケイ素との複合酸化物(Ti−Si複合酸化物)であることが確認された。 After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by mass of SiO 2 ) to 700 L of 10% by mass ammonia water, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 20 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was baked at 500 ° C. to obtain a powder. The composition of the obtained powder is TiO 2 : SiO 2 = 8.5: 1.5 (molar ratio), and clear intrinsic peaks of TiO 2 and SiO 2 are recognized in the X-ray diffraction chart of the powder. In addition, it was confirmed by a broad diffraction peak that it was a composite oxide of titanium and silicon (Ti-Si composite oxide) having an amorphous microstructure.

上記Ti−Si複合酸化物10kgに有機バインダー(デンプン0.5kg)を加え、さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、ハニカム状に押出成形した。形状は目開き4.35mm、肉厚0.6mm、長さ500mmの格子状に成形した。次いで、得られた成形物を80℃で乾燥した後、450℃で5時間空気雰囲気下において焼成して、Ti−Si複合酸化物成形体を得た。   An organic binder (0.5 kg of starch) was added to 10 kg of the Ti—Si composite oxide, and after mixing well with a blender while adding an appropriate amount of water, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape. The shape was formed into a lattice shape having an opening of 4.35 mm, a thickness of 0.6 mm, and a length of 500 mm. Next, the obtained molded product was dried at 80 ° C. and then fired at 450 ° C. for 5 hours in an air atmosphere to obtain a Ti—Si composite oxide molded body.

次いで、上記Ti−Si複合酸化物成形体を硝酸マンガン[Mn(NO・6HO]水溶液(300g−Mn/リットル)に含浸し、その後120℃で乾燥し、420℃で3時間焼成して触媒(c)を得た。この触媒(c)の組成は、Ti−Si複合酸化物:MnO=75:25(質量比)(成分(B)/成分(A)=33.3質量%)であった。 Next, the Ti—Si composite oxide molded body was impregnated with a manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] aqueous solution (300 g-Mn / liter), then dried at 120 ° C., and at 420 ° C. for 3 hours. Firing was performed to obtain a catalyst (c). The composition of the catalyst (c) was Ti—Si composite oxide: MnO 2 = 75: 25 (mass ratio) (component (B) / component (A) = 33.3 mass%).

触媒調製例4Catalyst preparation example 4

触媒調製例3で得られた、Ti−Si複合酸化物成形体を硝酸マンガン[Mn(NO・6HO]水溶液(200g−Mn/リットル)に含浸し、その後120℃で乾燥し、420℃で3時間焼成して触媒(d)を得た。この触媒(d)の組成は、Ti−Si複合酸化物:MnO=85:15(質量比)(成分(B)/成分(A)=17.6質量%)であった。 The Ti—Si composite oxide compact obtained in Catalyst Preparation Example 3 was impregnated with an aqueous manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] solution (200 g-Mn / liter), and then dried at 120 ° C. And calcined at 420 ° C. for 3 hours to obtain a catalyst (d). The composition of the catalyst (d) was Ti—Si composite oxide: MnO 2 = 85: 15 (mass ratio) (component (B) / component (A) = 17.6 mass%).

触媒調製例5Catalyst preparation example 5

触媒調製例1で得られたV・W担持Ti−Si複合酸化物成形体をそのまま比較用触媒(e)とした。この触媒(e)の組成は、Ti−Si複合酸化物:V:WO=90:5:5(質量比)であった。 The V · W-supported Ti—Si composite oxide molded body obtained in Catalyst Preparation Example 1 was directly used as a comparative catalyst (e). The composition of the catalyst (e) was Ti—Si composite oxide: V 2 O 5 : WO 3 = 90: 5: 5 (mass ratio).

触媒調製例1〜5で得られた触媒(a)、(b)(以上参考用触媒)、(c)、(d)(以上本発明触媒)、および比較用触媒(e)について活性試験を行った。各ハニカム型触媒を外形15.5mm(3×3セル)、長さ126mmに切断し、これを直径35mmの触媒反応装置にガスの流れ方向に対して平衡となるように充填した。下記組成の合成ガス0.5Nm/hをアンモニア(NH)とともに触媒層に供給した。
(ガス組成)NOx:350ppm、NH:350ppm、O:15%、SO:0ppm、HO:10%、N:バランス
(ガス温度)150℃、180℃、195℃
反応器出口のNOx濃度を測定し、下記式に従ってNOx除去率を求めた。
NOx除去率=[(反応器入口NOx濃度)−(反応器出口NOx濃度)]÷(反応器入口NOx濃度)×100
結果を表1に示す。
Activity tests were carried out on the catalysts (a), (b) (reference catalyst) , (c), (d) (the present invention catalyst) obtained in Catalyst Preparation Examples 1 to 5 and the comparative catalyst (e). went. Each honeycomb-type catalyst was cut into an outer shape of 15.5 mm (3 × 3 cells) and a length of 126 mm, and this was packed in a catalyst reactor having a diameter of 35 mm so as to be balanced with respect to the gas flow direction. Synthetic gas 0.5Nm 3 / h having the following composition was supplied to the catalyst layer together with ammonia (NH 3 ).
(Gas composition) NOx: 350 ppm, NH 3 : 350 ppm, O 2 : 15%, SO 2 : 0 ppm, H 2 O: 10%, N 2 : Balance (gas temperature) 150 ° C, 180 ° C, 195 ° C
The NOx concentration at the outlet of the reactor was measured, and the NOx removal rate was determined according to the following formula.
NOx removal rate = [(reactor inlet NOx concentration) − (reactor outlet NOx concentration)] ÷ (reactor inlet NOx concentration) × 100
The results are shown in Table 1.

Figure 0004499511
Figure 0004499511

Claims (3)

排ガス中の窒素酸化物を触媒の存在下にアンモニアにより還元除去する排ガスの処理方法において、排ガスを150℃以上200℃未満の温度で、(A)チタンとケイ素との複合酸化物および(B)マンガンの酸化物からなる触媒に接触させることを特徴とする窒素酸化物を含む排ガスの処理方法。   In a method for treating exhaust gas in which nitrogen oxides in exhaust gas are reduced and removed with ammonia in the presence of a catalyst, the exhaust gas is treated at a temperature of 150 ° C. or higher and lower than 200 ° C. (A) a composite oxide of titanium and silicon and (B) A method for treating exhaust gas containing nitrogen oxides, characterized by contacting with a catalyst comprising an oxide of manganese. 触媒の水銀圧入法で測定した全細孔容積が0.2〜0.6cm3 /gである請求項1記載の窒素酸化物を含む排ガスの処理方法。 Method of processing an exhaust gas total pore volume measured by mercury porosimetry of catalyst including nitrogen oxides according to claim 1, wherein the 0.2~0.6cm 3 / g. 触媒のBET法による比表面積が30〜250m2/gである請求項1または2記載の窒素酸化物を含む排ガスの処理方法。 The method for treating exhaust gas containing nitrogen oxides according to claim 1 or 2, wherein the catalyst has a specific surface area of 30 to 250 m 2 / g by BET method.
JP2004256690A 2004-09-03 2004-09-03 Method for treating exhaust gas containing nitrogen oxides Active JP4499511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256690A JP4499511B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256690A JP4499511B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing nitrogen oxides

Publications (2)

Publication Number Publication Date
JP2006068661A JP2006068661A (en) 2006-03-16
JP4499511B2 true JP4499511B2 (en) 2010-07-07

Family

ID=36149813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256690A Active JP4499511B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP4499511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940299A (en) * 2018-01-08 2018-12-07 南京东南工业装备股份有限公司 A kind of diesel engine vent gas NOxPurify vanadium Ti-base catalyst and preparation method
JP7181820B2 (en) * 2019-03-14 2022-12-01 日本碍子株式会社 porous ceramic structure
CN114904540A (en) * 2022-05-10 2022-08-16 福州大学 Low-temperature manganese-based catalyst and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019366A1 (en) * 1991-04-30 1992-11-12 Nippon Shokubai Co., Ltd. Method of oxidative decomposition of organic halogen compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724774B2 (en) * 1988-11-25 1995-03-22 株式会社日本触媒 Exhaust gas treatment catalyst carrier, method for producing the same, and exhaust gas treatment catalyst containing the carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019366A1 (en) * 1991-04-30 1992-11-12 Nippon Shokubai Co., Ltd. Method of oxidative decomposition of organic halogen compound

Also Published As

Publication number Publication date
JP2006068661A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JPH064126B2 (en) Exhaust gas purification method
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
JP2013091045A (en) Exhaust gas treating method
JP4113090B2 (en) Exhaust gas treatment method
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP4499513B2 (en) Method for treating exhaust gas containing nitrogen oxides and odor components
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP3507906B2 (en) DeNOx catalyst
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP4499512B2 (en) Method for treating exhaust gas containing odor components
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH08257409A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide using the same
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JP3924418B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4