JP4499512B2 - Method for treating exhaust gas containing odor components - Google Patents

Method for treating exhaust gas containing odor components Download PDF

Info

Publication number
JP4499512B2
JP4499512B2 JP2004256699A JP2004256699A JP4499512B2 JP 4499512 B2 JP4499512 B2 JP 4499512B2 JP 2004256699 A JP2004256699 A JP 2004256699A JP 2004256699 A JP2004256699 A JP 2004256699A JP 4499512 B2 JP4499512 B2 JP 4499512B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
oxide
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004256699A
Other languages
Japanese (ja)
Other versions
JP2006068662A (en
Inventor
光晴 萩
広樹 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2004256699A priority Critical patent/JP4499512B2/en
Publication of JP2006068662A publication Critical patent/JP2006068662A/en
Application granted granted Critical
Publication of JP4499512B2 publication Critical patent/JP4499512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は臭気成分を含む排ガスの処理方法に関し、詳しくは臭気成分を含む排ガスを150℃以上200℃未満という低温度域で処理して臭気成分を効率よく除去する方法に関する。   The present invention relates to a method for treating an exhaust gas containing an odor component, and more particularly to a method for efficiently removing an odor component by treating an exhaust gas containing an odor component in a low temperature range of 150 ° C. or higher and lower than 200 ° C.

焼却炉などから排出される排ガス中には窒素酸化物(NOx)、硫黄酸化物(SOx)、アルデヒド類、硫化物類、脂肪酸類、アミン類、炭化水素類などが含まれ、これらの物質は微量であっても極めて臭気性が高く、これらの物質をいかに除去するかが課題となっている。これらの物質の除去には、一般的には、アルカリスクラバーにより排ガスを脱硫することで臭気を除く方法、排ガスにアンモニアを添加し脱硝する方法などが採用されている。しかしなから、通常用いられる脱硝触媒では、アルデヒド類、硫化物類、脂肪酸類、アミン類などの脱臭効率が低いため、これらの物質を処理するためには、脱硝処理の後、さらに脱臭用の酸化触媒を必要とするものである。   The exhaust gas discharged from incinerators contains nitrogen oxides (NOx), sulfur oxides (SOx), aldehydes, sulfides, fatty acids, amines, hydrocarbons, etc. Even in trace amounts, it is extremely odorous and how to remove these substances is a problem. In order to remove these substances, generally, a method of removing odor by desulfurizing the exhaust gas with an alkali scrubber, a method of adding ammonia to the exhaust gas and denitrating, etc. are employed. However, since the deodorization efficiency of aldehydes, sulfides, fatty acids, amines, etc. is low in the normally used denitration catalyst, in order to treat these substances, after denitration treatment, further deodorization is required. An oxidation catalyst is required.

脱臭触媒としては、例えば、チタン(Ti)およびケイ素(Si)からなる二元系複合酸化物を担体として、これに銅(Cu)、クロム(Cr)、鉄(Fe)、バナジウム(V)、タングステン(W)、マンガン(Mn)、ニッケル(Ni)、コバルト(Co)、モリブデン(Mo)、および鉛(Pb)からなる群から選択される少なくとも一種の元素の酸化物を担持してなるハニカム型脱臭触媒が提案されている(特許文献1参照)。   As the deodorization catalyst, for example, a binary composite oxide composed of titanium (Ti) and silicon (Si) is used as a carrier, and copper (Cu), chromium (Cr), iron (Fe), vanadium (V), Honeycomb carrying an oxide of at least one element selected from the group consisting of tungsten (W), manganese (Mn), nickel (Ni), cobalt (Co), molybdenum (Mo), and lead (Pb) A type deodorizing catalyst has been proposed (see Patent Document 1).

また、排ガスの脱臭および脱硝処理を同時に行う触媒として、TiおよびSiからなる二元系複合酸化物を担体として、これにCu、Cr、Fe、V、W、Mn、Ni、Co、Mo、およびPbからなる群から選択される少なくとも一種の元素の酸化物と、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)およびイリジウム(Ir)よりなる群から選ばれた少なくとも1種の貴金属またはその化合物である触媒C成分とを含有することを特徴とする排ガスの脱臭および脱硝用触媒が提案されている(特許文献2参照)。   Further, as a catalyst for simultaneously performing deodorization and denitration treatment of exhaust gas, a binary composite oxide composed of Ti and Si is used as a support, and Cu, Cr, Fe, V, W, Mn, Ni, Co, Mo, and An oxide of at least one element selected from the group consisting of Pb and at least one selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) An exhaust gas deodorization and denitration catalyst characterized by containing a catalyst C component which is a kind of noble metal or a compound thereof has been proposed (see Patent Document 2).

しかし、特許文献1、2には、それぞれの触媒を200℃未満という低温度域で使用した場合の脱臭性能の発現に関しての開示はない。   However, Patent Documents 1 and 2 do not disclose the expression of deodorizing performance when each catalyst is used in a low temperature range of less than 200 ° C.

一方、火力発電所、ゴミ焼却炉などから排出される排ガス中の窒素酸化物を除去する方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で還元分解し、無害な窒素と水とに分解する選択的触媒還元(SCR)法が一般的である。これに用いられる窒素酸化物除去用触媒(脱硝触媒)としては、チタニア担体、TiおよびSiからなる二元複合酸化物担体などのTiを含む酸化物担体にV、W、Moなどの金属酸化物を担持してなる触媒が実用化されているが、これらの触媒は、その使用温度が200℃以上、通常は250℃以上の高温下で効率的な脱硝機能を発揮するよう設計されてなるものである。一方、近年、廃棄物のサーマルリサイクル利用が検討され、廃棄物を燃焼して得られる熱エネルギーを各種用途に利用することが図られている。この各種のサーマルリサイクル設備から排出されるガス中の窒素酸化物および臭気成分を除去する要求が多くなっているが、この種の設備の排ガス温度は200℃以下と低温であり、上記した従来の高温型の脱硝触媒では充分脱硝および脱臭の両機能を発揮できないという問題がある。   On the other hand, as a method of removing nitrogen oxides in exhaust gas discharged from thermal power plants, garbage incinerators, etc., nitrogen oxides in exhaust gas are reduced and decomposed on the catalyst using a reducing agent such as ammonia or urea. A selective catalytic reduction (SCR) process that decomposes into harmless nitrogen and water is common. As a catalyst for removing nitrogen oxide (denitration catalyst) used for this, an oxide carrier containing Ti such as a titania carrier, a binary composite oxide carrier comprising Ti and Si, and a metal oxide such as V, W, and Mo However, these catalysts are designed to exhibit an efficient denitration function at a high temperature of 200 ° C. or higher, usually 250 ° C. or higher. It is. On the other hand, in recent years, utilization of thermal recycling of waste has been studied, and thermal energy obtained by burning waste is used for various purposes. There is an increasing demand to remove nitrogen oxides and odor components in gases discharged from these various thermal recycling facilities, but the exhaust gas temperature of this type of facility is as low as 200 ° C. There is a problem that a high-temperature type denitration catalyst cannot sufficiently exhibit both functions of denitration and deodorization.

従来、この低温型の脱硝触媒として、種々の触媒系が提案されているが、その中で、チタン酸化物を担体とし、マンガン(Mn)などの卑金属酸化物を主たる活性成分として担持してなる触媒としては、硝酸根の含有量を0.1質量%以下と極力少なくしたチタン酸化物担体にマンガン酸化物を担持した触媒が提案されている(特許文献3)。ただし、脱臭機能については全く記載されていない。   Conventionally, various catalyst systems have been proposed as this low-temperature type denitration catalyst. Among them, titanium oxide is used as a carrier and base metal oxide such as manganese (Mn) is supported as a main active component. As a catalyst, a catalyst in which a manganese oxide is supported on a titanium oxide support having a nitrate radical content as low as 0.1% by mass or less has been proposed (Patent Document 3). However, the deodorizing function is not described at all.

また、200〜500℃の温度域でアンモニアの存在下脱硝する触媒として、TiおよびSiからなる二元系複合酸化物を担体として、これにV、W、Mo、Mn、Cu、Cr、CeおよびSnからなる群から選択される少なくとも一種の元素の酸化物を担持してなる触媒が提案されている(特許文献4参照)。しかし、この文献には上記触媒系を200℃未満の温度域で使用した場合の脱硝性能に関しての開示はない。   Further, as a catalyst for denitration in the presence of ammonia in the temperature range of 200 to 500 ° C., a binary composite oxide composed of Ti and Si is used as a support, and V, W, Mo, Mn, Cu, Cr, Ce and A catalyst that supports an oxide of at least one element selected from the group consisting of Sn has been proposed (see Patent Document 4). However, this document does not disclose the denitration performance when the catalyst system is used in a temperature range below 200 ° C.

また、200〜250℃の温度域で炭化水素類、アンモニアなどの還元剤の存在下、排ガス流れに対して上流側にTi−Mn系、Ti−Cr系などのNOx酸化触媒を配置し、その後流側に脱硝触媒を配置してなる触媒装置を用いて脱硝する方法が提案されている(特許文献5参照)。しかし、この文献にはTi−Mn系、Ti−Cr系などのNO酸化触媒について、触媒組成、触媒調製法などに関する具体的記載が無く、この触媒が如何なる触媒か特定できない。   Further, in the presence of a reducing agent such as hydrocarbons and ammonia in a temperature range of 200 to 250 ° C., a NOx oxidation catalyst such as a Ti—Mn system and a Ti—Cr system is disposed upstream of the exhaust gas flow, and then A method of denitration using a catalyst device in which a denitration catalyst is arranged on the flow side has been proposed (see Patent Document 5). However, in this document, there is no specific description regarding the catalyst composition, the catalyst preparation method, and the like for the NO oxidation catalyst such as Ti—Mn and Ti—Cr, and it is not possible to specify what the catalyst is.

さらに、本発明者らの研究によれば、臭気成分として、例えば、アルデヒド類を含む排ガスを上記のような公知の触媒系を用いて200℃未満という低温度域で処理しようとすると、アルデヒド類は高い分解率で除去することができるが、酢酸のような望ましくない化合物が副生し、その更なる処理が必要となることがあることが判明している。   Furthermore, according to the study by the present inventors, as an odor component, for example, when an exhaust gas containing aldehydes is to be treated in a low temperature range of less than 200 ° C. using a known catalyst system as described above, aldehydes It can be removed with high degradation rates, but it has been found that undesirable compounds such as acetic acid may be by-produced and require further processing.

特公平4−9581号公報Japanese Examined Patent Publication No. 4-9581 特許第3091820号公報Japanese Patent No. 3091820 特開平9−155190号公報JP-A-9-155190 特公平5−87291号公報(特許請求の範囲、実施例9、10、11)Japanese Patent Publication No. 5-87291 (Claims, Examples 9, 10, and 11) 特開平8−103636号公報JP-A-8-103636

本発明の課題は、アンモニアなどの還元剤の不存在下に、臭気成分を含む排ガスを処理するにあたり、排ガス温度が150℃以上200℃未満という低温度域で、効率よく臭気成分を分解除去できる方法を提供することにある。   An object of the present invention is to efficiently decompose and remove odor components in a low temperature range where the exhaust gas temperature is 150 ° C. or higher and lower than 200 ° C. in the treatment of exhaust gas containing odor components in the absence of a reducing agent such as ammonia. It is to provide a method.

また、本発明の課題は、アルデヒド類などのような臭気成分を含む排ガスの場合も、酢酸などの望ましくない化合物の副生を抑制しながら、150℃以上200℃未満という低温度域にて、脱臭処理を効率よく行えるようにした、臭気成分を含む排ガスの処理方法を提供することにある。   In addition, the problem of the present invention is that, even in the case of exhaust gas containing odor components such as aldehydes, while suppressing the by-product of undesirable compounds such as acetic acid, in a low temperature range of 150 ° C. or more and less than 200 ° C., An object of the present invention is to provide a method for treating exhaust gas containing an odor component, which enables efficient deodorization treatment.

本発明者らの研究によれば、脱臭触媒として、(A)チタンとケイ素との複合酸化物および(B)マンガン酸化物からなる触媒を用いると上記課題が解決できることを見出し、この知見に基づいて本発明を完成するに至った。  According to the study by the present inventors, it was found that the above-mentioned problems can be solved by using a catalyst comprising (A) a composite oxide of titanium and silicon and (B) a manganese oxide as a deodorization catalyst. The present invention has been completed.

すなわち、本発明は、排ガス中の臭気成分であるアセトアルデヒドまたは酢酸を触媒の存在下に分解除去する排ガスの処理方法において、排ガスを150℃以上200℃未満の温度で、(A)チタンとケイ素との複合酸化物と(B)マンガン酸化物からなる触媒に接触させることを特徴とする臭気成分を含む排ガスの処理方法である。   That is, the present invention relates to a method for treating exhaust gas in which acetaldehyde or acetic acid, which is an odor component in exhaust gas, is decomposed and removed in the presence of a catalyst, and (A) titanium and silicon at a temperature of 150 ° C. or higher and lower than 200 ° C. It is made to contact the catalyst which consists of a complex oxide of (B), and a manganese oxide, The processing method of the waste gas containing the odor component characterized by the above-mentioned.

本発明の方法によれば、150℃以上200℃未満という低温度域で、排ガス中に含まれる臭気成分を効率よく分解除去することができる。   According to the method of the present invention, odor components contained in exhaust gas can be efficiently decomposed and removed in a low temperature range of 150 ° C. or higher and lower than 200 ° C.

また、本発明の方法によれば、望ましくない副生物の生成を抑制しながら、例えば、臭気成分としてアセトアルデヒドを含む排ガスの場合、望ましくない酢酸の副生を抑制しながら、臭気成分を含む排ガスを効率よく処理することができる。   Further, according to the method of the present invention, for example, in the case of exhaust gas containing acetaldehyde as an odor component while suppressing the generation of undesirable by-products, the exhaust gas containing an odor component is suppressed while suppressing by-product formation of undesirable acetic acid. It can be processed efficiently.

さらに、本発明の方法によれば、排ガス中の酢酸を高効率に分解除去することができる。   Furthermore, according to the method of the present invention, acetic acid in exhaust gas can be decomposed and removed with high efficiency.

本発明で用いる脱臭触媒は、(A)チタンとケイ素との複合酸化物および(B)マンガン酸化物からなるものである。   The deodorization catalyst used in the present invention is composed of (A) a composite oxide of titanium and silicon and (B) a manganese oxide.

上記成分(A)のうちの、Ti−Si複合酸化物およびTi−Zr複合酸化物はともに一般によく知られているものであり、従来から知られている方法に従って容易に調製することができる。   Of the component (A), both Ti—Si composite oxide and Ti—Zr composite oxide are generally well known and can be easily prepared according to conventionally known methods.

チタン源としては、酸化チタンのほか、焼成してチタン酸化物を生成するものであれば、無機および有機のいずれの化合物も使用することができる。例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物、またはシュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を用いることができる。   As the titanium source, in addition to titanium oxide, any inorganic and organic compound can be used as long as it can be baked to produce a titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride or titanium sulfate, or an organic titanium compound such as titanium oxalate or tetraisopropyl titanate can be used.

ケイ素源としては、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素などの無機ケイ素化合物、およびテトラエチルシリケートなどの有機ケイ素化合物を用いることができる。   As the silicon source, colloidal silica, water glass, fine silicon, inorganic silicon compounds such as silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate can be used.

また、ジルコニウム源としては、塩化ジルコニウム、硫酸ジルコニウムなどの無機ジルコニウム化合物、およびシュウ酸ジルコニウムなどの有機ジルコニウム化合物を用いることができる。   As the zirconium source, inorganic zirconium compounds such as zirconium chloride and zirconium sulfate, and organic zirconium compounds such as zirconium oxalate can be used.

上記Ti−Si複合酸化物は、例えば、以下の手順(a)〜(d)によって調製することができる。
(a)シリカゾルとアンモニア水を混合し、硫酸チタンの硫酸水溶液を添加して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(b)硫酸チタン水溶液にケイ酸ナトリウム水溶液を添加し、反応して沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(c)四塩化チタンの水−アルコール溶液にエチルシリケート(テトラエトキシシラン)を添加し、次いで加水分解することにより沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
(d)酸化塩化チタン(オキシ三塩化チタン)とエチルシリケートとの水−アルコール溶液に、アンモニアを加えて沈殿を生じさせ、得られた沈殿物を洗浄・乾燥し、次いで300〜700℃で焼成する。
The Ti—Si composite oxide can be prepared, for example, by the following procedures (a) to (d).
(A) Silica sol and ammonia water are mixed, a sulfuric acid aqueous solution of titanium sulfate is added to cause precipitation, and the obtained precipitate is washed and dried, and then baked at 300 to 700 ° C.
(B) A sodium silicate aqueous solution is added to a titanium sulfate aqueous solution and reacted to cause precipitation. The obtained precipitate is washed and dried, and then baked at 300 to 700 ° C.
(C) Ethyl silicate (tetraethoxysilane) is added to a water-alcohol solution of titanium tetrachloride and then hydrolyzed to form a precipitate. The resulting precipitate is washed and dried, and then 300 to 700 ° C. Bake with.
(D) Ammonia is added to a water-alcohol solution of titanium oxide chloride (titanium oxytrichloride) and ethyl silicate to cause precipitation. The resulting precipitate is washed and dried, and then calcined at 300 to 700 ° C. To do.

上記の方法のうち、(a)の方法が特に好ましく、具体的には、アンモニア源、ケイ素源およびチタン源を水溶液またはゾル状態で各量が所定量(アンモニア源はNHに、ケイ素源はSiOに、そしてチタン源はTiOに、それぞれ換算)になるように取る。ついで、アンモニア源とケイ素源とを混合し、この混合液を10〜100℃に保ちながら、この混合液にチタン源を滴下して、pH2〜10で1〜50時間保持することにより、チタン−ケイ素の共沈物を生成し、この沈殿物をろ過し、充分に洗浄した後、80〜140℃で10分間から3時間乾燥し、300〜700℃で1〜10時間焼成することにより、目的とするTi−Si複合酸化物を得ることができる。 Among the above methods, the method (a) is particularly preferable. Specifically, the ammonia source, the silicon source and the titanium source are each in an aqueous solution or a sol state, and each amount is a predetermined amount (the ammonia source is NH 3 , the silicon source is SiO 2 and the titanium source are converted to TiO 2 . Next, an ammonia source and a silicon source were mixed, and while maintaining the mixed solution at 10 to 100 ° C., a titanium source was dropped into the mixed solution and kept at pH 2 to 10 for 1 to 50 hours. A silicon coprecipitate is produced, and this precipitate is filtered, washed thoroughly, dried at 80 to 140 ° C. for 10 minutes to 3 hours, and calcined at 300 to 700 ° C. for 1 to 10 hours. A Ti—Si composite oxide can be obtained.

また、Ti−Zr複合酸化物の調製は上記Ti−Si複合酸化物の調製法に準じて行えばよく、シリカ源の代わりに水溶性ジルコニウム化合物などをジルコニウム源として使用して調製すればよい。   The Ti—Zr composite oxide may be prepared in accordance with the above-described method for preparing the Ti—Si composite oxide, and may be prepared using a water-soluble zirconium compound or the like as the zirconium source instead of the silica source.

上記Ti−Si複合酸化物またはTi−Zr複合酸化物における、ケイ素またはジルコニウムの酸化物の含有量は、チタン酸化物に対し、0.5 60モル%、好ましくは1.5〜60モル%、より好ましくは1.5〜45モル%である(チタン、ケイ素およびジルコニウムはそれぞれTiO、SiOおよびZrOとして換算)。 The content of silicon or zirconium oxide in the Ti-Si composite oxide or Ti-Zr composite oxide is 0.560 mol%, preferably 1.5-60 mol%, based on titanium oxide. more preferably from 1.5 to 45 mol% (titanium, silicon and zirconium, respectively calculated as TiO 2, SiO 2 and ZrO 2).

成分(B)のマンガン源としては、マンガン酸化物のほかに、焼成によって酸化物を生成するものであれば、無機および有機のいずれの化合物も用いることができる。例えば、マンガンを含む水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩、酢酸などを用いることができる。   As the manganese source of component (B), in addition to manganese oxide, any inorganic and organic compounds can be used as long as they generate oxides by firing. For example, manganese-containing hydroxide, ammonium salt, oxalate, halide, sulfate, nitrate, carbonate, acetic acid and the like can be used.

また、銅、クロム、鉄およびニッケル源としては、各々の酸化物のほかに、焼成によって酸化物を生成するものであれば、無機および有機のいずれの化合物も用いることができる。例えば、各々の元素を含む水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩、酢酸などを用いることができる。   As the copper, chromium, iron and nickel sources, in addition to the respective oxides, any inorganic and organic compounds can be used as long as they generate oxides by firing. For example, hydroxides, ammonium salts, oxalates, halides, sulfates, nitrates, carbonates, acetic acids and the like containing each element can be used.

本発明の上記成分(A)、(B)を含む触媒の調製法としては、通常の含浸担持法、混練法、浸漬法など通常この分野で採用されている公知の方法から適宜選択することができる。例えば、成分(A)および(B)の混合物の粉体を得た後、所望の形状に成形する。その際、それぞれの成分を粉体またはスラリーの状態で混合して調製してもよいし、各々の塩類の溶液の混合物から共沈させることによって調製してもよい。また、成分(A)に成分(B)を担持させる方法としては、成分(A)の粉体またはスラリーの混合物に成分(B)の塩類またはその溶液を添加する方法や、成分(A)からなる成形体に成分(B)の塩類の溶液を含浸担持させる方法を用いることができる。   The method for preparing the catalyst containing the components (A) and (B) of the present invention may be appropriately selected from known methods usually employed in this field such as a normal impregnation supporting method, a kneading method, and a dipping method. it can. For example, after obtaining a powder of a mixture of components (A) and (B), it is molded into a desired shape. In that case, each component may be prepared by mixing in the form of powder or slurry, or may be prepared by coprecipitation from a mixture of solutions of each salt. In addition, as a method of supporting the component (B) on the component (A), a method of adding the salt of the component (B) or a solution thereof to the powder or slurry mixture of the component (A), or from the component (A) A method of impregnating and supporting a solution of the salt of component (B) on the resulting molded body can be used.

本発明の触媒の組成については、成分(B)は、成分(A)の質量基準で、0.1〜40質量%、好ましくは1〜40質量%である(Ti−Si複合酸化物は全質量、マンガンはMnO として換算)。成分(B)の含有量が、成分(A)の0.1質量%より少ないと脱硝活性が低く、一方40質量%を超えてもそれほど大きな活性の向上は認められず、場合によっては活性が低下することもある。 About the composition of the catalyst of this invention, a component (B) is 0.1-40 mass% on the mass reference | standard of a component (A), Preferably it is 1-40 mass% (Ti-Si complex oxide is all Mass and manganese are converted as MnO 2 ). When the content of the component (B) is less than 0.1% by mass of the component (A), the denitration activity is low. On the other hand, when the content exceeds 40% by mass, no significant improvement in activity is observed, and in some cases the activity is It may decrease.

上記脱臭触媒の水銀圧入法で測定した全細孔容積は、0.2〜0.6cm3 /gの範囲にあることが好ましい。触媒の全細孔容積が0.2cm3/gよりも小さいと脱臭活性が低く、一方0.6cm3/gを超えると触媒の機械的強度が低くなるため、好ましくない。脱臭触媒のBET法による比表面積は30〜250m2/g、好ましくは40〜200m2/gの範囲にあるのがよい。触媒の比表面積が30m2/gより小さいと脱臭活性が低くなり、一方250m2/gを超えてもそれほど大きな活性の向上は認められず、場合によっては触媒被毒成分の蓄積量が多くなって、触媒寿命に悪影響を及ぼすこともある。 The total pore volume measured by the mercury intrusion method of the deodorizing catalyst is preferably in the range of 0.2 to 0.6 cm 3 / g. If the total pore volume of the catalyst is smaller than 0.2 cm 3 / g, the deodorizing activity is low. On the other hand, if it exceeds 0.6 cm 3 / g, the mechanical strength of the catalyst is lowered, which is not preferable. BET specific surface area of the deodorizing catalyst 30~250m 2 / g, preferably, from the 40 to 200 m 2 / g. If the specific surface area of the catalyst is less than 30 m 2 / g, the deodorizing activity is low, while if it exceeds 250 m 2 / g, no significant improvement in activity is observed, and in some cases the accumulated amount of catalyst poisoning components increases. Thus, the catalyst life may be adversely affected.

したがって、上記脱臭触媒においては、成分(B)、特にマンガン酸化物を成分(A)の0.1〜40質量%の割合で含み、しかも、水銀圧入法で測定した全細孔容積が0.2〜0.6cm3/gの範囲にあり、BET法による比表面積が30〜250m2/gの範囲にある触媒が特に好適に用いられる。 Therefore, the deodorization catalyst contains component (B), particularly manganese oxide in a proportion of 0.1 to 40% by mass of component (A), and the total pore volume measured by the mercury intrusion method is 0.00. A catalyst having a specific surface area of 2 to 0.6 cm 3 / g and a specific surface area by the BET method of 30 to 250 m 2 / g is particularly preferably used.

上記脱臭触媒の形状については特に制限はなく、板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状に成型して用いてもよく、またアルミナ、シリカ、コーディライト、チタニア、ステンレス金属などよりなる板状、波板状、網状、ハニカム状、円柱状、円筒状などのうちから選んだ所望の形状の担体に担持して使用してもよい。   The shape of the deodorizing catalyst is not particularly limited, and may be used by molding into a desired shape selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, etc. You may carry | support and use on the support | carrier of the desired shape chosen from plate shape, corrugated plate shape, net shape, honeycomb shape, cylindrical shape, cylindrical shape etc. which consist of silica, cordierite, titania, stainless steel, etc.

上記脱臭触媒は、臭気成分を含む各種排ガスの処理に用いられる。排ガスの組成については特に制限はないが、ボイラ、焼却炉、ガスタービン、ディーゼルエンジンおよび各種工業プロセスから排出される、アルデヒド類、硫化物類、脂肪酸類、アミン類、炭化水素類、二酸化窒素などの脱臭成分の分解活性に優れるため、これら臭気成分を含む排ガスの処理に好適に用いられる。   The deodorizing catalyst is used for processing various exhaust gases containing odor components. There are no particular restrictions on the composition of the exhaust gas, but aldehydes, sulfides, fatty acids, amines, hydrocarbons, nitrogen dioxide, etc. emitted from boilers, incinerators, gas turbines, diesel engines and various industrial processes Therefore, it is suitably used for the treatment of exhaust gas containing these odor components.

本発明の方法によれば、脱臭成分を含む排ガスを、150℃以上200℃未満の温度で上記脱臭触媒に接触させて脱臭処理を行う。この脱臭処理の条件については、排ガスの温度を150℃以上200℃未満の範囲に維持する点を除けば、脱臭処理に一般に用いられている条件から適宜選択して決定することができる。   According to the method of the present invention, the deodorizing treatment is performed by bringing the exhaust gas containing the deodorizing component into contact with the deodorizing catalyst at a temperature of 150 ° C. or higher and lower than 200 ° C. The conditions for the deodorizing treatment can be determined by appropriately selecting from the conditions generally used for the deodorizing treatment, except that the temperature of the exhaust gas is maintained in the range of 150 ° C. or higher and lower than 200 ° C.

排ガスの空間速度は、通常、100〜100000Hr- 1(STP)であり、好ましくは200〜50000Hr- 1(STP)である。100Hr- 1未満では、処理装置が大きくなりすぎるため非効率となり、一方100000Hr- 1を超えると分解効率が低下する。 The space velocity of the exhaust gas, usually, 100~100000Hr - a 1 (STP), preferably 200~50000Hr - a 1 (STP). 100 hr - it is less than 1, the processing apparatus becomes inefficient because too large, whereas 100000Hr - 1 and more than decomposition efficiency is lowered.

本発明の脱臭処理を行う際の排ガスの温度は、150℃以上200℃未満であり、好ましくは170〜200℃未満である。排ガス温度が150℃より低いと脱硝効率が低下して好ましくない。   The temperature of the exhaust gas when performing the deodorizing treatment of the present invention is 150 ° C. or more and less than 200 ° C., preferably 170 to 200 ° C. If the exhaust gas temperature is lower than 150 ° C., the denitration efficiency is lowered, which is not preferable.

なお、排ガス中の硫黄酸化物(SOx)濃度は1%以下であるのがよい。排ガス中のSOx濃度が1%を超えると触媒の活性劣化が大きくなるからである。   The sulfur oxide (SOx) concentration in the exhaust gas is preferably 1% or less. This is because when the SOx concentration in the exhaust gas exceeds 1%, the catalyst activity deteriorates greatly.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

触媒調製例1Catalyst preparation example 1

10質量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20質量%のSiO含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiOとして125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを20時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、粉体を得た。得られた粉体の組成は、TiO:SiO=8.5:1.5(モル比)であり、粉体のX線回折チャートではTiOやSiOの明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するチタンとケイ素との複合酸化物(Ti−Si複合酸化物)であることが確認された。 After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by mass of SiO 2 ) to 700 L of 10% by mass ammonia water, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 20 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was baked at 500 ° C. to obtain a powder. The composition of the obtained powder is TiO 2 : SiO 2 = 8.5: 1.5 (molar ratio), and clear intrinsic peaks of TiO 2 and SiO 2 are recognized in the X-ray diffraction chart of the powder. In addition, it was confirmed by a broad diffraction peak that it was a composite oxide of titanium and silicon (Ti-Si composite oxide) having an amorphous microstructure.

上記Ti−Si複合酸化物10kgに有機バインダー(デンプン0.5kg)を加えて混合し、さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、ハニカム状に押出成形した。形状は目開き4.35mm、肉厚0.6mm、長さ500mmの格子状に成形した。次いで、得られた成形物を80℃で乾燥した後、450℃で5時間空気雰囲気下において焼成した。   Add organic binder (starch 0.5kg) to 10kg of the above Ti-Si composite oxide, mix, mix well with a blender while adding an appropriate amount of water, knead well with a continuous kneader, and extrude into a honeycomb. did. The shape was formed into a lattice shape having an opening of 4.35 mm, a thickness of 0.6 mm, and a length of 500 mm. Next, the obtained molded product was dried at 80 ° C. and then fired at 450 ° C. for 5 hours in an air atmosphere.

上記成形体を硝酸マンガン[Mn(NO・6HO]水溶液(300g−Mn/リットル)に含浸し、その後120℃で乾燥し、420℃で3時間焼成して触媒(a)を得た。この触媒(a)の組成は、Ti−Si複合酸化物:MnO=75:25(質量比)(成分(B)/成分(A)=33.3質量%)であった。 The molded body is impregnated with an aqueous solution of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] (300 g-Mn / liter), then dried at 120 ° C. and calcined at 420 ° C. for 3 hours to give catalyst (a). Obtained. The composition of the catalyst (a) was Ti—Si composite oxide: MnO 2 = 75: 25 (mass ratio) (component (B) / component (A) = 33.3 mass%).

触媒調製例2Catalyst preparation example 2

触媒調製例1で得られたTi−Si複合酸化物10kgに硝酸マンガン[Mn(NO・6HO]水溶液(200g−Mn/リットル)を9.15kg加え、さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、ハニカム状に押出成形した。形状は目開き4.35mm、肉厚0.6mm、長さ500mmの格子状に成形した。次いで、得られた成形体を80℃で乾燥した後、450℃で5時間空気雰囲気下に焼成して触媒(b)を得た。この触媒(b)の組成は、Ti−Si複合酸化物:MnO=75:25(質量比)(成分(B)/成分(A)=33.3質量%)であった。 9.15 kg of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] aqueous solution (200 g-Mn / liter) was added to 10 kg of the Ti—Si composite oxide obtained in Catalyst Preparation Example 1, and an appropriate amount of water was further added. While mixing well with a blender, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape. The shape was formed into a lattice shape having an opening of 4.35 mm, a thickness of 0.6 mm, and a length of 500 mm. Next, the obtained molded body was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain a catalyst (b). The composition of the catalyst (b) was Ti—Si composite oxide: MnO 2 = 75: 25 (mass ratio) (component (B) / component (A) = 33.3 mass%).

触媒調製例3Catalyst preparation example 3

触媒調製例1において、硝酸マンガンの使用量を変更した以外は同様にして、Ti−Si複合酸化物:MnO=85:15(質量比)(成分(B)/成分(A)=17.6質量%)の組成の触媒(c)を得た。 In the catalyst preparation example 1, except that the amount of manganese nitrate used was changed, similarly, Ti—Si composite oxide: MnO 2 = 85: 15 (mass ratio) (component (B) / component (A) = 17. A catalyst (c) having a composition of 6% by mass was obtained.

触媒調製例4Catalyst preparation example 4 触媒調製例5Catalyst preparation example 5 触媒調製例6Catalyst preparation example 6 触媒調製例7Catalyst preparation example 7

8リットルの水にメタバナジン酸アンモニウム1.29kg、パラタングステン酸アンモニウム1.12kg、シュウ酸1.67kgおよびモノエタノールアミン0.85kgを混合して溶解させ、均一なバナジウムおよびタングステン含有溶液を調製した。   A uniform vanadium and tungsten-containing solution was prepared by mixing and dissolving 1.29 kg of ammonium metavanadate, 1.12 kg of ammonium paratungstate, 1.67 kg of oxalic acid and 0.85 kg of monoethanolamine in 8 liters of water.

触媒調製例1で得られたTi−Si複合酸化物18kgにニーダーに投入した後、有機バインダー(デンプン0.5kg)とともに、上記バナジウムおよびタングステン含有溶液全量を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、ハニカム状に押出成形した。形状は目開き4.35mm、肉厚0.6mm、長さ500mmの格子状に成形した。次いで、得られた成形物を60℃で乾燥した後、450℃で5時間空気雰囲気下において焼成して比較用触媒()を得た。 After 18 kg of the Ti-Si composite oxide obtained in Catalyst Preparation Example 1 was put into a kneader, the above vanadium and tungsten-containing solution was added together with an organic binder (starch 0.5 kg) and stirred well. Furthermore, after adding a proper amount of water and mixing well with a blender, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape. The shape was formed into a lattice shape having an opening of 4.35 mm, a thickness of 0.6 mm, and a length of 500 mm. Next, the obtained molded product was dried at 60 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain a comparative catalyst ( d ).

この比較用触媒()の組成は、Ti−Si複合酸化物:V:W= 90:5:5(質量比)であった。
(触媒調製例5)
The composition of this comparative catalyst ( d ) was Ti—Si composite oxide: V 2 O 5 : W 2 O 3 = 90: 5: 5 (mass ratio).
(Catalyst Preparation Example 5)

触媒調製例8Catalyst preparation example 8

触媒調製例で得られた比較用触媒()の成形体を硝酸白金水溶液に含浸し、その後100℃で乾燥し、450℃で3時間焼成して比較用触媒()を得た。この比較用触媒()の組成は、Ti−Si複合酸化物:V:W:Pt=89.8:5:5:0.2(質量比)であった。
(触媒調製例6)
The comparative catalyst ( d ) shaped body obtained in Catalyst Preparation Example 4 was impregnated with an aqueous platinum nitrate solution, then dried at 100 ° C., and calcined at 450 ° C. for 3 hours to obtain a comparative catalyst ( e ). The composition of this comparative catalyst ( e ) was Ti—Si composite oxide: V 2 O 5 : W 2 O 3 : Pt = 89.8: 5: 5: 0.2 (mass ratio).
(Catalyst Preparation Example 6)

触媒調製例9Catalyst preparation example 9

触媒調製例で得られた比較用触媒()の成形体を硝酸パラジウムに含浸し、その後100℃で乾燥し、450℃で3時間焼成して比較用触媒()を得た。この比較用触媒()の組成は、Ti−Si複合酸化物:V:W:Pd=89.8:5:5:0.2(質量比)であった。
(実施例1)
The molded product of the comparative catalyst ( d ) obtained in Catalyst Preparation Example 4 was impregnated with palladium nitrate, then dried at 100 ° C., and calcined at 450 ° C. for 3 hours to obtain a comparative catalyst ( f ). The composition of this comparative catalyst ( f ) was Ti—Si composite oxide: V 2 O 5 : W 2 O 3 : Pd = 89.8: 5: 5: 0.2 (mass ratio).
(Example 1)

触媒調製例1〜で得られた触媒(a)〜()、および比較用触媒()〜()について活性試験を行った。各ハニカム型触媒を外形15.5mm(3×3セル)、長さ126mmに切断し、これを直径35mmの触媒反応装置にガスの流れ方向に対して平行となるように充填した。この装置に下記組成−1と組成−2との2種類の合成ガスを0.5Nm3/hで流した。
(ガス組成−1)アセトアルデヒド:50ppm、SO:0ppm、HO:10%、N:バランス
(ガス組成−2)酢酸:50ppm、SO:0ppm、HO:10%、N:バランス
(ガス温度)150℃、180℃、195℃
アセトアルデヒド除去率および酢酸除去率、それに酢酸生成率は、下記式に従って求めた。
アセトアルデヒド除去率(%)=[(反応器入口アセトアルデヒド濃度)−(反応器出口アセトアルデヒド濃度)]÷(反応器入口アセトアルデヒド濃度)×100
酢酸除去率(%)=[(反応器入口酢酸濃度)−(反応器出口酢酸濃度)]÷(反応器入口酢酸濃度)×100
酢酸生成率(%)=(反応器出口酢酸濃度)÷(反応器入口アセトアルデヒド濃度)×100
ガス組成−1およびガス組成−2の結果をそれぞれ表1および表2に示す。
Activity tests were performed on the catalysts (a) to ( c ) obtained in Catalyst Preparation Examples 1 to 6 and the comparative catalysts ( d ) to ( f ). Each honeycomb-type catalyst was cut into an outer shape of 15.5 mm (3 × 3 cells) and a length of 126 mm, and this was packed into a catalyst reactor having a diameter of 35 mm so as to be parallel to the gas flow direction. Two types of synthesis gas of the following composition-1 and composition-2 were flowed to this apparatus at 0.5 Nm <3> / h.
(Gas composition-1) Acetaldehyde: 50 ppm, SO 2 : 0 ppm, H 2 O: 10%, N 2 : Balance (Gas composition-2) Acetic acid: 50 ppm, SO 2 : 0 ppm, H 2 O: 10%, N 2 : Balance (gas temperature) 150 ° C, 180 ° C, 195 ° C
The acetaldehyde removal rate, the acetic acid removal rate, and the acetic acid production rate were determined according to the following formulas.
Acetaldehyde removal rate (%) = [(reactor inlet acetaldehyde concentration) − (reactor outlet acetaldehyde concentration)] ÷ (reactor inlet acetaldehyde concentration) × 100
Acetic acid removal rate (%) = [(reactor inlet acetic acid concentration) − (reactor outlet acetic acid concentration)] ÷ (reactor inlet acetic acid concentration) × 100
Acetic acid production rate (%) = (reactor outlet acetic acid concentration) ÷ (reactor inlet acetaldehyde concentration) × 100
The results of gas composition-1 and gas composition-2 are shown in Table 1 and Table 2, respectively.

Figure 0004499512
Figure 0004499512

Figure 0004499512
Figure 0004499512


Claims (4)

排ガス中の臭気成分であるアセトアルデヒドまたは酢酸を触媒の存在下に分解除去する排ガスの処理方法において、排ガスを150℃以上200℃未満の温度で、(A)チタンとケイ素との複合酸化物と(B)マンガン酸化物とからなる触媒に接触させることを特徴とする臭気成分を含む排ガスの処理方法。   In a method for treating exhaust gas in which acetaldehyde or acetic acid, which is an odor component in exhaust gas, is decomposed and removed in the presence of a catalyst, the exhaust gas is treated at a temperature of 150 ° C. or higher and lower than 200 ° C. (A) a composite oxide of titanium and silicon ( B) A method for treating an exhaust gas containing an odor component, which is brought into contact with a catalyst comprising manganese oxide. 成分(B)の量が成分(A)の0.1〜40質量%である請求項1記載の臭気成分を含む排ガスの処理方法。   The method for treating an exhaust gas containing an odor component according to claim 1, wherein the amount of the component (B) is 0.1 to 40% by mass of the component (A). 触媒の水銀圧入法で測定した全細孔容積が0.2〜0.6cm /gである請求項1または2記載の臭気成分を含む排ガスの処理方法。 Method of processing an exhaust gas total pore volume measured by mercury porosimetry of catalyst containing odorous components of claim 1 or 2 wherein the 0.2~0.6cm 3 / g. 触媒のBET法による比表面積が30〜250m /gである請求項1〜3のいずれかに記載の臭気成分を含む排ガスの処理方法。 The method for treating exhaust gas containing an odor component according to any one of claims 1 to 3, wherein the catalyst has a specific surface area of 30 to 250 m 2 / g as measured by the BET method.
JP2004256699A 2004-09-03 2004-09-03 Method for treating exhaust gas containing odor components Active JP4499512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256699A JP4499512B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing odor components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256699A JP4499512B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing odor components

Publications (2)

Publication Number Publication Date
JP2006068662A JP2006068662A (en) 2006-03-16
JP4499512B2 true JP4499512B2 (en) 2010-07-07

Family

ID=36149814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256699A Active JP4499512B2 (en) 2004-09-03 2004-09-03 Method for treating exhaust gas containing odor components

Country Status (1)

Country Link
JP (1) JP4499512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104915A (en) * 2008-10-30 2010-05-13 Kobe Steel Ltd Deodorant for removing acetaldehyde and method for removing acetaldehyde
WO2015011819A1 (en) * 2013-07-25 2015-01-29 三菱電機株式会社 Deodorizing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348984A (en) * 1976-10-15 1978-05-02 Aichi Prefecture Removing agent of aldehydes* hydrocarbon derivative gases* nitrogen oxides or sulfur compounds in exhaust gases
JPS57156040A (en) * 1981-03-24 1982-09-27 Hitachi Ltd Catalyst for reduction of nox and treatment of waste gas
JPS60212234A (en) * 1984-04-05 1985-10-24 Nippon Shokubai Kagaku Kogyo Co Ltd Honeycomb shaped deodorizing catalyst
JPH08332384A (en) * 1995-06-08 1996-12-17 Nippon Kayaku Co Ltd Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment
JPH09155190A (en) * 1995-12-14 1997-06-17 Babcock Hitachi Kk Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH1147592A (en) * 1997-07-30 1999-02-23 Babcock Hitachi Kk Catalyst for purifying exhaust gas and exhaust gas purifying method
JP3091820B2 (en) * 1994-07-25 2000-09-25 株式会社日本触媒 Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JP2000288347A (en) * 1999-04-05 2000-10-17 Nippon Shokubai Co Ltd Method of cleaning organic bromine compound-containing waste gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348984A (en) * 1976-10-15 1978-05-02 Aichi Prefecture Removing agent of aldehydes* hydrocarbon derivative gases* nitrogen oxides or sulfur compounds in exhaust gases
JPS57156040A (en) * 1981-03-24 1982-09-27 Hitachi Ltd Catalyst for reduction of nox and treatment of waste gas
JPS60212234A (en) * 1984-04-05 1985-10-24 Nippon Shokubai Kagaku Kogyo Co Ltd Honeycomb shaped deodorizing catalyst
JP3091820B2 (en) * 1994-07-25 2000-09-25 株式会社日本触媒 Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JPH08332384A (en) * 1995-06-08 1996-12-17 Nippon Kayaku Co Ltd Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment
JPH09155190A (en) * 1995-12-14 1997-06-17 Babcock Hitachi Kk Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH1147592A (en) * 1997-07-30 1999-02-23 Babcock Hitachi Kk Catalyst for purifying exhaust gas and exhaust gas purifying method
JP2000288347A (en) * 1999-04-05 2000-10-17 Nippon Shokubai Co Ltd Method of cleaning organic bromine compound-containing waste gas

Also Published As

Publication number Publication date
JP2006068662A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JPH064126B2 (en) Exhaust gas purification method
JPH0724774B2 (en) Exhaust gas treatment catalyst carrier, method for producing the same, and exhaust gas treatment catalyst containing the carrier
TW200528181A (en) Method for treating exhaust gas
JP4113090B2 (en) Exhaust gas treatment method
JP4499513B2 (en) Method for treating exhaust gas containing nitrogen oxides and odor components
JP4822740B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3507906B2 (en) DeNOx catalyst
JP4499512B2 (en) Method for treating exhaust gas containing odor components
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JPH0833842A (en) Catalyst for deodorization and dinitrification of exhaust gas and deodorization and denitrification method using the same
JPH08141398A (en) Catalyst for decomposing ammonia
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4098698B2 (en) Exhaust gas treatment method
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP3924418B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP5812789B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst
JP3739032B2 (en) Catalyst for removing organic halogen compound, method for producing the same, and method for removing organic halogen compound
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP3920612B2 (en) Exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4