JPH09155190A - Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst - Google Patents

Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst

Info

Publication number
JPH09155190A
JPH09155190A JP7325744A JP32574495A JPH09155190A JP H09155190 A JPH09155190 A JP H09155190A JP 7325744 A JP7325744 A JP 7325744A JP 32574495 A JP32574495 A JP 32574495A JP H09155190 A JPH09155190 A JP H09155190A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nitrogen oxides
manganese
removing nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7325744A
Other languages
Japanese (ja)
Other versions
JP3815813B2 (en
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP32574495A priority Critical patent/JP3815813B2/en
Publication of JPH09155190A publication Critical patent/JPH09155190A/en
Application granted granted Critical
Publication of JP3815813B2 publication Critical patent/JP3815813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove NOx within a low temp. region of 150-300 deg.C. SOLUTION: In a method for producing a catalyst removing nitrogen oxides by catalytically reducing nitrogen oxides in exhaust gas by ammonia, titanium oxide containing a sulfate radical is preliminarily baked at 500-700 deg.C or immersed in an alkali soln. to be washed therewith to reduce the content of the sulfate radical to 0.1wt.% or less and this titanium oxide is kneaded and/or impregnated with manganese nitrate and, further, the treated titanium oxide is baked at 200-450 deg.C to support MnO2 on a titanium oxide carrier as an active component to obtain a denitration catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の窒素酸
化物除去用触媒、その製造方法およびこれを用いた排ガ
ス中の窒素酸化物除去方法に係わり、特に排ガス温度が
150〜300℃の低温域で効率的に排ガス中のNOx
をアンモニアで接触還元することができる排ガス中の窒
素酸化物除去用触媒、その製造方法およびこれを用いた
排ガス中の窒素酸化物除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides in exhaust gas, a method for producing the same and a method for removing nitrogen oxides in exhaust gas using the same, and particularly to a low exhaust gas temperature of 150 to 300 ° C. NOx in exhaust gas efficiently in the region
TECHNICAL FIELD The present invention relates to a catalyst for removing nitrogen oxides in exhaust gas, which can be catalytically reduced with ammonia, a method for producing the same, and a method for removing nitrogen oxides in exhaust gas using the same.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法として、アンモニ
ア(NH3)を還元剤とした選択的還元による排煙脱硝法
が幅広く用いられている。特に近年、ゴミ焼却炉の燃焼
排ガスや廃熱回収ボイラ排ガスなど、従来の事業用ボイ
ラ排ガスに比べ温度の低い150〜300℃での排ガス
脱硝へのニーズが増大している。このような低温度域で
高活性な触媒としては、マンガン(Mn)、クロム(C
r)、バナジウム(V)、およびこれらを組み合わせた
触媒などが知られており、なかでも特にMnはより低温
活性に優れるものである(特開昭50−131848号
公報)。
2. Description of the Related Art NOx in smoke emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain, and as an effective removal method, ammonia (NH 3 ) is reduced. The flue gas denitration method by selective reduction as an agent is widely used. Particularly in recent years, there is an increasing need for exhaust gas denitration at 150 to 300 ° C., which has a lower temperature than conventional business boiler exhaust gases such as combustion exhaust gases from waste incinerators and waste heat recovery boiler exhaust gases. Catalysts that are highly active in such a low temperature range include manganese (Mn), chromium (C
r), vanadium (V), and catalysts in which these are combined are known. Among them, Mn is particularly excellent in low-temperature activity (JP-A-50-131848).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術は、Mn以外の触媒中の含有成分による低温
活性発現の阻害といったことに対しては十分な配慮がさ
れておらず、改良すべき点が多かった。そのひとつに
は、活性成分であるMnをどのような形態で担持するか
という点があげられる。例えば、Mnの原料として硫酸
マンガンを用いる場合では、硫酸マンガンは850℃ま
で安定であるため触媒中ではマンガンは硫酸マンガンの
形態をとっている。しかし、マンガンは硫酸塩ではほと
んど脱硝に不活性であるため脱硝活性は得られない。ま
た、硝酸マンガンを用いる場合では、触媒焼成時の条件
によって種々の形態のマンガン酸化物(MnO、MnO
2 、Mn2 3 、Mn3 4 など)が生成し、高活性な
触媒が得られる場合もあれば、逆に活性がほとんどない
場合もあるという問題点を有していた。
However, the above-mentioned prior art does not give sufficient consideration to the inhibition of low temperature activity expression by the components contained in the catalyst other than Mn, and points to be improved. There were many One of them is how to support Mn as an active ingredient. For example, when manganese sulfate is used as a raw material for Mn, manganese sulfate is stable up to 850 ° C., so that manganese takes the form of manganese sulfate in the catalyst. However, manganese is almost inactive with respect to denitration with sulfate, so denitration activity cannot be obtained. When manganese nitrate is used, various forms of manganese oxides (MnO, MnO, etc.) are used depending on the conditions at the time of catalyst calcination.
2 , Mn 2 O 3 , Mn 3 O 4 and the like) are formed, and there is a problem that a highly active catalyst may be obtained, or conversely, there may be almost no activity.

【0004】本発明の目的は、マンガン触媒の活性発現
機構を解明し、それに基づいて上記した従来技術の問題
点を解決することによって、150〜300℃といった
低温の排ガス温度域で効率よくNOxを除去できる、排
ガス中の窒素酸化物除去用触媒、その製造方法およびこ
れを用いた排ガス中の窒素酸化物除去方法を提供するこ
とにある。
The object of the present invention is to elucidate the mechanism of manifestation of the activity of the manganese catalyst and solve the problems of the above-mentioned prior art on the basis thereof, whereby NOx can be efficiently produced in the exhaust gas temperature range as low as 150 to 300 ° C. An object of the present invention is to provide a catalyst for removing nitrogen oxides in exhaust gas, a method for producing the same, and a method for removing nitrogen oxides in exhaust gas using the catalyst.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)排ガス中の窒素酸化物をアンモニアにより接触還
元除去する触媒において、硫酸根の含有量が0.1重量
%以下であるチタン酸化物を担体とし、これにマンガン
を硝酸塩で混練および/または含浸担持し、これを20
0〜450℃で焼成したことを特徴とする排ガス中の窒
素酸化物除去用触媒。 (2)(1)記載の触媒を用い、150〜300℃の温
度域で排ガス中の窒素酸化物をアンモニアにより接触還
元することを特徴とする排ガス中の窒素酸化物除去方
法。
The invention claimed in this application to achieve the above object is as follows. (1) In a catalyst for catalytically reducing nitrogen oxides in exhaust gas with ammonia, titanium oxide having a sulfate content of 0.1% by weight or less is used as a carrier, and manganese is kneaded with nitrate and / or Impregnated and loaded, 20
A catalyst for removing nitrogen oxides in exhaust gas, which is calcined at 0 to 450 ° C. (2) A method for removing nitrogen oxides in exhaust gas, which comprises catalytically reducing nitrogen oxides in exhaust gas with ammonia in a temperature range of 150 to 300 ° C. using the catalyst according to (1).

【0006】(3)排ガス中の窒素酸化物を脱硝触媒の
存在下、150〜300℃の温度で注入したアンモニア
により接触還元除去する方法において、硫酸根の含有量
が0.1重量%以下のチタン酸化物担体にマンガンをM
nO2 の形態で担持した触媒を前記脱硝触媒の上流域に
配置し、これにより排ガス中のNOの一部をNO2 に変
換し、その後アンモニアを注入して前記脱硝触媒上で排
ガス中のNOxを接触還元することを特徴とする排ガス
中の窒素酸化物除去方法。 (4)排ガス中の窒素酸化物をアンモニアにより接触還
元除去する触媒の製造方法において、硫酸根を含有する
チタンの酸化物を、あらかじめ500〜700℃の温度
範囲で焼成することにより、またはアルカリ液に浸漬し
て洗浄することにより、チタンの酸化物の硫酸根含有量
を0.1重量%以下とし、これにマンガンを硝酸塩で混
練および/または含浸し、さらに、これを200〜45
0℃で焼成することを特徴とする排ガス中の窒素酸化物
除去用触媒の製造方法。
(3) In the method of catalytic reduction removal of nitrogen oxides in exhaust gas with ammonia injected at a temperature of 150 to 300 ° C. in the presence of a denitration catalyst, the content of sulfate group is 0.1% by weight or less. Manganese M on titanium oxide carrier
A catalyst supported in the form of nO 2 is arranged in the upstream region of the NOx removal catalyst, whereby a part of NO in the exhaust gas is converted into NO 2 , and then ammonia is injected to NOx in the exhaust gas on the NOx removal catalyst. A method for removing nitrogen oxides in exhaust gas, which comprises catalytically reducing. (4) In the method for producing a catalyst in which nitrogen oxides in exhaust gas are catalytically reduced and removed with ammonia, titanium oxide containing a sulfate group is preliminarily calcined in a temperature range of 500 to 700 ° C., or an alkaline solution is used. The content of sulfate in the titanium oxide is adjusted to 0.1% by weight or less by immersing in manganese and washing, and manganese is kneaded and / or impregnated with nitrate.
A method for producing a catalyst for removing nitrogen oxides in exhaust gas, which comprises calcination at 0 ° C.

【0007】[0007]

【発明の実施の形態】本発明における排ガス中の窒素酸
化物除去用触媒は、(1)硫酸根の含有量が0.1wt%
以下のチタニア(TiO2)を担体とし、(2)活性成分
として担持するマンガン塩として硝酸塩を用いて、かつ
(3)200〜450℃の温度域で焼成するというもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst for removing nitrogen oxides in exhaust gas according to the present invention has (1) the content of sulfate radicals of 0.1 wt%
The following titania (TiO 2 ) is used as a carrier, (2) a nitrate is used as a manganese salt to be supported as an active ingredient, and (3) firing is performed in a temperature range of 200 to 450 ° C.

【0008】すなわち、硫酸根の含有量が0.1wt%以
下のTiO2 とは、アナターゼタイプおよび/またはル
チルタイプのTiO2 であって、硫酸法により生成した
TiO2 を500℃以上、好ましくは550〜700℃
の温度範囲内で焼成することによって含有硫酸根量を低
減させたもの、またはNH3 水などの水溶液中で残留す
る硫酸根を洗浄・除去したものを意味する。また、硝酸
マンガンは、上記TiO2 と一緒にニーダを用いて混練
してもよく、また、あらかじめTiO2 の成型体に硝酸
マンガンの水溶液を含浸させてもよい。マンガンの担持
量は特に限定されるものではないが、Tiに対して1〜
20原子%の範囲内で用いると好結果が得られる。1原
子%以下だと十分な活性が得られないし、20原子%よ
り多いと細孔が閉塞するなどの問題を生じるため好まし
くない。
[0008] That is, the TiO 2 content of less 0.1 wt% of sulfate group, a TiO 2 of the anatase type and / or rutile type, TiO 2 and 500 ° C. or higher produced by sulfuric acid method, preferably 550-700 ° C
It means that the content of sulfate radicals is reduced by firing within the temperature range of 1, or that residual sulfate radicals are washed and removed in an aqueous solution such as NH 3 water. Further, manganese nitrate may be kneaded together with the TiO 2 using a kneader, or a molded body of TiO 2 may be previously impregnated with an aqueous solution of manganese nitrate. The supported amount of manganese is not particularly limited, but is 1 to Ti.
Good results are obtained when used within the range of 20 atom%. If it is 1 atom% or less, sufficient activity cannot be obtained, and if it is more than 20 atom%, problems such as pore clogging occur, which is not preferable.

【0009】さらに、触媒の焼成温度は特に重要で、2
00〜450℃、好ましくは250〜400℃の範囲内
である。これは、後述する触媒中のMn酸化物の形態
が、触媒の低温活性と極めて密接な関係にあることに起
因している。本発明者らは、触媒の低温活性の発現機構
について検討した結果、低温活性は、触媒による排ガス
中のNOのNO2 への酸化活性と密接に関連があること
を見いだした。すなわち、排ガス中にNOとNO2 が共
存すると通常の脱硝反応(2)より極めて早い反応
(1)が進行するが、(1)の反応速度は300℃以下
の低温でより早いことが知られている。そこで、触媒が
脱硝機能とあわせて排ガス中のNOをNO2 へ酸化する
機能を有していれば、触媒上で下記反応式(3)式によ
りNOの一部がNO2 になるため触媒上ではNOとNO
2 が共存した状態になり、より早い脱硝反応(1)式が
(2)式の反応と同時に進行することになり、150〜
300℃の低温でも高い脱硝活性を得ることができるの
である。
Further, the calcination temperature of the catalyst is particularly important,
It is in the range of 00 to 450 ° C, preferably 250 to 400 ° C. This is because the morphology of the Mn oxide in the catalyst described later is extremely closely related to the low temperature activity of the catalyst. As a result of investigating the mechanism of low temperature activity of the catalyst, the present inventors have found that the low temperature activity is closely related to the catalyst's activity of oxidizing NO in exhaust gas to NO 2 . That is, when NO and NO 2 coexist in the exhaust gas, the reaction (1) that is much faster than the normal denitration reaction (2) proceeds, but the reaction rate of (1) is known to be faster at a low temperature of 300 ° C. or lower. ing. Therefore, if the catalyst has the function of oxidizing NO in exhaust gas to NO 2 together with the denitration function, a part of NO becomes NO 2 according to the following reaction formula (3) on the catalyst, Then NO and NO
2 becomes a state of coexistence, and the faster denitration reaction (1) equation (1) progresses at the same time as the reaction of equation (2).
High denitration activity can be obtained even at a low temperature of 300 ° C.

【0010】脱硝反応 NO+NO2 +2NH3 → 2N2 +3H2 O (1)式 NO+NH3 +1/4 O2 → N2 +3/2 H2 O (2)式 NOの酸化反応 NO+1/2 O2 → NO2 (3)式 これを指標にして、各種マンガン触媒のNOのNO2
の酸化活性について調べたところ、表1に示すようにマ
ンガンの原料として硫酸塩類および有機酸塩類を用いた
場合はNOのNO2 への酸化に不活性な形態となること
がわかった。
NOx removal reaction NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (1) formula NO + NH 3 +1/4 O 2 → N 2 +3/2 H 2 O (2) formula NO oxidation reaction NO + 1/2 O 2 → NO 2 (3) Formula Using this as an index, the oxidation activity of NO of various manganese catalysts to NO 2 was examined. As shown in Table 1, when manganese sulfates and organic acid salts were used as manganese raw materials, NO Was found to be inactive in the oxidation of NO to NO 2 .

【0011】[0011]

【表1】 [Table 1]

【0012】このように、マンガンは、その出発物質と
それを調製する方法、ならびに加熱等の後処理条件によ
って種々の構造をとり、それに伴なって化学的活性も異
なってくる。したがって触媒の調製過程で、活性成分で
あるマンガンが硫酸塩化することを防止し、かつシュウ
酸マンガンの熱分解生成物であるMnOの生成を低減さ
せ、活性なMnO2 となるような手段をとることが重要
であり、これに注目して触媒調製を行なうことではじめ
て高活性なマンガン触媒を得ることができる。すなわ
ち、本発明では、担体には低硫酸根含有量のチタニアを
用いることによってマンガンの硫酸塩化を防止し、マン
ガンの原料には硝酸マンガンを使用することでNOをN
2 に酸化するのに高活性なMnO2 を生成しやすくし
た。さらに、焼成温度は、200〜450℃という。N
OのNO2 への酸化に活性なMnO2 を多量に生成させ
ることのできる温度を選定した。このような特定な条件
のもとで得たマンガン触媒は、150〜300℃の排ガ
ス温度域でも高い活性の触媒を得ることができる。
As described above, manganese has various structures depending on the starting material, the method for preparing the same, and the post-treatment conditions such as heating, and the chemical activity thereof varies accordingly. Therefore, in the process of preparing the catalyst, measures are taken to prevent the active component manganese from being sulfated and reduce the production of MnO, which is a thermal decomposition product of manganese oxalate, to become active MnO 2. It is important that a highly active manganese catalyst can be obtained only by paying attention to this and preparing the catalyst. That is, in the present invention, titania having a low sulfate content is used as a carrier to prevent manganese from being sulfated, and manganese nitrate is used as a raw material for manganese to reduce NO.
It made it easy to generate MnO 2, which is highly active in oxidizing to O 2 . Further, the firing temperature is 200 to 450 ° C. N
The temperature was selected such that a large amount of MnO 2 active in the oxidation of O to NO 2 was produced. The manganese catalyst obtained under such specific conditions can obtain a highly active catalyst even in the exhaust gas temperature range of 150 to 300 ° C.

【0013】以下、具体的実施例を用いて本発明を詳細
に説明する。 実施例1 酸化チタン(ローヌプーラン製、硫酸根含有量0.67
wt%)100gを600℃で2時間大気中で焼成した。
焼成後の酸化チタン中の硫酸根含有量を蛍光X線分析装
置を用いて調べたところ、0.01wt%の検出限界以下
であった。
The present invention will be described in detail below with reference to specific examples. Example 1 Titanium oxide (manufactured by Rhone Poulenc, sulfate content 0.67)
100 wt%) was calcined at 600 ° C. for 2 hours in the air.
When the sulfate content in the titanium oxide after calcination was examined using a fluorescent X-ray analyzer, it was below the detection limit of 0.01 wt%.

【0014】硝酸マンガン(Mn(NO3)2 ・6H
2 O)38.8gを30gの水に溶かした触媒液を調製
し、これに上記酸化チタン100gを加え100℃以上
の砂浴上で蒸発乾固した。これを150℃で2時間乾燥
後、大気中400℃で2時間焼成した。得られた触媒を
乳鉢で粉砕し、油圧プレスを用い3ton/cm2 の圧力でペ
レット状に成形し、さらにこれを破砕して10〜20メ
ッシュの触媒を得た。
[0014] manganese nitrate (Mn (NO 3) 2 · 6H
A catalyst solution was prepared by dissolving 38.8 g of 2 O) in 30 g of water, 100 g of the above titanium oxide was added thereto, and the mixture was evaporated to dryness on a sand bath at 100 ° C. or higher. This was dried at 150 ° C. for 2 hours and then calcined in air at 400 ° C. for 2 hours. The obtained catalyst was crushed in a mortar and molded into pellets with a hydraulic press at a pressure of 3 ton / cm 2 , and further crushed to obtain a catalyst of 10 to 20 mesh.

【0015】このときの組成はMn/Ti=1/9(原
子比)であった。 実施例2 実施例1の硝酸マンガン39.9gを19.9gに替え
て、後は同様に触媒を調製した。このときの組成はMn
/Ti=5/95(原子比)であった。 実施例3 酸化チタン(ローヌプーラン製TiO2 、硫酸根含有量
0.67wt%)200gを10%のアンモニア水1リッ
トルに投入し、80℃で攪拌しながら一昼夜置いた。こ
れを濾過した後水洗し、150℃で5時間乾燥した。得
られたTiO2の硫酸根含有量を蛍光X線分析装置を用
いて調べたところ、0.05wt%であった。このように
して得られたTiO2 の100gを用い、その他は実施
例1と同様にして触媒を調製した。このときの組成はM
n/Ti=1/9(原子比)であった。
The composition at this time was Mn / Ti = 1/9 (atomic ratio). Example 2 39.9 g of manganese nitrate of Example 1 was replaced with 19.9 g, and thereafter a catalyst was similarly prepared. The composition at this time is Mn
/ Ti = 5/95 (atomic ratio). Example 3 200 g of titanium oxide (TiO 2 , manufactured by Rhone Poulenc, content of sulfate group: 0.67 wt%) was added to 1 liter of 10% ammonia water, and left overnight with stirring at 80 ° C. This was filtered, washed with water, and dried at 150 ° C. for 5 hours. When the sulfate content of the obtained TiO 2 was examined by using a fluorescent X-ray analyzer, it was 0.05 wt%. A catalyst was prepared in the same manner as in Example 1 except that 100 g of TiO 2 thus obtained was used. The composition at this time is M
It was n / Ti = 1/9 (atomic ratio).

【0016】実施例4 酸化チタン(ローヌプーラン製、硫酸根含有量0.67
wt%)150gを600℃で2時間大気中で焼成した。
焼成後の酸化チタン中の硫酸根含有量を蛍光X線分析装
置を用いて調べたところ、0.01wt%の検出限界以下
であった。これを油圧プレスを用い3ton/cm2 の圧力で
ペレット状に成形し、さらにこれを破砕して10〜20
メッシュとした。
Example 4 Titanium oxide (manufactured by Rhone Poulenc, sulfate content 0.67)
150 wt%) was fired at 600 ° C. for 2 hours in the atmosphere.
When the sulfate content in the titanium oxide after calcination was examined using a fluorescent X-ray analyzer, it was below the detection limit of 0.01 wt%. This was molded into pellets with a hydraulic press at a pressure of 3 ton / cm 2 and further crushed for 10 to 20
It was a mesh.

【0017】硝酸マンガン(Mn(NO3)2 ・6H
2 O)39.9gを200gの水に溶かした触媒液を調
製し、これに上記成型した酸化チタン100gを加えて
含浸させた。これを150℃で2時間乾燥後、大気中4
00℃で2時間焼成して触媒を得た。このときの組成は
Mn/Ti=1/9(原子比)であった。 比較例1 TiO2 (ローヌプーラン製TiO2 、硫酸根含有量
0.67wt%)100gを未処理のまま用いて、後は実
施例1と同様に触媒を調製した。 比較例2 実施例1の硝酸マンガンを硫酸マンガン(MnSO4
5H2 O)33.5gに替え、後は同様に触媒を調製し
た。このときの組成はMn/Ti=1/9(原子比)で
あった。 比較例3 実施例1の硝酸マンガンをシュウ酸マンガン(MnC2
4 ・2H2 O)24.9gに替え、後は同様に触媒を
調製した。このときの組成はMn/Ti=1/9(原子
比)であった。
[0017] manganese nitrate (Mn (NO 3) 2 · 6H
A catalyst solution was prepared by dissolving 39.9 g of 2 O) in 200 g of water, and 100 g of the above-prepared titanium oxide was added and impregnated. After drying this at 150 ° C for 2 hours, it is dried in air 4
The catalyst was obtained by calcining at 00 ° C. for 2 hours. The composition at this time was Mn / Ti = 1/9 (atomic ratio). Comparative Example 1 TiO 2 (Rhône-Poulenc Ltd. TiO 2, sulfate ion content 0.67wt%) with untreated the 100 g, later was prepared in the same manner as catalyst as in Example 1. Comparative Example 2 The manganese nitrate of Example 1 was replaced with manganese sulfate (MnSO 4 ·.
5H 2 O) was replaced with 33.5 g, and thereafter a catalyst was prepared in the same manner. The composition at this time was Mn / Ti = 1/9 (atomic ratio). Comparative Example 3 The manganese nitrate of Example 1 was replaced with manganese oxalate (MnC 2
(O 4 .2H 2 O) was changed to 24.9 g, and thereafter a catalyst was prepared in the same manner. The composition at this time was Mn / Ti = 1/9 (atomic ratio).

【0018】比較例4 実施例1の硝酸マンガンに替えて、硝酸マンガン(Mn
(NO3)2 ・6H2 O)42.2gとメタバナジン酸ア
ンモニウム(NH4 VO3)8.6gとし、後は同様に触
媒を調製した。このときの組成はMn/V/Ti=10
/5/85(原子比)であった。 比較例5〜7 実施例1のTiO2 をそれぞれSiO2 (マイコン
F)、Al2 3 、モルデナイト(東ソー社製TSZ6
50)に替えて、後は実施例1と同様に触媒を調製し
た。 実験例1 実施例1〜4および比較例1〜7の触媒3mlを反応器に
充填し、表2に示した条件で反応器の入口と出口で検出
されるNOxおよびNOの濃度を測定し、NOのNO2
への酸化率を測定した。
Comparative Example 4 Instead of manganese nitrate of Example 1, manganese nitrate (Mn
(NO 3) 2 · 6H 2 O) 42.2g and ammonium metavanadate (NH 4 VO 3) and 8.6 g, after A catalyst was prepared in the same manner. The composition at this time is Mn / V / Ti = 10.
It was / 5/85 (atomic ratio). Comparative Examples 5 to 7 TiO 2 of Example 1 was replaced with SiO 2 (microcomputer F), Al 2 O 3 , and mordenite (TSZ6 manufactured by Tosoh Corporation).
Instead of 50), a catalyst was prepared in the same manner as in Example 1. Experimental Example 1 A reactor was charged with 3 ml of the catalysts of Examples 1 to 4 and Comparative Examples 1 to 7, and the concentrations of NOx and NO detected at the inlet and the outlet of the reactor were measured under the conditions shown in Table 2. NO of NO 2
The oxidization rate was measured.

【0019】[0019]

【表2】 なお、NO2 変換率は次のとおりに定義する。[Table 2] The NO 2 conversion rate is defined as follows.

【0020】[0020]

【数1】 (Equation 1)

【0021】さらに、実験例1〜4および比較例1〜7
の触媒4.5mlを反応器に充填し、表2の条件の下、ア
ンモニアをNOxの1.2倍モル添加して脱硝率を測定
した。表3に、結果をまとめて示す。
Further, Experimental Examples 1 to 4 and Comparative Examples 1 to 7
4.5 ml of the above catalyst was charged into a reactor, and under the conditions of Table 2, ammonia was added in 1.2 times mol of NOx, and the denitration rate was measured. The results are summarized in Table 3.

【0022】[0022]

【表3】 TiO2 *:TiO2を600 ℃焼成、 TiO2**:TiO2をNH3 水で水洗[Table 3] TiO 2 *: TiO 2 is baked at 600 ° C, TiO 2 **: TiO 2 is washed with NH 3 water.

【0023】表から明らかなように、本発明による実施
例の触媒は、NOのNO2 への酸化率が10〜20%あ
り、さらに脱硝率は59〜70%で従来にはない高い脱
硝活性を示している。これに対し、比較例の触媒はNO
2 への酸化活性がほとんどなく、脱硝率も低い。このよ
うに本発明による調製法で得られたマンガン触媒は、優
れたものであることがわかる。 実施例5、6 実施例1のマンガン担持TiO2 の焼成温度をそれぞれ
250、450℃とし、その他は実施例1と同様にして
触媒を得た。 比較例8、9 実施例1のマンガン担持TiO2 の焼成温度をそれぞれ
150、500℃とし、その他は実施例1と同様にして
触媒を得た。
As is clear from the table, the catalysts of the examples according to the present invention have an NO to NO 2 oxidation rate of 10 to 20%, and a denitration rate of 59 to 70%, which is a high denitration activity that has never been seen in the past. Is shown. In contrast, the catalyst of the comparative example is NO
There is almost no oxidation activity to 2, and the denitrification rate is low. Thus, it can be seen that the manganese catalyst obtained by the preparation method according to the present invention is excellent. Examples 5 and 6 Catalysts were obtained in the same manner as in Example 1 except that the manganese-supporting TiO 2 of Example 1 was fired at temperatures of 250 and 450 ° C., respectively. Comparative Examples 8 and 9 Catalysts were obtained in the same manner as in Example 1 except that the manganese-supporting TiO 2 of Example 1 was fired at temperatures of 150 and 500 ° C., respectively.

【0024】実施例5、6および比較例8、9の触媒を
用い、実験例1と同じ試験を行ない、NO酸化活性およ
び脱硝活性を測定した。結果をまとめて表4に示す。
Using the catalysts of Examples 5 and 6 and Comparative Examples 8 and 9, the same tests as in Experimental Example 1 were carried out to measure the NO oxidation activity and the denitration activity. The results are summarized in Table 4.

【0025】[0025]

【表4】 表から明らかなように、マンガンを担持してからの焼成
温度が本発明の範囲である250〜450℃であれば高
いNO酸化活性および脱硝活性が発現するが、これを外
れた温度では高すぎても低すぎても、高い活性が得られ
ない。このように本発明の触媒は、従来の問題点を改良
することによってマンガンを高活性化できた優れた触媒
であることがわかる。 実施例7 繊維径9μmのEガラス製繊維1400本の捻糸を10
本/インチの荒さで平織りした網状物にチタニア40
%、シリカゾル20%、ポリビニールアルコール1%の
スラリーを含浸し、150℃で乾燥して剛性を持たせ触
媒基材を得た。
[Table 4] As is clear from the table, when the firing temperature after supporting manganese is 250 to 450 ° C., which is the range of the present invention, high NO oxidation activity and denitration activity are expressed, but temperatures outside this range are too high. Even if it is too low, high activity cannot be obtained. As described above, it is understood that the catalyst of the present invention is an excellent catalyst that can highly activate manganese by improving the conventional problems. Example 7 Ten 1400 twisted threads of E-glass fiber having a fiber diameter of 9 μm
Titania 40 on a net woven with book / inch roughness
%, Silica sol 20%, polyvinyl alcohol 1% slurry was impregnated and dried at 150 ° C. to give rigidity to obtain a catalyst substrate.

【0026】これとは別に、TiO2 を20kg、硝酸マ
ンガンを7.98kgにシリカ・アルミナ系無機繊維4.
2kg、水11kgを加えてニーダで混練し、触媒ペース
トを得た。上記基材2枚の間に調製したペースト状触媒
混合物を置き加圧ローラを通過させることにより基材の
編目間および表面に触媒を圧着して厚さ約1mmの板状触
媒を得た。得られた触媒を、150℃で2時間乾燥後大
気中、350℃で2時間焼成した。 他の実験例 実施例7の板状触媒を、図1の系統を有する小型反応装
置の脱硝触媒層の前段に4mmピッチで配し、表2の組成
のガスを流して入口と出口のNOx濃度を測定して脱硝
率を調べた。この時、脱硝用還元剤であるアンモニア5
を実施例7の触媒層1と脱硝触媒層2の間で、NOxに
対して1.2モルの割合で注入し、脱硝触媒2としては
Ti−W−V系触媒(Ti/W/V原子比=95/4/
5、厚さ1mm)の板状触媒を4mmピッチで配して用い、
表5のような条件に維持した。また、実施例7の触媒層
と脱硝触媒層の間でガスを採取してNOxおよびNO濃
度を測定し、NOのNO2 への酸化率を調べた。
Separately from this, 20 kg of TiO 2 and 7.98 kg of manganese nitrate were added to silica / alumina type inorganic fiber 4.
2 kg and 11 kg of water were added and kneaded with a kneader to obtain a catalyst paste. The paste catalyst mixture prepared between the two base materials was placed and passed through a pressure roller to press the catalyst between the stitches and the surface of the base material to obtain a plate-like catalyst having a thickness of about 1 mm. The obtained catalyst was dried at 150 ° C. for 2 hours and then calcined in the air at 350 ° C. for 2 hours. Other Experimental Examples The plate-shaped catalyst of Example 7 was arranged at a 4 mm pitch in front of the denitration catalyst layer of the small-sized reactor having the system of FIG. 1, and the gas having the composition of Table 2 was flowed to the NOx concentration at the inlet and the outlet. Was measured to examine the denitration rate. At this time, ammonia 5 which is a reducing agent for denitration
Was injected between the catalyst layer 1 and the denitration catalyst layer 2 of Example 7 at a ratio of 1.2 mol with respect to NOx. Ratio = 95/4 /
(5, thickness 1 mm) plate catalysts arranged at a pitch of 4 mm,
The conditions shown in Table 5 were maintained. Further, gas was sampled between the catalyst layer and the denitration catalyst layer of Example 7 to measure NOx and NO concentrations, and the oxidation rate of NO to NO 2 was examined.

【0027】[0027]

【表5】 その結果、図1における実施例7の触媒層出口でのNO
のNO2 への酸化率は28%であり、装置出口で測定し
た脱硝率は、83%であった。これは、実施例7の触媒
を取り外して脱硝触媒のみで同様に試験した場合の脱硝
率が66%であるのに対して非常に高かった。この結果
から、本発明の触媒はNOのNO2 への酸化活性を有す
るので、脱硝触媒としてだけでなく、NOのNO2 への
酸化触媒としても用いることができることを示すもので
ある。
[Table 5] As a result, NO at the catalyst layer outlet of Example 7 in FIG.
Of NO to NO 2 was 28%, and the NOx removal rate measured at the outlet of the apparatus was 83%. This was extremely high in comparison with the denitration ratio of 66% when the catalyst of Example 7 was removed and the same test was performed using only the denitration catalyst. From these results, it is shown that the catalyst of the present invention has an activity of oxidizing NO to NO 2, and therefore can be used not only as a denitration catalyst but also as an NO to NO 2 oxidation catalyst.

【0028】[0028]

【発明の効果】本発明によれば、最も高活性な状態のマ
ンガン触媒を得ることができ、本触媒を用いることによ
り、150〜300℃といった低温域でも高い脱硝性能
を得ることができる。これにより、近年、ニーズの増大
しているゴミ焼却炉排ガス等の低温排ガスなどを予熱す
ることなく脱硝処理することが可能になり、極めて簡略
で運転経費の少ない排ガス処理が実現できる。
According to the present invention, the most highly active manganese catalyst can be obtained, and by using this catalyst, high denitration performance can be obtained even in a low temperature range of 150 to 300 ° C. As a result, it becomes possible to denitrate the low-temperature exhaust gas such as exhaust gas from a refuse incinerator, which has been in increasing demand in recent years, without preheating, and it is possible to realize exhaust gas treatment that is extremely simple and has a low operating cost.

【0029】また、本触媒を脱硝触媒の前流に置くこと
によって従来の脱硝触媒の低温活性を大幅に改善するこ
とができるので、アンモニア還元排煙脱硝方法の適用範
囲の拡大につながる。
Further, by placing this catalyst in the upstream of the denitration catalyst, the low temperature activity of the conventional denitration catalyst can be greatly improved, which leads to the expansion of the application range of the ammonia reduction flue gas denitration method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…本発明の実施例7の触媒、2…Ti/W/V系脱硝
触媒、3…煙道、4…NOx発生源(例:ゴミ焼却
炉)、5…アンモニア。
1 ... Catalyst of Example 7 of the present invention, 2 ... Ti / W / V denitration catalyst, 3 ... Flue, 4 ... NOx generation source (eg: refuse incinerator), 5 ... Ammonia.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物をアンモニアによ
り接触還元除去する触媒において、硫酸根の含有量が
0.1重量%以下であるチタン酸化物を担体とし、これ
にマンガンを硝酸塩で混練および/または含浸担持し、
これを200〜450℃で焼成したことを特徴とする排
ガス中の窒素酸化物除去用触媒。
1. A catalyst for catalytic reduction removal of nitrogen oxides in exhaust gas with ammonia, wherein titanium oxide having a sulfate content of 0.1% by weight or less is used as a carrier, and manganese is kneaded with nitrate and And / or impregnated and supported,
A catalyst for removing nitrogen oxides in exhaust gas, which is obtained by firing at 200 to 450 ° C.
【請求項2】 請求項1記載の触媒を用い、150〜3
00℃の温度域で排ガス中の窒素酸化物をアンモニアに
より接触還元することを特徴とする排ガス中の窒素酸化
物除去方法。
2. The catalyst according to claim 1, which is used in the range of 150 to 3
A method for removing nitrogen oxides in exhaust gas, which comprises catalytically reducing nitrogen oxides in exhaust gas with ammonia in a temperature range of 00 ° C.
【請求項3】 排ガス中の窒素酸化物を脱硝触媒の存在
下、150〜300℃の温度で注入したアンモニアによ
り接触還元除去する方法において、硫酸根の含有量が
0.1重量%以下のチタン酸化物担体にマンガンをMn
2 の形態で担持した触媒を前記脱硝触媒の上流域に配
置し、これにより排ガス中のNOの一部をNO2 に変換
し、その後アンモニアを注入して前記脱硝触媒上で排ガ
ス中のNOxを接触還元することを特徴とする排ガス中
の窒素酸化物除去方法。
3. A method for catalytically reducing nitrogen oxides in exhaust gas by using ammonia injected at a temperature of 150 to 300 ° C. in the presence of a denitration catalyst, and titanium containing 0.1% by weight or less of sulfate group. Manganese is added to the oxide carrier as Mn.
A catalyst supported in the form of O 2 is arranged in the upstream region of the NOx removal catalyst, whereby a part of NO in the exhaust gas is converted into NO 2 , and then ammonia is injected to NOx in the exhaust gas on the NOx removal catalyst. A method for removing nitrogen oxides in exhaust gas, which comprises catalytically reducing.
【請求項4】 排ガス中の窒素酸化物をアンモニアによ
り接触還元除去する触媒の製造方法において、硫酸根を
含有するチタンの酸化物を、あらかじめ500〜700
℃の温度範囲で焼成することにより、またはアルカリ液
に浸漬して洗浄することにより、チタンの酸化物の硫酸
根含有量を0.1重量%以下とし、これにマンガンを硝
酸塩で混練および/または含浸し、さらに、これを20
0〜450℃で焼成することを特徴とする排ガス中の窒
素酸化物除去用触媒の製造方法。
4. A method for producing a catalyst for catalytically reducing nitrogen oxides contained in exhaust gas with ammonia, wherein titanium oxide containing sulfate is preliminarily added to 500 to 700.
The sulfate group content of the titanium oxide is adjusted to 0.1% by weight or less by baking in a temperature range of ℃ or by immersing in an alkaline solution and washing, and manganese is kneaded with nitrate and / or Impregnate and then add 20
A method for producing a catalyst for removing nitrogen oxides in exhaust gas, which comprises calcination at 0 to 450 ° C.
JP32574495A 1995-12-14 1995-12-14 Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same Expired - Fee Related JP3815813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32574495A JP3815813B2 (en) 1995-12-14 1995-12-14 Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32574495A JP3815813B2 (en) 1995-12-14 1995-12-14 Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same

Publications (2)

Publication Number Publication Date
JPH09155190A true JPH09155190A (en) 1997-06-17
JP3815813B2 JP3815813B2 (en) 2006-08-30

Family

ID=18180169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32574495A Expired - Fee Related JP3815813B2 (en) 1995-12-14 1995-12-14 Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same

Country Status (1)

Country Link
JP (1) JP3815813B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473080B1 (en) * 2000-12-22 2005-03-08 한국전력기술 주식회사 Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
JP2006068663A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing nitrogen oxide and odor component
JP2006068662A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing odor component
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
CN113398905A (en) * 2021-06-02 2021-09-17 安徽元琛环保科技股份有限公司 Based on netted TiO2MnO of support2Nanowire low-temperature denitration catalyst and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473080B1 (en) * 2000-12-22 2005-03-08 한국전력기술 주식회사 Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
JP2006068663A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing nitrogen oxide and odor component
JP2006068662A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing odor component
JP4499512B2 (en) * 2004-09-03 2010-07-07 株式会社日本触媒 Method for treating exhaust gas containing odor components
JP4499513B2 (en) * 2004-09-03 2010-07-07 株式会社日本触媒 Method for treating exhaust gas containing nitrogen oxides and odor components
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
CN113398905A (en) * 2021-06-02 2021-09-17 安徽元琛环保科技股份有限公司 Based on netted TiO2MnO of support2Nanowire low-temperature denitration catalyst and preparation method thereof
CN113398905B (en) * 2021-06-02 2023-07-18 安徽元琛环保科技股份有限公司 Based on netted TiO 2 MnO of carrier 2 Nanowire low-temperature denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP3815813B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
JP2005125211A (en) Exhaust gas treatment method
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR20220089322A (en) Urea hydrolysis catalyst, production method thereof, and selective catalytic reduction system comprising the urea hydrolysis catalyst
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
WO2021089471A1 (en) Method for the regeneration of sulfate-deactivated scr catalysts
JPH11300213A (en) Denitration catalyst
JPH06182202A (en) Low temperature denitration catalyst
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH0417091B2 (en)
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JP2001113170A (en) Method for manufacturing for denitration catalyst
JPS63147548A (en) Preparation of catalyst for denitration
JPH038820B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees