JP2743336B2 - Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas - Google Patents

Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas

Info

Publication number
JP2743336B2
JP2743336B2 JP3147919A JP14791991A JP2743336B2 JP 2743336 B2 JP2743336 B2 JP 2743336B2 JP 3147919 A JP3147919 A JP 3147919A JP 14791991 A JP14791991 A JP 14791991A JP 2743336 B2 JP2743336 B2 JP 2743336B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxides
exhaust gas
titanium oxide
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3147919A
Other languages
Japanese (ja)
Other versions
JPH04346834A (en
Inventor
正幸 花田
孝男 平川
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP3147919A priority Critical patent/JP2743336B2/en
Publication of JPH04346834A publication Critical patent/JPH04346834A/en
Application granted granted Critical
Publication of JP2743336B2 publication Critical patent/JP2743336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、排ガス中に含まれる窒素酸化物
(以下、NOxと記載する)を触媒の存在下にアンモニ
アなどの還元剤を用いて接触還元除去する方法およびそ
れに使用する触媒に関する。さらには、高温例えば50
0℃以上の温度領域で、排ガス中のNOxを還元剤の存
在下に効率よく窒素と水に分解することができ、耐久
性、耐熱性に優れた触媒およびそれを使用したNOxの
除去方法に関する。
TECHNICAL FIELD The present invention relates to a method for catalytically reducing and removing nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas using a reducing agent such as ammonia in the presence of a catalyst, and a catalyst used therefor. Furthermore, high temperature, for example, 50
A catalyst capable of efficiently decomposing NOx in exhaust gas into nitrogen and water in the presence of a reducing agent in a temperature range of 0 ° C. or higher and having excellent durability and heat resistance, and a method for removing NOx using the same. .

【0002】[0002]

【従来技術】ガスタービン、製鋼用平炉などから排出さ
れる排ガスは、500〜650℃の高温であるため、こ
の様な排ガス中のNOx処理には、500℃以上の高温
領域で使用しても充分な活性を有し、耐熱性に優れた脱
硝触媒が要望されている。この様な高温領域での使用に
適した触媒としては、例えば特開平2−83039号に
提案されている。しかしながら、従来の脱硝触媒を使用
して500℃以上の反応温度で排ガス中のNOx処理を
行った場合、脱硝活性が充分でない等の理由により、満
足できる結果は得られなかった。
2. Description of the Related Art Exhaust gas discharged from gas turbines, open hearths for steelmaking, and the like has a high temperature of 500 to 650 ° C., and therefore, NOx in such exhaust gas is used even in a high temperature range of 500 ° C. or more. There is a demand for a denitration catalyst having sufficient activity and excellent heat resistance. A catalyst suitable for use in such a high-temperature region is proposed in, for example, JP-A-2-83039. However, when NOx treatment in exhaust gas was performed at a reaction temperature of 500 ° C. or higher using a conventional denitration catalyst, satisfactory results were not obtained due to insufficient denitration activity and the like.

【0003】[0003]

【目的】本発明は従来技術の欠点を改良し、高温特に5
00℃以上の温度領域において、高い脱硝活性で長期間
にわたって効率よく排ガス中のNOxを還元除去するこ
とのできる触媒、およびその触媒を利用したNOxの除
去方法の提供を目的とする。
The object of the present invention is to remedy the disadvantages of the prior art;
It is an object of the present invention to provide a catalyst capable of efficiently reducing and removing NOx in exhaust gas over a long period of time with high denitration activity in a temperature range of 00 ° C. or higher, and a method of removing NOx using the catalyst.

【0004】[0004]

【構成】本発明の触媒は、周期律表IIa族及びIII
a族から選ばれた少なくとも1種の元素を含有する含水
酸化チタンを焼成し、この焼成物にタングステンと、リ
ン、ホウ素、亜鉛及び鉛から選ばれた少なくとも1種の
元素成分を担持させたものである。
The catalyst of the present invention comprises a group IIa and a group IIIa of the periodic table.
A fired titanium oxide containing at least one element selected from the group a, and the fired product carries tungsten and at least one element component selected from phosphorus, boron, zinc and lead. It is.

【0005】本出願人が先に出願した特開平2−241
543号には、排ガス中のNOx還元用触媒として、含
水酸化チタンと、周期律表IIa族及びIIIa族から
選ばれた少なくとも1種の元素の化合物とを混合して焼
成し、この焼成物に触媒活性成分を担持させてなるもの
を提案しており、この触媒は、工業用触媒として優れた
特性を有しているものである。しかしながら、この触媒
は、火力発電所などから排出される燃焼排ガス中に含有
されるNOxの除去に使用されるものであり、適用され
る排ガスの温度領域は250〜400℃の範囲であり、
それ以上の高温領域では満足な結果が得られるものでは
なかった。従来、500℃より低い反応領域において
は、タングステン、バナジウム等の活性成分の外に、リ
ン、ホウ素、亜鉛および鉛などの成分を含有する脱硝触
媒は、これら成分を含有しない触媒に比較して脱硝活性
が低い傾向にあった。しかしながら、本発明者らは、予
想外にも、500℃以上の高温領域では、これらリン、
ホウ素、亜鉛および鉛などの成分を含有する脱硝触媒は
高い脱硝活性を示すこと、さらには、これら成分とタン
グステン成分を、周期律表IIa族及びIIIa族から
選ばれた少なくとも1種の元素を含有する含水酸化チタ
ンを焼成して得た担体に担持さて得た触媒は、500℃
以上の高温においても高い脱硝活性で長期間にわたって
効率良く排ガス中のNOxを還元除去できることを見い
出し本発明を完成するに至った。以下、本発明で使用す
る触媒について説明する。本発明の触媒の製造に用いら
れる周期律表IIa族及びIIIa族から選ばれた少な
くとも1種の元素を含有する含水酸化チタンは、硫酸チ
タン、硫酸チタニル、四塩化チタンなどのチタン原料と
周期律表IIa族及びIIIa族から選ばれた少なくと
も1種の元素化合物とを中和法などにより沈殿させて、
あるいは含水酸化チタンと周期律表IIa族及びIII
a族から選ばれた少なくとも1種の元素化合物とを混合
して得られる。本発明での「含水酸化チタン」とは、水
酸化チタンあるいは水和酸化チタンとも別称される化合
物であって、具体的にはチタニアゾル、メタチタン酸、
オルトチタン酸などが包含される。本発明の触媒では、
50wt%以上、好ましくは80wt%以上の含水酸化
チタンを含有するチタン化合物が使用可能であり、特に
硫酸法による酸化チタンの製造工程で、中間品として得
られる含水酸化チタンスラリーを、必要に応じて洗浄し
たものは、本発明の出発原料として好適である。また、
周期律表IIa族及びIIIa族から選ばれる元素の化
合物としては、これら元素を含有する硫酸塩、硝酸塩、
炭酸塩、酢酸塩、蓚酸塩、アンモニウム塩、塩化物、水
酸化物などが挙げられ、なかでもMg,Ba,La,C
e,Yの少なくとも1種を含有する上記化合物で、水溶
性のものが特に好ましい。本発明の触媒では、周期律表
IIa族及びIIIa族から選ばれる少なくとも1種の
元素の化合物が含水酸化チタン中に含有されるが、含水
酸化チタン中に含有される化合物の量は、酸化物換算で
混合物の1.0〜10重量%の範囲が好ましく、さらに
好ましくは1.5〜5.0重量%の範囲である。1.0
重量%未満では、満足できる耐熱性と耐久性を与えるこ
とができず、10重量%以上では混合物の成型性が悪化
し、触媒のSOx酸化能も高くなる。周期律表IIa族
及びIIIa族の元素を含有する化合物のなかでは、M
g、Ba、La、Ce、Yの少なくとも1種を含有する
化合物が、本発明の目的を達成する上で好適であるが、
特にMg、Ba、La、Ceの少なくとも1種を含有す
る化合物の使用は、得られる担体の表面積の低下が少く
なく、脱硝性能が高く、SOx酸化能が低く、耐久性に
優れた触媒を得る上で特に有効である。含水酸化チタン
と上記化合物とを混合する方法では、当該混合物を焼成
して得られる粉末の成型性を良好ならしめるために、含
水酸化チタンの水性スラリーに、上記化合物またはその
水溶液を添加し、混合スラリーのpHを6以上、好まし
くは8〜10の範囲に調整し、次いで40℃以上、好ま
しくは50〜95℃の温度で0.5〜5時間撹拌する方
法で行なうことが望ましい。こうして得られる混合物は
次いで焼成されるが、その焼成は500℃以上、好まし
くは550〜700℃の温度で1〜7時間行なわれる。
焼成温度が500℃より低い場合は、焼成で得られる粉
末の流動性、成型性が悪く、これから得られる脱硝触媒
に充分な耐熱性及び耐久性を付与することができない。
本発明の触媒は、上記の焼成工程から得られる粉末に触
媒活性成分として、タングステンとリン、ホウ素、亜鉛
及び鉛から選ばれる少なくとも1種の元素成分を担持さ
せることにより調製される。タングステン元素成分とし
ては、三酸化タングステン、メタタングステン酸アンモ
ン、パラタングステン酸アンモンなどが使用可能であ
り、また、リンの元素成分としては、リン酸、リン酸ア
ンモン、リン酸水素アンモニウム、五酸化二リン等、ホ
ウ素元素成分としては、ホウ酸、ホウ化アンモン、酸化
ホウ素等、亜鉛元素成分としては、亜鉛の塩化物、硫酸
化物、酢酸塩等、鉛元素成分としては塩化鉛、酢酸鉛、
炭酸鉛、硝酸鉛、及び鉛酸化物等が使用可能である。該
触媒中の活性成分であるタングステンの量はWO3とし
て3〜30wt%、好ましくは5〜25wt%の範囲に
あり、リン、ホウ素、亜鉛及び鉛から選ばれる少なくと
も1種の元素成分は酸化物として、7wt%以下、好ま
しくは0.3〜5wt%の範囲にあることが望ましい。
本発明の触媒は、上記活性成分の外に第3の活性成分を
任意に含むこともできる。そして、本発明の触媒は、上
記の焼成工程から得られる粉末に、触媒活性成分を任意
の方法で担持させることにより調製される。例えば、触
媒活性成分は、焼成粉末を予め適当な形状と寸法の担体
に成型した後、この担体に任意の方法で担持させること
ができる。また、触媒活性成分を含有する化合物と、上
記の焼成粉末とを、水の存在下に混練し、次いでこれを
例えばハニカム形状に押出し成型後、常法通り乾燥焼成
する方法により、触媒を調製することもできる。成型に
当っては、成型助剤、無機繊維などを必要に応じて配合
可能であり、成型物の焼成は500〜700℃で1〜1
0時間程度行なわれるのが通例である。上記方法で製造
された本発明の触媒は、アンモニア、尿素、炭化水素、
CO等の還元剤の存在下にNOx含有排ガスと高温、好
ましくは500〜650℃、さらに好ましくは550〜
600℃の温度領域で接触させ使用される。本発明の触
媒が使用される処理の対象となる排ガスの種類は特に限
定されるものではないが、ガスタービン、製鋼用平炉等
から排出されるガスのように500℃以上の高温の排ガ
スに使用すると特に有用である。本発明の触媒を使用し
て排ガスを処理する条件は、従来排ガスのNOxをアン
モニア等の還元剤の存在下に還元除去するに際して通常
使用されている反応条件を採用することができる。
Japanese Patent Application Laid-Open No. 2-241 filed earlier by the present applicant
No. 543, as a NOx reduction catalyst in exhaust gas, a mixture of hydrated titanium oxide and a compound of at least one element selected from Group IIa and Group IIIa of the periodic table and calcining the mixture. A catalyst supporting a catalytically active component has been proposed, and this catalyst has excellent characteristics as an industrial catalyst. However, this catalyst is used for removing NOx contained in combustion exhaust gas discharged from a thermal power plant or the like, and the temperature range of the applied exhaust gas is in the range of 250 to 400 ° C.
Satisfactory results were not obtained in the higher temperature range. Conventionally, in a reaction region lower than 500 ° C., in addition to active components such as tungsten and vanadium, denitration catalysts containing components such as phosphorus, boron, zinc and lead are more denitrification than catalysts not containing these components. Activity tended to be low. However, the present inventors unexpectedly found that these phosphorus,
A denitration catalyst containing components such as boron, zinc, and lead exhibits high denitration activity. Further, these components and a tungsten component contain at least one element selected from Group IIa and Group IIIa of the periodic table. The catalyst obtained by supporting the carrier obtained by calcining the hydrous titanium oxide is 500 ° C.
The present inventors have also found that NOx in exhaust gas can be efficiently reduced and removed over a long period of time with high denitration activity even at the above high temperatures, and have completed the present invention. Hereinafter, the catalyst used in the present invention will be described. The hydrous titanium oxide containing at least one element selected from the group IIa and group IIIa of the periodic table used in the production of the catalyst of the present invention is obtained by mixing with a titanium raw material such as titanium sulfate, titanyl sulfate, titanium tetrachloride and the like. Precipitating with at least one elemental compound selected from Table IIa group and IIIa group by a neutralization method or the like,
Alternatively, a hydrous titanium oxide and a group IIa or III
It is obtained by mixing with at least one elemental compound selected from group a. The “hydrous titanium oxide” in the present invention is a compound also referred to as titanium hydroxide or hydrated titanium oxide, specifically, titania sol, metatitanic acid,
Orthotitanic acid and the like are included. In the catalyst of the present invention,
A titanium compound containing 50 wt% or more, preferably 80 wt% or more, of titanium oxide can be used. In particular, a titanium oxide slurry obtained as an intermediate in a titanium oxide production process by a sulfuric acid method is optionally used. The washed one is suitable as a starting material of the present invention. Also,
Examples of the compound of an element selected from Group IIa and Group IIIa of the periodic table include sulfates, nitrates, and the like containing these elements.
Carbonates, acetates, oxalates, ammonium salts, chlorides, hydroxides and the like, among which Mg, Ba, La, C
Of the above compounds containing at least one of e and Y, water-soluble compounds are particularly preferred. In the catalyst of the present invention, the compound of at least one element selected from the group IIa and group IIIa of the periodic table is contained in the hydrated titanium oxide. The conversion is preferably in the range of 1.0 to 10% by weight, more preferably 1.5 to 5.0% by weight of the mixture. 1.0
If the amount is less than 10% by weight, satisfactory heat resistance and durability cannot be provided. If the amount is 10% by weight or more, the moldability of the mixture is deteriorated, and the SOx oxidizing ability of the catalyst is also increased. Among compounds containing elements of groups IIa and IIIa of the periodic table, M
Compounds containing at least one of g, Ba, La, Ce, and Y are suitable for achieving the object of the present invention.
In particular, the use of a compound containing at least one of Mg, Ba, La, and Ce makes it possible to obtain a catalyst having a small surface area of the obtained carrier, high denitration performance, low SOx oxidizing ability, and excellent durability. It is especially effective on the above. In the method of mixing the hydrated titanium oxide and the compound, the compound or an aqueous solution thereof is added to an aqueous slurry of the hydrated titanium oxide, and the mixture is mixed in order to improve the moldability of the powder obtained by firing the mixture. It is desirable that the slurry be adjusted to a pH of 6 or more, preferably 8 to 10 and then stirred at a temperature of 40 ° C. or more, preferably 50 to 95 ° C. for 0.5 to 5 hours. The mixture thus obtained is then calcined, the calcining being carried out at a temperature above 500 ° C., preferably 550-700 ° C., for 1-7 hours.
When the calcination temperature is lower than 500 ° C., the powder obtained by calcination has poor fluidity and moldability, so that the denitration catalyst obtained therefrom cannot have sufficient heat resistance and durability.
The catalyst of the present invention is prepared by supporting at least one element component selected from tungsten, phosphorus, boron, zinc and lead as a catalytically active component on the powder obtained from the above-mentioned calcination step. As the tungsten element component, tungsten trioxide, ammonium metatungstate, ammonium paratungstate, etc. can be used. As the phosphorus element component, phosphoric acid, ammonium phosphate, ammonium hydrogen phosphate, dipentoxide, etc. Phosphorus and the like, boron element components such as boric acid, ammonium boride and boron oxide, zinc element components such as zinc chloride, sulfate and acetate, and lead element components as lead chloride and lead acetate;
Lead carbonate, lead nitrate, lead oxide and the like can be used. The amount of tungsten as an active component in the catalyst is in the range of 3 to 30% by weight, preferably 5 to 25% by weight as WO3, and at least one elemental component selected from phosphorus, boron, zinc and lead is an oxide. It is desirably in the range of 7 wt% or less, preferably in the range of 0.3 to 5 wt%.
The catalyst of the present invention may optionally contain a third active ingredient in addition to the above active ingredient. The catalyst of the present invention is prepared by supporting a catalytically active component on the powder obtained from the above-mentioned calcination step by an optional method. For example, the catalytically active component can be formed by molding a calcined powder into a carrier having an appropriate shape and dimensions in advance, and then supporting the carrier by any method. Further, a compound containing a catalytically active component and the above calcined powder are kneaded in the presence of water, and then extruded into, for example, a honeycomb shape, and then dried and calcined in the usual manner to prepare a catalyst. You can also. In molding, a molding aid, inorganic fiber, etc. can be blended as required, and the molded product is fired at 500 to 700 ° C. for 1 to 1
Usually, it is performed for about 0 hours. The catalyst of the present invention produced by the above method, ammonia, urea, hydrocarbon,
NOx-containing exhaust gas and a high temperature, preferably 500 to 650 ° C, more preferably 550 to 550 ° C in the presence of a reducing agent such as CO.
It is used in contact at a temperature range of 600 ° C. The type of exhaust gas to be treated using the catalyst of the present invention is not particularly limited, but is used for high-temperature exhaust gas of 500 ° C. or more such as gas discharged from gas turbines, steel furnaces, etc. Then it is particularly useful. As the conditions for treating exhaust gas using the catalyst of the present invention, reaction conditions conventionally used for reducing and removing NOx from exhaust gas in the presence of a reducing agent such as ammonia can be adopted.

【0006】[0006]

【実施例】以下に実施例を示し本発明を具体的に説明す
るが、本発明はこれら実施例のみに限定されるものでは
ない。 実施例1 TiO2として30重量%濃度のメタチタン酸スラリー
84kgに酢酸バリウム1.26kgを加え、1時間撹
拌後、アンモニア水でpH6.0とした。次いで固形分
を濾別後乾燥し、650℃で5時間焼成した。得られた
粉末中にはバリウムがBaOとして2.9重量%含まれ
ていた。この焼成粉末5kgにWO3として50重量%
のタングステンを含むメタタングステン酸アンモンの水
溶液1.6kgとイオン交換水2.0リットルを加え2
時間混練した。さらに酸化ホウ素(B23)350g及
びメチルセルロース150gを加え1時間加熱しながら
混練した。次いで水分調節を行った後、この混練物をハ
ニカム形状に押出し成型し、充分乾燥後、650℃で5
時間焼成してハニカム状脱硝触媒(A)を得た。 実施例2 実施例1と同様な方法で得られた酸化チタンと酸化バリ
ウムからなる粉末に同量のメタタングステン酸アンモン
水溶液を加えた混練物にリン酸三アンモニウム〔(NH
43PO4・3H2O〕430g及びメチルセルロース2
00gを加え、1時間混練した。次いで水分調節後、実
施例1と同一形状のハニカムに押出し成型し、乾燥後、
650℃で5時間焼成して、触媒を得た。このものを触
媒(B)とする。 実施例3 TiO2として30重量%濃度の水和酸化チタン84k
gにLa(NO32・6H2Oを2.9kg添加し、1
時間撹拌後、アンモニア水を加えてpH=9.0とし、
さらに10時間撹拌した後、濾別して乾燥し、650℃
で10時間焼成した。得られた粉末中にはランタンがL
23として4.8重量%含まれていた。この焼成粉末
5kgにパラタングステン酸アンモン水溶液1.5kg
及びイオン交換水3リットル、モノエタノールアミン5
00gを加え5時間混練した。次に、この混練物に硫酸
亜鉛を8wt%含む水溶液4.2kgを加え、加熱しな
がら混練した。次いで水分調節を行った後、この混練物
をハニカム形状に押出し成型し、充分乾燥後、650℃
で5時間焼成して、ハニカム状触媒(C)を得た。 実施例4 実施例1の酸化ホウ素の代りに酸化鉛(Pb34)40
0g及び(NH43PO4・3H2Oを300g加え、メ
チルセルロース150g及びカルボキシメチルセルロー
ス150gを可塑剤として加え2時間加熱しながら混練
した。以後、実施例1と同様の方法でハニカム状脱硝触
媒(D)を得た。 参考例1(参照触媒) TiO2として、30重量%濃度の水和酸化チタンスラ
リー55kgにパラタングステン酸アンモン1.8kg
を加え、2時間撹拌した。次いでこのスラリーを脱水し
た後、500℃で5時間焼成して酸化チタン粉を作成し
た。この酸化チタン粉中にはWO3が8.4重量%含ま
れていた。この酸化タングステンを含む酸化チタン粉1
0kgにメタバナジン酸アンモンを7重量%含む水溶液
1.86kg及びイオン交換水4リットル、そしてメチ
ルセルロース400gを加え、加熱しながら混練した。
次いで水分を調節した後、ハニカム形状に押し出し成形
し、乾燥後630℃で3時間焼成して触媒(E)を調製
した。 参考例2(参照触媒) TiO2として、30重量%濃度の水和酸化チタンスラ
リー55kgに硝酸ランタン〔LA(NO32・6H2
O〕1.0kgを加え、次にWO3として、50重量%
のタングステンを含有するメタタングステン酸アンモン
水溶液3.5kg、ポリビニルアルコール600gを加
え、2.5時間加熱混練した。次いで、水分調節した後
ハニカム形状に押し出し成型し、乾燥後650℃で5時
間焼成して触媒(F)を調製した。 参考例3(参照触媒) 比表面積65m2/gの焼成された酸化チタンの粉末5
kgに塩化マグネシウム(MgCl2)800g、パラ
タングステン酸アンモニウム550gを加え、イオン交
換水4.0リットル、ポリビニルアルコール300g、
グリセリン100gを加え、混練した。次いで水分調節
した後、ハニカム形状に押し出し成型し、乾燥後650
℃で5時間焼成して、触媒(G)を得た。 実施例5 TiO2として10重量%の硫酸チタンの水溶液50k
gに、Ce23として4.8重量%の硝酸セリウムの水
溶液1.0kgを加え、温度75℃に加温した。次いで
この水溶液にアンモニア水を加えてpH9.0に調整し
てセリウムを含有する含水酸化チタンの沈殿を調製し
た。この沈殿を脱水洗浄した後、110℃で1日乾燥
し、600℃で5時間焼成した。この焼成物の組成は、
Ce23が9.5重量%、TiO2が90.4重量%含
まれていた。この酸化チタンパウダー5.5kgに50
重量%のメタタングステン酸アンモンの水溶液2.5k
g、イオン交換水1.5リットル、B23500g及び
メチルセルロース150gとグリセリン50gを加え、
3時間混練し、水分調節した後、ハニカム形状に押出し
成型した。充分乾燥した後650℃で5時間焼成して、
脱硝触媒(H)を得た。 実施例6 実施例1〜5および参考例1〜3で製造された触媒(A
〜H)を用いて、以下に示す方法及び条件で脱硝性能を
評価した。ハニカム状触媒(目開き6.0mm,肉厚
1.2mm)を16セル角、長さ400mmに切り出
し、内径55mmφの石英製反応管に充てんし、触媒の
格子空隙のみに以下に示す組成のガスを所定の反応温度
で10時間流した後に脱硝率を求めた。ガス流量は、
2.304Nm3/Hrであった。反応温度は400
℃、500℃、600℃、650℃の4点とした。脱硝
率(%)は柳本製作所製ECL−77Aタイプの化学発
光式分析計で反応前と反応後のNOx濃度を測定し下式
に基づいて計算した。 (反応前NOx濃度−反応後NOx濃度) 脱硝率(%)=───────────────────×100 反応前NOx濃度 ガス組成 NOx 500ppm NH3 600ppm H2O 10% O2 10% N2 balance 触媒(A〜G)の評価結果を表1に示す。
EXAMPLES The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 1.26 kg of barium acetate was added to 84 kg of a 30 wt% concentration of metatitanic acid slurry as TiO 2 , and after stirring for 1 hour, the pH was adjusted to 6.0 with aqueous ammonia. Next, the solid content was separated by filtration, dried, and calcined at 650 ° C. for 5 hours. The obtained powder contained 2.9% by weight of BaO as BaO. 50 kg by weight of WO 3 in 5 kg of this calcined powder
1.6 kg of an aqueous solution of ammonium metatungstate containing tungsten and 2.0 liters of ion-exchanged water were added.
Kneaded for hours. Further, 350 g of boron oxide (B 2 O 3 ) and 150 g of methyl cellulose were added and kneaded while heating for 1 hour. Next, after moisture control, the kneaded product was extruded into a honeycomb shape, dried sufficiently, and dried at 650 ° C. for 5 minutes.
After calcination for a time, a honeycomb-shaped denitration catalyst (A) was obtained. Example 2 Triammonium phosphate [(NH3) was added to a kneaded mixture obtained by adding the same amount of an aqueous solution of ammonium metatungstate to powder composed of titanium oxide and barium oxide obtained in the same manner as in Example 1.
4) 3 PO 4 · 3H 2 O ] 430g and methylcellulose 2
Then, the mixture was kneaded for 1 hour. Then, after moisture adjustment, the mixture was extruded into a honeycomb having the same shape as in Example 1, dried,
The catalyst was obtained by calcining at 650 ° C. for 5 hours. This is designated as catalyst (B). Example 3 84 k of hydrated titanium oxide having a concentration of 30% by weight as TiO 2
2.9 kg of La (NO 3 ) 2 .6H 2 O was added to
After stirring for an hour, ammonia water was added to adjust the pH to 9.0,
After further stirring for 10 hours, the mixture was filtered, dried, and dried at 650 ° C.
For 10 hours. Lanthanum is L in the obtained powder.
The content was 4.8% by weight as a 2 O 3 . 1.5 kg of ammonium paratungstate aqueous solution was added to 5 kg of this calcined powder.
And 3 liters of deionized water, monoethanolamine 5
00g was added and kneaded for 5 hours. Next, 4.2 kg of an aqueous solution containing 8 wt% of zinc sulfate was added to the kneaded material, and the mixture was kneaded while heating. Next, after performing moisture control, the kneaded product was extruded into a honeycomb shape, dried sufficiently, and then dried at 650 ° C.
For 5 hours to obtain a honeycomb catalyst (C). Example 4 Instead of boron oxide of Example 1, lead oxide (Pb 3 O 4 ) 40 was used.
0 g and 300 g of (NH 4 ) 3 PO 4 .3H 2 O were added, and 150 g of methylcellulose and 150 g of carboxymethylcellulose were added as plasticizers and kneaded with heating for 2 hours. Thereafter, a honeycomb-shaped denitration catalyst (D) was obtained in the same manner as in Example 1. Reference Example 1 (Reference Catalyst) 1.8 kg of ammonium paratungstate was added to 55 kg of a 30 wt% hydrated titanium oxide slurry as TiO 2.
Was added and stirred for 2 hours. Next, after dehydrating the slurry, the slurry was fired at 500 ° C. for 5 hours to prepare a titanium oxide powder. This titanium oxide powder contained 8.4% by weight of WO 3 . This titanium oxide powder containing tungsten oxide 1
To 0 kg, 1.86 kg of an aqueous solution containing 7% by weight of ammonium metavanadate, 4 liters of ion-exchanged water, and 400 g of methylcellulose were added and kneaded with heating.
Next, after adjusting the water content, the mixture was extruded into a honeycomb shape, dried, and calcined at 630 ° C. for 3 hours to prepare a catalyst (E). Reference Example 2 (Reference Catalyst) As TiO 2 , lanthanum nitrate [LA (NO 3 ) 2 .6H 2 was added to 55 kg of a 30% by weight hydrated titanium oxide slurry.
O] 1.0 kg and then 50 wt% as WO 3
3.5 kg of aqueous solution of ammonium metatungstate containing tungsten and 600 g of polyvinyl alcohol were added and kneaded with heat for 2.5 hours. Next, after adjusting the water content, the mixture was extruded into a honeycomb shape, dried, and calcined at 650 ° C. for 5 hours to prepare a catalyst (F). Reference Example 3 (Reference catalyst) Powder 5 of calcined titanium oxide having a specific surface area of 65 m 2 / g
800 g of magnesium chloride (MgCl 2 ) and 550 g of ammonium paratungstate were added to the kg, 4.0 liters of ion-exchanged water, 300 g of polyvinyl alcohol,
100 g of glycerin was added and kneaded. Next, after adjusting the water content, the mixture was extruded into a honeycomb shape, dried, and dried.
Calcination was carried out at 5 ° C. for 5 hours to obtain a catalyst (G). Example 5 50% aqueous solution of 10% by weight titanium sulfate as TiO 2
1.0 kg of an aqueous solution of cerium nitrate of 4.8% by weight as Ce 2 O 3 was added to g, and the mixture was heated to a temperature of 75 ° C. Next, aqueous ammonia was added to the aqueous solution to adjust the pH to 9.0, thereby preparing a precipitate of cerium-containing hydrous titanium oxide. After the precipitate was dehydrated and washed, it was dried at 110 ° C. for 1 day and calcined at 600 ° C. for 5 hours. The composition of this fired product is
It contained 9.5% by weight of Ce 2 O 3 and 90.4% by weight of TiO 2 . 50 to 5.5 kg of this titanium oxide powder
2.5% by weight aqueous solution of ammonium metatungstate
g, 1.5 liters of ion-exchanged water, 500 g of B 2 O 3, 150 g of methylcellulose and 50 g of glycerin,
After kneading for 3 hours and adjusting the water content, the mixture was extruded into a honeycomb shape. After fully drying, bake at 650 ° C for 5 hours,
A denitration catalyst (H) was obtained. Example 6 The catalyst (A) produced in Examples 1 to 5 and Reference Examples 1 to 3
To H), the denitration performance was evaluated under the following method and conditions. A honeycomb catalyst (mesh size: 6.0 mm, wall thickness: 1.2 mm) was cut into 16 cell squares and 400 mm in length, filled into a quartz reaction tube having an inner diameter of 55 mmφ, and filled with gas having the following composition only in the lattice space of the catalyst. Was flowed at a predetermined reaction temperature for 10 hours, and then the denitration rate was determined. The gas flow rate is
It was 2.304 Nm 3 / Hr. Reaction temperature is 400
4, 500, 600 and 650 ° C. The denitration rate (%) was calculated based on the following equation by measuring the NOx concentration before and after the reaction with a chemiluminescence analyzer of the ECL-77A type manufactured by Yanagimoto Seisakusho. (NOx concentration before reaction-NOx concentration after reaction) Denitration rate (%) = ─────────────────── × 100 NOx concentration before reaction Gas composition NOx 500 ppm NH 3 600 ppm H Table 1 shows the evaluation results of the 2 O 10% O 2 10% N 2 balance catalysts (A to G).

【表1】 以上の結果から、触媒A〜D及びHは、参照触媒E〜G
に比較して、500〜650℃の高い反応温度におい
て、高い脱硝率を示す。
[Table 1] From the above results, the catalysts A to D and H correspond to the reference catalysts EG.
At a high reaction temperature of 500 to 650 ° C. as compared with

【0007】[0007]

【効果】本発明の触媒は高温において高い脱硝活性を長
期間にわたって有するという優れた性質を有するもので
あり、また、この触媒を使用することによって、排ガス
中のNOxを効率良く除去できる。
The catalyst of the present invention has an excellent property of having a high denitration activity at a high temperature for a long period of time, and by using this catalyst, NOx in exhaust gas can be efficiently removed.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期律表IIa族及びIIIa族から選
ばれた少なくとも1種の元素を含有する含水酸化チタン
を焼成し、この焼成物にタングステンと、リン、ホウ
素、亜鉛及び鉛から選ばれた少なくとも1種の元素成分
を担持させたものであることを特徴とする窒素酸化物還
元用触媒。
1. A hydrated titanium oxide containing at least one element selected from the group IIa and IIIa of the periodic table is calcined, and the calcined product is selected from tungsten and phosphorus, boron, zinc and lead. A catalyst for reducing nitrogen oxides, wherein the catalyst supports at least one element component.
【請求項2】 500℃以上の高温の排ガス中の窒素酸
化物を除去するために使用する請求項1記載の窒素酸化
物還元用触媒。
2. The nitrogen oxide reduction catalyst according to claim 1, which is used for removing nitrogen oxides in exhaust gas having a high temperature of 500 ° C. or higher.
【請求項3】 還元剤の存在下、窒素酸化物を含有する
排ガスと請求項1記載の窒素酸化物還元用触媒を接触さ
せることを特徴とする排ガス中の窒素酸化物を除去する
方法。
3. A method for removing nitrogen oxides from exhaust gas, comprising contacting the exhaust gas containing nitrogen oxides with the catalyst for reducing nitrogen oxides according to claim 1 in the presence of a reducing agent.
JP3147919A 1991-05-23 1991-05-23 Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas Expired - Lifetime JP2743336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147919A JP2743336B2 (en) 1991-05-23 1991-05-23 Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147919A JP2743336B2 (en) 1991-05-23 1991-05-23 Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas

Publications (2)

Publication Number Publication Date
JPH04346834A JPH04346834A (en) 1992-12-02
JP2743336B2 true JP2743336B2 (en) 1998-04-22

Family

ID=15441065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147919A Expired - Lifetime JP2743336B2 (en) 1991-05-23 1991-05-23 Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas

Country Status (1)

Country Link
JP (1) JP2743336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543441A (en) * 2010-10-22 2013-12-05 ザハトレーベン ピグメント ゲゼルシャフト ミット ベシュレンクテル ハフツング Supported catalysts consisting of cooking liquor of black liquor containing titanyl sulfate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139625A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543441A (en) * 2010-10-22 2013-12-05 ザハトレーベン ピグメント ゲゼルシャフト ミット ベシュレンクテル ハフツング Supported catalysts consisting of cooking liquor of black liquor containing titanyl sulfate

Also Published As

Publication number Publication date
JPH04346834A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
KR101121184B1 (en) Exhaust gas catalyst
JPS6214339B2 (en)
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
JP2013091045A (en) Exhaust gas treating method
JPH0242536B2 (en)
KR20040093073A (en) Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2583912B2 (en) Nitrogen oxide removal catalyst
JP2980633B2 (en) Nitrogen oxide removal catalyst
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3246757B2 (en) Nitrogen oxide removal catalyst
JP2919541B2 (en) Nitrogen oxide removal catalyst
JPS6215247B2 (en)
JPS63182032A (en) Deodorizing catalyst
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH01317545A (en) Preparation of denitrification catalyst
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JPH0417091B2 (en)
JP7278555B1 (en) Exhaust gas denitrification method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14