KR20040093073A - Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides - Google Patents
Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides Download PDFInfo
- Publication number
- KR20040093073A KR20040093073A KR10-2004-7013411A KR20047013411A KR20040093073A KR 20040093073 A KR20040093073 A KR 20040093073A KR 20047013411 A KR20047013411 A KR 20047013411A KR 20040093073 A KR20040093073 A KR 20040093073A
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- nitrogen oxides
- carrier
- removing nitrogen
- producing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20776—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
전력 소비량이 많은 미국 등에서는, 전력부족을 보충하거나 전력 사용량의 피이크에 대응하기 위해서 가스 터빈을 건설하여 단독으로 운전하는, 소위 심플 사이클 가스 터빈 발전이 증대하고 있다. 이들 발전에 사용되는 설비는 도시교외에 건설되기 때문에, 배기 가스 중에 함유된 NOx도 고율(高率)이어서 분해, 정화할 필요가 있다. 그러나 심플 사이클 가스 터빈 발전에서는, 각 가스 터빈의 출구 바로 뒤에 탈질(脫窒) 장치(denitrating apparatus)를 설치하고, 배기 가스를 450℃ ~ 600℃의 고온에서 처리 할 필요가 있지만, 이러한 고온에서 높은 성능과 긴 수명을 가진 탈질 촉매는 지금까지 알려져 있지 않았다. 특히, 고온영역에서는 열 열화(熱劣化)에 의한 촉매의 활성저하가 현저하기 때문에, 촉매의 활성을 희생시켜 내열성을 향상시킨 저활성의 촉매를 사용하고, 보일러에서 배출되는 350℃ 부근의 배기 가스의 탈질 등에 사용되는 몇 배량의 촉매를 충전해서 배기 가스 처리를 하지 않으면 안되었다. 이로 인해서, 전력 사용량의 피이크 때에 대응하기 위해서 건설되어, 연간의 운전 시간이 짧은 설비에 있어서 큰 탈질 설비를 구비할 필요가 있어, 경제적으로도 큰 부담이 되고 있다.In the United States and the like where power consumption is large, so-called simple cycle gas turbine power generation, in which gas turbines are constructed and operated independently to compensate for power shortages or to cope with peaks in power consumption, is increasing. Since the facilities used for these power generation are constructed outside the city suburbs, the NOx contained in the exhaust gas is also high and needs to be decomposed and purified. However, in a simple cycle gas turbine power generation, it is necessary to install a denitrating apparatus immediately after the exit of each gas turbine and treat the exhaust gas at a high temperature of 450 ° C to 600 ° C. Denitrification catalysts with performance and long life have not been known to date. In particular, in the high temperature region, since the activity deterioration of the catalyst due to thermal deterioration is remarkable, an exhaust gas of around 350 ° C. discharged from the boiler using a low activity catalyst having improved heat resistance at the expense of the catalyst activity is used. The exhaust gas treatment had to be filled with several times the amount of catalyst used for denitrification. For this reason, in order to cope with the peak of electric power consumption, it is necessary to provide a large denitrification facility in the facility which has a short annual operating time, and it is also a big burden economically.
따라서 고온에서 열화(劣化)하기 어려운 촉매에 관한 많은 연구와 발명이 되어 있고, 특히 세륨(Ce)을 활성 성분으로 한 촉매가 높은 온도에서도 비교적 높은 성능을 발휘하는 것이 알려져 있다. 예를 들면, 일본국 특개평 08-257402에는, 가용성의 티타늄(Ti) 화합물, 텅스텐(W) 화합물 및 세륨(Ce) 화합물을 공침법(共沈法; coprecipitation)으로 얻고, Ce 화합물의 입자를 티타니아(titania) 중에 고도로 분산시킨 촉매가 개시되어 있다. 또한, 일본국 특개평 08-27408에는, 제올라이트 세공(細孔; micro voids) 내에 Ce 이온을 이온 교환법으로 분산시켜서 고활성화와 안정화를 도모한 촉매가 개시되어 있다. 이들 촉매는, 옛날부터 촉매의 활성 성분으로서 알려져 있는 Ce를 촉매 중에 고도로 분산시켜서 촉매를 안정화 및 고활성화 한다는 관점에서는 우수한 면을 가지고 있지만, 본 발명자들이 목표로 하는, 고온영역에서 높은 활성과 향상된 내열성을 가진 촉매를 제공하는 관점에서는 개선해야 할 문제점들을 남기고 있다.Accordingly, many studies and inventions have been made on catalysts that are difficult to deteriorate at high temperatures. Particularly, it is known that catalysts containing cerium (Ce) as an active component exhibit relatively high performance even at high temperatures. For example, Japanese Patent Application Laid-Open No. 08-257402, a soluble titanium (Ti) compound, tungsten (W) compound and cerium (Ce) compound are obtained by coprecipitation and particles of Ce compound are obtained. Highly dispersed catalysts in titania are disclosed. In addition, Japanese Patent Application Laid-Open No. Hei 08-27408 discloses a catalyst in which Ce ions are dispersed in zeolite pores by ion exchange method to achieve high activation and stabilization. These catalysts have an excellent aspect in terms of stabilizing and activating the catalyst by dispersing Ce, which has long been known as an active ingredient of the catalyst, in the catalyst. However, the present inventors have high activity and improved heat resistance in the high temperature region. From the point of view of providing a catalyst having the above, there are problems left to be improved.
상기한 종래 기술 중에서, Ti, W 및 Ce의 가용성 화합물을 공침법으로 침전시켜서 촉매를 제조하는 방법에는 다음과 같은 문제점이 있다.Among the prior arts described above, the method of preparing a catalyst by precipitating soluble compounds of Ti, W and Ce by coprecipitation has the following problems.
(1) 전제로서, Ti와 Ce가 동일한 4가의 원자이고, 이들 두가지 원소 중의 한가지를 함유한 화합물은 각각, 이들이 혼합될 경우 서로 균일히 분산된 상태를 취하기 쉽다. 따라서, 혼합되었을 경우, 화합물들은 많은 량의 Ce 화합물(산화물)이 Ti 화합물(산화물) 중에 매몰된 상태를 형성하게 되어, Ce 화합물이 가진 우수한 활성을 충분히 이용할 수 없었다. 이 것은, 서로간에 두 화합물의 분리가 어렵고, 공업용 산화 티타늄 중에 Ce 산화물이 빈번히 1% 가까운 불순물로서 잔존하는 사실로부터도 알 수 있다.(1) As a premise, Ti and Ce are the same tetravalent atoms, and each compound containing one of these two elements is likely to take the state of being uniformly dispersed with each other when they are mixed. Therefore, when mixed, the compounds form a state in which a large amount of Ce compound (oxide) is buried in the Ti compound (oxide), so that the excellent activity possessed by the Ce compound could not be sufficiently utilized. This can be seen from the fact that it is difficult to separate the two compounds from each other, and Ce oxide frequently remains as an impurity close to 1% in industrial titanium oxide.
(2) 또한, 공침법으로 얻게 되는 침전은 겔 상태이어서 여과하기가 어려우므로, 이 침전을 고체촉매로서 실용적으로 사용할 수 있기까지는 겔 상태의 침전을 복잡한 공정을 다수 거쳐서 처리해야할 필요가 있으므로 제조 비용이 높아진다고 하는 난점이 있다.(2) In addition, since the precipitate obtained by the coprecipitation method is a gel, which is difficult to filter, it is necessary to process the gel precipitate through a large number of complicated processes until it can be practically used as a solid catalyst. There is a difficulty that this becomes high.
또한, 제올라이트 세공 속으로 Ce 이온을 고도로 분산시키는 방법에 있어서는 극히 높은 초기 성능을 가진 촉매를 얻을 수 있지만, 제올라이트 중의 알루미늄이 제올라이트 구조로부터 제올라이트 세공 속으로 분리하는, 소위 탈(脫)알루미늄(de-aluminum) 현상에 의해 촉매가 열화하기 쉽다. 특히, 탈알루미늄 현상이 온도와 수증기의 존재에 의해 촉진되기 때문에, 수증기를 5 ~ 10% 함유하는 배기 가스 중에 촉매를 장시간 노출시키는 고온 탈질에 촉매를 사용하면, 장기간에 걸쳐 높은 촉매활성을 유지하기가 곤란하다.In addition, in the method of highly dispersing Ce ions into the zeolite pores, a catalyst having extremely high initial performance can be obtained, but so-called dealuminum (de-) in which aluminum in the zeolite is separated from the zeolite structure into the zeolite pores. The catalyst is likely to deteriorate due to the aluminum phenomenon. In particular, since the dealumination phenomenon is promoted by the temperature and the presence of water vapor, when the catalyst is used for high temperature denitrification which exposes the catalyst for a long time in the exhaust gas containing 5 to 10% of water vapor, it is possible to maintain high catalytic activity over a long period of time. Is difficult.
본 발명의 과제는, 종래 기술이 가진 문제점을 감안하여, Ce 산화물이 Ti 산화물에 매몰되는 것을 방지해서, 산화 티타늄 표면에, 이온 교환법에 의해 제올라이트의 세공 속으로 Ce 이온을 분산시킨 경우와 비교할 수 있을 정도의 Ce 산화물의 고도 분산을 실현함과 아울러, 산화 티타늄의 신터링(sintering; 燒結)과 수증기에 의한 제올라이트의 열화 등의 현상을 방지한 탈질 촉매를 제공하는 것인데, 예를 들면 심플 사이클 가스 터빈 발전 설비 등을 사용하는 발전 설비 등과 같은 설비 등에서 배출되는 고온 배기 가스 중의 NOx를 무해화(無害化) 처리할 수 있는 방법을 제공함에 있다.In view of the problems with the prior art, the object of the present invention is to prevent Ce oxide from being buried in Ti oxide, and can be compared with the case where Ce ions are dispersed in pores of zeolite on the surface of titanium oxide by ion exchange method. The present invention provides a denitration catalyst which realizes a high degree of high dispersion of Ce oxide and prevents phenomena such as sintering of titanium oxide and deterioration of zeolite by water vapor, for example, a simple cycle gas. The present invention provides a method for detoxifying NOx in hot exhaust gas discharged from a facility such as a power generation facility using a turbine power generation facility or the like.
본 발명은, 배기 가스 중에 함유된 질소 산화물(NOx)을 제거하는데 사용되는 촉매 및 이 촉매의 제조 방법에 관한 것으로서, 특히 450℃ 이상의 고온 배기 가스 중에 함유된 NOx를 고효율로 제거하기 위한 촉매, 이 촉매의 제조 방법 및 배기 가스 중에 함유된 NOx의 제거 방법에 관한 것이다.The present invention relates to a catalyst used for removing nitrogen oxides (NOx) contained in exhaust gas and a method for producing the catalyst, and in particular, a catalyst for efficiently removing NOx contained in hot exhaust gas of 450 ° C. or higher, A method for producing a catalyst and a method for removing NOx contained in exhaust gas.
도 1은 본 발명의 발명사상을 나타내는 촉매구조의 개념도.1 is a conceptual diagram of a catalyst structure showing the spirit of the present invention.
도 2는 종래의 촉매구조의 개념도.2 is a conceptual diagram of a conventional catalyst structure.
도 3은 실시예와 비교예의 촉매의 탈질율을 비교한 본 발명의 효과를 나타내는 그래프.3 is a graph showing the effect of the present invention comparing the denitrification rate of the catalyst of the Example and Comparative Example.
본 발명자들은, 산화 티타늄을 주성분으로 하는, 내열성과 및 활성을 모두 비약적으로 향상시킨 촉매를 개발하기 위해 예의 연구를 거듭한 결과, 다음과 같은 결론에 이르렀다.MEANS TO SOLVE THE PROBLEM The present inventors earnestly researched and developed the catalyst which made the titanium oxide main component the remarkably improved both heat resistance and activity, and came to the following conclusion.
(1) 촉매의 활성을 비약적으로 향상시키기 위해서는, 제올라이트의 미세공과 같은 미세공에 Ce 이온 또는 Ce 산화물을 고도로 분산시켜서 Ce 이온 또는 Ce 산화물과 가스와의 접촉을 향상시키는 것이 유효한 수단이 된다.(1) In order to dramatically improve the activity of the catalyst, it is an effective means to improve the contact between Ce ions or Ce oxides and gas by highly dispersing Ce ions or Ce oxides in micropores such as zeolite micropores.
(2) 고도의 분산을 목표로 하기 위해서, Ti와 Ce의 화합물을 용이하게 혼합할 수 있는 조건에서 혼합하면, 이들 두가지 화합물의 성질이 유사하기 때문에 혼합이 지나치게 진행되어 Ti 화합물 (예컨대, TiO2) 속에 Ce 화합물이 매몰되므로, Ce 화합물과 배기 가스와의 접촉이 저해되어 Ce 화합물이 활성성분으로서의 기능을 하지 않는다. 그 뿐만 아니라, Ce 화합물에 의해 TiO2의 소결이 촉진되는 경우가 있으므로 이 혼합물은 고온 촉매로 사용하기에 적합하지 않다.(2) For the purpose of high dispersion, when the Ti and Ce compounds are mixed under conditions that can be easily mixed, the mixing proceeds excessively because the properties of these two compounds are similar, and thus the Ti compound (for example, TiO 2 Since Ce compound is buried in the C), contact between Ce compound and exhaust gas is inhibited, and Ce compound does not function as an active ingredient. In addition, since the sintering of TiO 2 is accelerated by the Ce compound, this mixture is not suitable for use as a high temperature catalyst.
따라서 본 발명자들은 예의 연구한 결과, 표면에 히드록실기를 가진 TiO2와텅스텐 산 또는 그 염류를 물의 존재하에서 혼합하면, TiO2의 히드록실기와 텅스텐 산이 축합해서 TiO2결정 사이에 가교가 만들어지는데, 이 촉매를 소성하면, 도 1(a)에 나온 바와 같은 제올라이트 세공에도 필적하는 50Å 이하의 직경을 가진 미세공이 형성되며, 이러한 미세공을 가진 산화 티타늄을 형성할 때에, 미립자이지만 TiO2의 내부에는 침투할 수 없는 CeO2의 졸을 공존시키면, 도 1(b)에 나온 바와 같이 W 화합물에 의해서 격리된 TiO2결정 사이에 형성되는 미세공 속으로 CeO2가 활성성분으로서 침입해 들어가므로, 얻어지는 촉매에 높은 내열성과 높은 활성이 부여되는 것을 발견하여 본 발명에 도달한 것이다.Therefore, the present inventors have made a bridge between intensive research as a result, when mixing the TiO 2 and tungstic acid or a salt thereof with the hydroxyl groups on the surface in the presence of water, acid is a hydroxyl group and tungsten of TiO 2 fused to TiO 2 crystals makin, when firing the catalyst, FIG. 1 (a) micro holes are formed with a diameter of 50Å or less comparable in the zeolite pores, as shown in, the formation of the titanium oxide having such fine pores, the fine particles, but of TiO 2 when coexist inside the sol of which can not be penetrated CeO 2, also because into micropores formed between the isolated TiO 2 determined by a W compound as shown in 1 (b) CeO 2 enters invasive as an active ingredient The present invention has been found by discovering that high heat resistance and high activity are imparted to the resulting catalyst.
본 발명의 촉매에 의하면, 도 1(b)에 나온 촉매의 개념도와 같이, TiO2결정이, 텅스텐 산 또는 3산화 텅스텐(WO3)을 결정 사이에 끼워서 배향(配向)하여 응집해서 미세공을 형성하고, 활성성분인 Ce 화합물의 입자가 TiO2결정의 틈새에 존재함으로써, TiO2결정끼리의 접촉을 방지해서 열에 의한 TiO2결정의 성장을 저해함과 아울러, 이온 교환법에 의해 Ce 이온을 분산시킨 제올라이트와 같은 정도의 높은 촉매활성을 달성함과 동시에, 제올라이트가 고온에서 수증기를 함유하는 가스에 노출되었을 때에 제올라이트가 열화하는 현상을 완전히 방지할 수 있다.According to the catalyst of the present invention, as shown in the conceptual diagram of the catalyst shown in FIG. 1 (b), TiO 2 crystals are tungsten acid or tungsten trioxide (WO 3 ) sandwiched between crystals to orient and aggregate to form fine pores. forming, and the active ingredient of Ce by the particles of the compound present in the gap between the TiO 2 crystals, TiO 2 crystals to prevent contact dispersing Ce ions by the addition, ion exchange method, and also inhibit the growth of the TiO 2 crystals by heat between Achieve high catalytic activity similar to that of the prepared zeolite, and at the same time, the phenomenon of zeolite deterioration can be completely prevented when the zeolite is exposed to a gas containing water vapor at a high temperature.
본 발명에 있어서는, 활성 성분인 Ce 화합물이 도 1(b)에 나온 바와 같이, TiO2결정 사이의 틈에 존재하는 것이 필요하다. 이에 반하여, TiO2및 Ce 산화물을반응성이 높은 가용성 염이나 이온 등의 상태에서 혼합하면, Ce 산화물의 입자가 TiO2속에 묻혀버리는 상태가 되어, 미세공 속에는 존재하지 않으므로, 성능이 낮은 촉매만 얻게 된다.In the present invention, the Ce compound as the active component is required to exist in the gap between the TiO 2 crystals as shown in Fig. 1 (b). On the other hand, when TiO 2 and Ce oxide are mixed in a highly reactive soluble salt or ion state, particles of Ce oxide are buried in TiO 2 and do not exist in micropores, so only a low-performance catalyst is obtained. do.
본 발명을 요약하면 아래와 같다.In summary, the present invention is as follows.
(1) 함수 산화 티타늄 또는 그 건조체, 텅스텐 산 또는 그 염류, 및 2산화 세륨을 분산매체에 분산시킨 졸 상태의 물질과 수성매체를 혼합해서 얻어지는 촉매 슬러리 또는 페이스트를 촉매 담체에 담지(擔持)한 후에 이 촉매담체를 소성하는 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(1) A catalyst slurry or paste obtained by mixing a hydrous titanium oxide or its dried body, tungstic acid or its salt, and a sol state in which a cerium dioxide is dispersed in a dispersion medium and an aqueous medium is supported on a catalyst carrier. And then calcining the catalyst carrier.
(2) 상기 제1항에 있어서, 촉매 슬러리 또는 페이스트가 추가로 콜로이달 실리카를 함유하는 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(2) The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein the catalyst slurry or paste further contains colloidal silica.
(3) 상기 제1항 또는 제2항에 있어서, 상기 촉매 슬러리 또는 페이스트가 추가로 옥살산(oxalic acid)을 함유하는 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(3) The method for producing a catalyst for removing nitrogen oxides according to claim 1 or 2, wherein the catalyst slurry or paste further contains oxalic acid.
(4) 상기 제1항 내지 제3항 중의 어느 한 항에 있어서, 상기 촉매 슬러리 또는 페이스트가 추가로 무기 단섬유를 함유하는 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(4) The method for producing a catalyst for removing nitrogen oxides according to any one of items 1 to 3, wherein the catalyst slurry or paste further contains inorganic short fibers.
(5) 상기 제1항 내지 제4항 중의 어느 한 항에 있어서, 상기 촉매 담체가, 무기섬유제 촉매 담체, 세라믹스제 촉매 담체 또는 금속제 담체인 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(5) The method for producing a catalyst for removing nitrogen oxides according to any one of items 1 to 4, wherein the catalyst carrier is an inorganic fiber catalyst carrier, a ceramic catalyst carrier or a metal carrier.
(6) 상기 제5항에 있어서, 상기 무기섬유제 촉매 담체가, 실리카-알루미나계 무기섬유로 된 시이트(sheet)를 코루게이트 가공(corrugating processing)해서 제조된 코루게이트 하니캄 담체(corrugatred honeycomb carrier)인 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(6) The corrugatred honeycomb carrier according to item 5, wherein the inorganic fiber catalyst carrier is prepared by corrugating a sheet made of silica-alumina-based inorganic fibers. Method for producing a catalyst for removing nitrogen oxides, characterized in that.
(7) 상기 제5항에 있어서, 상기 금속제 촉매 담체가 메탈 라스(metal lath)인 것을 특징으로 하는 질소 산화물 제거용 촉매의 제조 방법.(7) The method for producing a catalyst for removing nitrogen oxides according to claim 5, wherein the metal catalyst carrier is metal lath.
(8) 상기 제1항 내지 제7항 중의 어느 한 항에 기재된 방법에 의해 제조된 질소 산화물 제거용 촉매.(8) A catalyst for removing nitrogen oxides produced by the method according to any one of items 1 to 7.
(9) 암모니아 존재하에 상기 제8항 기재의 촉매를 사용해서, 질소 산화물을 함유하는 배기 가스로부터 질소 산화물을 제거하는 것을 특징으로 하는 질소 산화물의 제거 방법.(9) A method for removing nitrogen oxides, wherein the nitrogen oxides are removed from the exhaust gas containing nitrogen oxides using the catalyst according to item 8 in the presence of ammonia.
(10) 상기 제9항에 있어서, 상기 배기 가스의 온도가 350 ~ 600℃인 것을 특징으로 하는 질소 산화물의 제거 방법.(10) The method for removing nitrogen oxides according to claim 9, wherein the temperature of the exhaust gas is 350 to 600 ° C.
(11) 상기 제9항에 있어서, 상기 배기 가스가 가스 터빈 배기 가스인 질소 산화물의 제거 방법.(11) The method for removing nitrogen oxides according to claim 9, wherein the exhaust gas is a gas turbine exhaust gas.
본 발명은, 전형적으로는, i) 메타티탄산, 오르토티탄산 등의 함수 산화 티타늄의 슬러리, 그 건조체, 또는 티타니아 졸(titania sol) 등의 교질(膠質)에, 텅스텐(W)의 옥소산(oxo-acid) 또는 그 염류, 및 2산화 세륨을 수성매체에 의해 분산시킨 졸과, ii) 상기 i)에서 생성한 졸에, 필요에 따라서 옥살산, 아세트산 등의 pH 조정제나 실리카 졸 등의 바인더를 첨가후, iii) 상기 졸에 수성매체를 혼합하여 슬러리 또는 페이스트 (이하, "촉매 슬러리" 또는 "촉매 페이스트"라 함)를 제조하고, iv-a) 무기섬유로 된 시이트를 코루게이트 가공한 허니캄 형상의 담체, 무기섬유제 부직포 시이트 담체, 코디에라이트(cordierite)나 알루미나 등의 세라믹으로 된 허니캄 담체, 금망(金網)이나 메탈 라스(metal lath) 등의 망상물, E-유리섬유 얀(E-glass fiber yarn) 등의 무기 섬유 얀(yarn)을 망상으로 짠 망상물 등의 촉매 담체를 촉매 슬러리 또는 촉매 페이스트에 함침(含浸)하거나, iv-b) 촉매 슬러리 혹은 촉매 페이스트를 촉매 담체에 코우팅하거나, 또는 iv-c) 촉매 슬러리 혹은 촉매 페이스트를 망상물의 눈을 메우도록 압연, 도포한 후에, v) 건조, 소성하도록 한 것이다.The present invention typically includes i) oxo acid (oxo) of tungsten (W) in a slurry of hydrous titanium oxide, such as metatitanic acid or ortho titanic acid, its dried body, or a colloid such as titania sol. -acid) or salts thereof, and a sol obtained by dispersing cerium dioxide with an aqueous medium, and ii) a sol produced in i), a pH adjuster such as oxalic acid or acetic acid or a binder such as silica sol, if necessary. Iii) a slurry or paste (hereinafter referred to as " catalyst slurry " or " catalyst paste ") was prepared by mixing an aqueous medium with the sol, and iv-a) a honeycomb obtained by corrugating a sheet made of inorganic fibers. Shape carrier, inorganic fiber non-woven sheet carrier, honeycarm carrier made of ceramics such as cordierite or alumina, reticulated material such as gold mesh or metal lath, E-glass fiber yarn (E mesh inorganic fiber yarns, such as glass fiber yarns Impregnated with a catalyst carrier or a catalyst paste such as a network woven into a catalyst slurry, iv-b) coating a catalyst slurry or a catalyst paste on the catalyst carrier, or iv-c) a catalyst slurry or a catalyst paste After rolling and apply | coating to fill the eyes of water, v) drying and baking were performed.
본 발명에서 사용하는 산화 티타늄 원료는, 산화 티타늄 표면에 히드록실기를 가진 것이면 어떤 것이라도 좋은데, 구체적으로는 함수 산화 티타늄, 산화 티타늄의 졸 상태의 물질, 이들의 건조체 등을 사용할 수 있다. 예를 들면, 황산법에 의해 얻어진 메타티탄산으로부터 제조된 건조체와 같이 황산 라디칼을 불순물로서 함유한 것이어도 좋다.The titanium oxide raw material used in the present invention may be any one having a hydroxyl group on the surface of the titanium oxide, and specifically, a hydrous titanium oxide, a sol state of titanium oxide, a dried body thereof, or the like can be used. For example, one may contain sulfuric acid radicals as impurities, such as a dried body produced from metatitanic acid obtained by the sulfuric acid method.
그리고 텅스텐(W) 원료로서는, 해당하는 금속(M)의 MO4형 이온(M: W)을 함유하는 옥소산 또는 헤테로폴리산(heteropolyacid), 혹은 메타 또는 파라 텅스텐산 암모늄 등의 암모늄염 등을 이용할 수 있다. 촉매에 대한 텅스텐 원료의 첨가량은 1 ~ 20 원자%, 바람직하게는 5 ~ 15 원자%이다. 텅스텐의 첨가량이 적으면 내열성의 악화를 초래하고, 지나치게 많으면 활성 성분을 유지하는 산화 티타늄의 비율이 감소해서 활성 저하를 일으킨다.As the tungsten (W) raw material, an oxo acid or heteropolyacid containing an MO 4 type ion (M: W) of the corresponding metal (M), or an ammonium salt such as meta or ammonium paratungstate can be used. . The addition amount of the tungsten raw material to a catalyst is 1-20 atomic%, Preferably it is 5-15 atomic%. A small amount of tungsten causes deterioration of heat resistance, while an excessively large amount of tungsten reduces the proportion of titanium oxide retaining the active ingredient, leading to a decrease in activity.
한편, 산화 세륨의 졸 상태의 물질은 유기 알칼리나 산을 안정화제로서 함유하는 물에 CeO2를 분산시킨 것이며, 자외선 흡수제, 코우팅제로서 시판되고 있는 것을 사용해도 좋다. 촉매에 대한 그 첨가량은 0 ~ 10 원자%이며, 바람직하게는 1 ~ 5 원자%의 범위이다. 그 첨가량이 지나치게 적으면 높은 활성을 얻기 어렵고, 또한 지나치게 많으면 500℃ 이상에서의 활성저하를 발생하기 쉽다.On the other hand, the cerium oxide sol substance is obtained by dispersing CeO 2 in water containing an organic alkali or an acid as a stabilizer, and commercially available UV absorbers and coating agents may be used. The addition amount with respect to a catalyst is 0-10 atomic%, Preferably it is the range of 1-5 atomic%. When the addition amount is too small, high activity is hard to be obtained. When the addition amount is too large, the activity deterioration at 500 ° C or more is likely to occur.
옥살산이나 아세트산의 첨가는 반드시 필요하지 않지만, 텅스텐 산의 암모늄염을 사용할 경우에는, 산이 암모늄 이온과 반응해서 텅스텐 산을 생성시켜 텅스텐 산의 산화 티타늄에의 흡착을 촉진하므로, 필요에 따라서 첨가한다. 특히 옥살산은 산화 티타늄을 약간 용해하는 성질을 가지고, 산화 티타늄 표면을 활성화해서 텅스텐 산과의 반응을 촉진하므로, 산화 티타늄에 대해 5 ~ 10wt% 첨가하면 좋은 결과를 얻기 쉽다.Addition of oxalic acid or acetic acid is not necessary, but in the case of using an ammonium salt of tungstic acid, the acid reacts with ammonium ions to form tungstic acid, which promotes the adsorption of tungstic acid to titanium oxide, and is added as necessary. In particular, oxalic acid has a property of slightly dissolving titanium oxide, and activates the surface of titanium oxide to promote reaction with tungstic acid. Therefore, it is easy to obtain good results by adding 5 to 10 wt% of titanium oxide.
상기 화합물들을 함유하는 촉매 슬러리 또는 촉매 페이스트를 담지하는 촉매 담체로는, 앞서 설명한 바와 같이 무기섬유로 된 시이트를 코루게이트 가공한 허니캄 형상 담체, 무기섬유제 부직포, 금망이나 메탈 라스 등의 망상물, E-유리섬유 얀(yarn) 등의 무기섬유 얀(yarn)을 망상으로 짠 망상물 등이 사용되고, 이들 담체는 공지의 강화제로써 강화하거나, 촉매성분의 부착성 증가나 금속기재의 산화를 방지하는 목적의 코우팅층을 형성해서 사용해도 좋다.As a catalyst carrier carrying the catalyst slurry or the catalyst paste containing the above compounds, as described above, a honeycam carrier obtained by corrugating a sheet made of an inorganic fiber, a nonwoven fabric made of an inorganic fiber, a network such as gold mesh or metal lath, Reticulated nets of inorganic fiber yarns, such as E-glass fiber yarns, are used, and these carriers can be reinforced with known reinforcing agents, to increase adhesion of catalyst components or to prevent oxidation of metal substrates. You may form and use the target coating layer.
촉매 슬러리 혹은 촉매 페이스트의 담지방법은 어떤 것이어도 좋지만, 무기섬유제 코루게이트 하니캄, 세라믹제 부직포 및 세라믹 허니캄 담체 등에는 30 ~ 50wt%의 촉매성분을 함유하는 슬러리에 침지해서 섬유 간극(間隙)에 촉매 슬러리를 충전(充塡)하거나 담체표면에 촉매 슬러리를 코우팅하는 방법이 적합하다. 한 편으로는, 금속 또는 세라믹제 망상물을 사용할 경우에 있어서, 망의 눈이 작을 경우에는, 앞서 설명한 코우팅법 외에, 수분이 30 ~ 35%인 촉매 페이스트에 무기섬유를 첨가한 것을 롤러를 이용해서 망상물의 눈을 메우도록 도포하는 방법을 채용할 수 있다.Any method of supporting the catalyst slurry or catalyst paste may be used, but the fiber gap may be immersed in a slurry containing 30 to 50 wt% of a catalyst component in an inorganic fiber corrugated honeycomb, a ceramic nonwoven fabric, and a ceramic honeycomb carrier. It is suitable to fill the catalyst slurry with or to coat the catalyst slurry on the carrier surface. On the other hand, in the case of using a metal or ceramic network, when the eyes of the mesh are small, in addition to the coating method described above, inorganic fibers were added to the catalyst paste having a moisture content of 30 to 35% using a roller. The method of apply | coating so that the eye of a network may be filled may be employ | adopted.
이상의 방법에 의해 각종 기재에 촉매 슬러리 혹은 촉매 페이스트가 담지된 것은, 필요에 따라서 절단, 성형, 변형 등의 처리를 거친 후, 풍건(風乾)이나 열풍 건조 등의 공지의 수단에 의해서 건조된 후에 500 ~ 700℃에서 소성해서 촉매로서 사용된다.The catalyst slurry or the catalyst paste supported on the various substrates by the above method is subjected to treatment such as cutting, molding, deformation, etc. as necessary, and then dried by a known means such as air drying or hot air drying. It is calcined at ˜700 ° C. and used as a catalyst.
본 발명의 촉매는, 고온 배기 가스, 예를 들면 350 ~ 600℃, 바람직하게는 450℃ ~ 600℃, 가장 바람직하게는 500 ~ 600℃의 배기 가스 중의 NOx 제거에 적절하게 사용된다.The catalyst of the present invention is suitably used for removing NOx in a high temperature exhaust gas, for example, 350 to 600 ° C, preferably 450 to 600 ° C, most preferably 500 to 600 ° C.
이하, 구체예를 이용해서 본 발명을 상세히 설명한다. 그러나 본 발명의 범위는 이들 구체예에 의하여 한정되는 것은 아니다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail using a specific example. However, the scope of the present invention is not limited by these embodiments.
(실시예 1)(Example 1)
저온건조 산화 티타늄(Millennium사제, 상품명: G5, 표면적 275m2/g)을 80g, 메타텅스텐산 암모늄 수용액 [(NH4)6ㆍH2W12040ㆍxH20, WO3로서 50wt%의 농도로 함유] 52.7g, CeO2졸(일본국의 多木화학사제; 상품명: 니도랄, CeO2함유량 15wt%)을 26.2g, 옥살산을 4g, 실리카 졸(일본국의 日産화학사제; 상품명: OS 졸, 농도 20wt%)을 50g, 및 물 50g을 혼합하여 TiO2농도가 약 30wt%인 촉매 슬러리를 조제하였다.80 g of low temperature dry titanium oxide (manufactured by Millennium, trade name: G5, surface area 275 m 2 / g), and aqueous ammonium metatungstate solution [(NH 4 ) 6 H 2 W 12 0 40 x H 2 0, 50 wt% as WO 3 Concentration] 52.7 g, CeO 2 sol (manufactured by Daiko Chemical Co., Ltd .; trade name: Nidoral, CeO 2 content 15 wt%), 26.2 g, oxalic acid 4 g, silica sol (manufactured by Nippon Chemical Co., Ltd .; 50 g of OS sol, 20 wt% of concentration) and 50 g of water were mixed to prepare a catalyst slurry having a TiO 2 concentration of about 30 wt%.
이렇게 하여 얻어진 촉매 슬러리 중에, 알루미노실리케이트계 무기섬유제 코루게이트 허니캄 (니치아스사제, No. 3722)을 가로 × 세로 각 5cm로 잘라낸 것을 침지하여, 무기섬유 사이 및 섬유 표면에 담지후, 150℃에서 건조한 후에 600℃에서 2시간 소성해서 촉매를 조제하였다.The catalyst slurry thus obtained was immersed by cutting aluminosilicate-based inorganic fiber corrugated honeycam (No. 3722, manufactured by Nichias Co., Ltd.) at a width of 5 cm in length, and supported on the surface of the inorganic fiber and on the fiber surface. After drying, the catalyst was calcined at 600 ° C. for 2 hours to prepare a catalyst.
이 경우의 촉매의 담지량은 300g/L이었고, 화학조성은 Ti/W/Ce 원자비로 88/10/2이었다.In this case, the supported amount of the catalyst was 300 g / L, and the chemical composition was 88/10/2 in terms of Ti / W / Ce atomic ratio.
(실시예 2 및 3)(Examples 2 and 3)
실시예 1에 있어서의 메타텅스텐산 암모늄 수용액과 CeO2졸의 첨가량을 각각 83.8g과 27.6g (실시예 2), 및 24.9g과 24.8g (실시예 3)으로 변경하고, 각 실시예에서 첨가하는 수분량을 조정해서 TiO2농도가 약 30wt%인 촉매 슬러리로 하는 이외는, 실시예 1과 마찬가지로 해서 촉매를 조제하였다.The amounts of the aqueous ammonium metatungstate solution and CeO 2 sol in Example 1 were changed to 83.8 g and 27.6 g (Example 2), and 24.9 g and 24.8 g (Example 3), respectively, and were added in each example. by adjusting the amount of water to prepare a catalyst by the same manner as in example 1 except that the catalyst slurry TiO 2 concentration of about 30wt%.
이렇게 하여 얻어진 촉매의 화학조성은 Ti/W/Ce 원자비로 83/15/2 (실시예 2) 및 93/5/2 (실시예 3)이었다.The chemical compositions of the catalyst thus obtained were 83/15/2 (Example 2) and 93/5/2 (Example 3) in terms of Ti / W / Ce atomic ratio.
(실시예 4 ~ 6)(Examples 4 to 6)
실시예 1에 있어서의 메타텅스텐산 암모늄 수용액과 CeO2졸의 첨가량을 각각 52.1g과 12.9g (실시예 4), 53.3g과 39.7g (실시예 5), 54.9g과 67.8g (실시예 6)으로 변경하고, 각 실시예에서 첨가하는 수분량을 조정해서 TiO2농도를 약 30wt%로 한 이외는, 실시예 1과 마찬가지로 해서 촉매를 조제하였다.The amount of the ammonium metatungstate aqueous solution and CeO 2 sol added in Example 1 was 52.1 g and 12.9 g (Example 4), 53.3 g and 39.7 g (Example 5), 54.9 g and 67.8 g (Example 6), respectively. ), And the catalyst was prepared in the same manner as in Example 1 except that the amount of water added in each Example was adjusted to adjust the TiO 2 concentration to about 30 wt%.
이렇게 하여 얻어진 촉매의 화학조성은 Ti/W/Ce 원자비로 89/10/1 (실시예 4), 87/10/3 (실시예 5), 및 85/10/5 (실시예 6)이었다.The chemical compositions of the catalyst thus obtained were 89/10/1 (Example 4), 87/10/3 (Example 5), and 85/10/5 (Example 6) by Ti / W / Ce atomic ratio. .
(비교예 1)(Comparative Example 1)
실시예 1에 있어서의 CeO2졸의 첨가를 하지 않고 실시예 1과 마찬가지로 해서 촉매를 조제하였다.A catalyst was prepared in the same manner as in Example 1 without adding CeO 2 sol in Example 1.
(비교예 2)(Comparative Example 2)
실시예 1에 있어서의 CeO2졸을, 질산 세륨 [Ce(NO3)3ㆍ6H20]로 변경해서 9.9g 첨가하고, 그 외에는 실시예 1과 마찬가지로 해서 촉매의 화학조성이 Ti/W/Ce 원자비로 88/10/2인 촉매를 조제하였다.9.9 g of CeO 2 sol in Example 1 was changed to cerium nitrate [Ce (NO 3 ) 3 .6H 2 0], and the chemical composition of the catalyst was changed to Ti / W / The catalyst which is 88/10/2 by Ce atomic ratio was prepared.
(비교예 3)(Comparative Example 3)
수소치환형 모르데나이트(mordenite; 일본국의 Tosoh사제, Si/Al의 비: 23.1) 100g과 질산 세륨 [Ce(NO3)3ㆍ6H20] 9.3g을 200g의 물에 분산시키고, 이 분산액을 모래욕(浴)에서 증발 건고한 다음, 550℃에서 2시간 소성해서 Ce 치환형 모르데나이트(Ce 이온 3wt%)을 조제하였다.Hydrogen-substituted mordenite (Tosoh Co., Japan, Si / Al ratio: 23.1) 100 g and cerium nitrate [Ce (NO 3 ) 3 ㆍ 6H 2 0] were dispersed in 200 g of water. The dispersion was evaporated to dryness in a sand bath, and then calcined at 550 ° C. for 2 hours to prepare Ce-substituted mordenite (3 wt% Ce ion).
이렇게 하여 얻어진 Ce 치환 모르데나이트 분말을 실리카 졸 (日産화학사제; 상품명: OS 졸, 농도 20wt%)100g과 물 100g의 혼합용액에 분산시켜 촉매 슬러리를 조제하였다.The Ce-substituted mordenite powder thus obtained was dispersed in a mixed solution of 100 g of silica sol (manufactured by Nippon Chemical Co., Ltd .; trade name: OS sol, concentration 20 wt%) and 100 g of water to prepare a catalyst slurry.
이렇게 하여 얻어진 촉매 슬러리 중에, 알루미노실리케이트계 무기섬유제 코루게이트 하니캄(니치아스사제, No. 3722)을 가로 × 세로 각각 5cm로 절단한 것을 침지하여 무기섬유 사이 및 섬유 표면에 담지한 후에 150℃에서 건조한 다음, 600℃에서 2시간 소성해서 촉매를 조제하였다.The catalyst slurry thus obtained was immersed by cutting the aluminosilicate-based inorganic fiber corrugated honeycomb (No. 3722, Nichias Co., Ltd., 5 cm in length and length, respectively) between the inorganic fibers and on the surface of the fiber, followed by 150 ° C. Dried at and then calcined at 600 ° C. for 2 hours to prepare a catalyst.
실시예 1 및 비교예 1 ~ 3에서 제조된 촉매에 대해서, 암모니아 공존하에 표 1에 나온 조건에서 350 ~ 600℃에 있어서의 배기 가스의 탈질율을 측정하였다.For the catalysts prepared in Example 1 and Comparative Examples 1 to 3, the denitrification rate of the exhaust gas at 350 to 600 ° C. was measured under the conditions shown in Table 1 in the presence of ammonia.
표 1Table 1
얻어진 결과를 도 3에 나타낸다. 도 3에 나온 결과로부터, 본 발명의 실시예1의 촉매는, Ti/W의 화학조성을 가진 비교예 1의 촉매와, Ce 원료로서 질산 세륨을 사용한 비교예 2의 촉매에 비하여 극히 높은 성능을 가지고 있고, 비교예 3에서 제조한 Ce 치환형 제올라이트의 성능에 비견하는 높은 활성의 촉매인 것을 알 수 있다.The obtained result is shown in FIG. From the results shown in FIG. 3, the catalyst of Example 1 of the present invention has extremely high performance compared to the catalyst of Comparative Example 1 having a chemical composition of Ti / W and the catalyst of Comparative Example 2 using cerium nitrate as Ce raw material. It is found that the catalyst is a highly active catalyst comparable to that of the Ce-substituted zeolite prepared in Comparative Example 3.
한편, 실시예 1 ~ 6 및 비교예 1 ~ 3의 촉매에 대해서, 대기중에서 550℃에서 200시간 유지하는 내열시험과 , 표 2에 나온 H20 농도가 30%인 가스 중에서 550℃에서 200시간 유지하는 내(耐)수증기 시험(steam resistance test)을 실시하였다. 이들 시험후의 촉매에 대해서 표 1의 조건에서 탈질 성능을 측정하였다. 얻어진 성능 중에서 550℃에 있어서의 초기단계, 내열시험후 및 내수증기 시험후의 값을 표 3에 비교해서 나타내었다.On the other hand, for the catalysts of Examples 1 to 6 and Comparative Examples 1 to 3, the heat resistance test maintained at 550 ° C. for 200 hours in the air and the gas having a H 2 0 concentration of 30% shown in Table 2 at 200 ° C. for 200 hours. A steam resistance test was performed. The denitrification performance was measured under the conditions of Table 1 for the catalysts after these tests. In the obtained performance, the value after an initial stage, a heat test, and a water vapor test at 550 degreeC was shown compared with Table 3.
표 2TABLE 2
표 3TABLE 3
표 2 및 3으로부터 명백한 바와 같이, 본 발명의 실시예 1 ~ 6의 촉매는, 비교예 1 및 2에 비교해서 성능이 높을 뿐만 아니라, 내열시험 및 내수증기 시험에 의해도 활성저하는 거의 생기지 않아 우수한 내구성을 가지는 것은 명백하다. 이에 대하여 비교예 3에 나온 Ce 치환형 모르데나이트 촉매는, 초기 성능 및 내열성은 본 발명의 촉매의 성능에 결코 뒤지지 않는 값이었지만, 수증기 농도가 30%인 분위기에 노출하는 내(耐)수증기 시험 후에는 활성은 현저하게 저하해서 실시예의 촉매뿐만 아니라 비교예 촉매 중에서도 가장 낮은 값을 나타내었다.As is apparent from Tables 2 and 3, the catalysts of Examples 1 to 6 of the present invention not only have a high performance as compared to Comparative Examples 1 and 2, but also hardly exhibit a deactivation even by a heat test and a steam test. It is obvious to have good durability. On the other hand, the Ce-substituted mordenite catalyst shown in Comparative Example 3 had a value which is inferior to the performance of the catalyst of the present invention at the initial performance and the heat resistance, but the steam vapor test exposed to an atmosphere having a water vapor concentration of 30% Afterwards, the activity was markedly lowered, showing the lowest value among the catalysts of the examples as well as the comparative catalysts.
이들 결과로부터 본 발명의 촉매는 높은 고온 탈질성능을 가질 뿐만 아니라, 내열성 및 내수증기성도 우수한 촉매이어서, 본 발명사상의 유효성을 나타내는 것이라고 할 수 있다.From these results, the catalyst of the present invention not only has high high temperature denitrification performance, but also a catalyst having excellent heat resistance and water vapor resistance, and thus can be said to exhibit the effect of the present invention.
다른 한편으로는, 실시예 1, 2 및 3을 비교하면, 촉매 중의 W의 함유량이 적거나 지나치게 많아도 성능이 저하하는 경향을 나타냄을 알 수 있었다. 또한, 실시예 1 및 4 ~ 6의 비교로부터, Ce의 첨가량이 지나치게 많으면 내열성이 저하하는 경향이 있어, 첨가량으로서는 5 원자% 이하가 바람직한 것을 알 수 있다.On the other hand, when Examples 1, 2, and 3 were compared, it turned out that the performance tends to fall even if there is little or too much W content in a catalyst. In addition, from the comparison of Examples 1 and 4 to 6, when the amount of Ce added is too large, the heat resistance tends to decrease, and it can be seen that 5 atomic% or less is preferable as the amount of addition.
(실시예 7)(Example 7)
산화 티타늄 (일본국의 石原산업사제, 비표면적 250m2/g) 15kg, 메타텅스텐산 암모늄 9.7kg, CeO2졸 4kg, 옥살산 0.8kg 및 물 2kg을 니이더(kneader)에 넣고 20분 혼련후, 실리카-알루미나계 세라믹 섬유 (일본국의 東芝사제; 상품명:Fineflex) 4kg을 서서히 첨가하면서 30분간 혼련해서 수분 32%의 촉매 페이스트를 얻었다.15 kg of titanium oxide (manufactured by KKK, specific surface area 250 m 2 / g), 9.7 kg of ammonium metatungstate, 4 kg of CeO 2 sol, 0.8 kg of oxalic acid and 2 kg of water are kneaded and kneaded for 20 minutes. 4 kg of silica-alumina-based ceramic fibers (manufactured by Toshoku Co., Ltd .; trade name: Fineflex) were slowly added while kneading for 30 minutes to obtain a catalyst paste having a water content of 32%.
이렇게 하여 얻어진 촉매 페이스트를, 두께 0.2mm의 SUS304제 강판(鋼板)을 메탈 라스 가공(metal lath processing)한 기재 위에 두고, 이것을 2매의 폴리에틸렌 시이트 사이에 끼워서 한쌍의 가압 롤러를 통과시켜 메탈 라스 기재의 망목(網目) 사이 및 표면에 촉매 페이스트를 도포하였다. 이것을 풍건한 후, 600℃에서 2시간 소성해서 판상 촉매를 얻었다.The catalyst paste thus obtained was placed on a substrate subjected to metal lath processing with a 0.2 mm thick SUS304 steel sheet, sandwiched between two polyethylene sheets, and passed through a pair of pressure rollers to form a metal lath substrate. The catalyst paste was apply | coated between the meshes and the surface of this. After drying this, it baked at 600 degreeC for 2 hours, and obtained the plate-shaped catalyst.
이렇게 하여 얻어진 촉매를 면적속도 51m/h의 조건하에서 550℃에서의 탈질율을 측정한 결과, 탈질율은 75%이었다. 이것은 실시예 1에 나온 SV=60,000 l/h에서의 탈질율의 83%에 상당하는 값인데, 본 발명의 방법으로 제조한 촉매가, 담체에 촉매를 담지시키는 방법에도 불구하고 고온에서 높은 성능을 발휘한다는 것을 나타내는 것이다.The denitrification rate of the catalyst thus obtained was measured at 550 ° C. under the condition of an area speed of 51 m / h, and the denitrification rate was 75%. This value corresponds to 83% of the denitrification rate at SV = 60,000 l / h in Example 1, wherein the catalyst prepared by the method of the present invention exhibits high performance at high temperatures despite the method of supporting the catalyst on a carrier. To indicate that
청구의 범위 1 ~ 7에 기재된 발명에 의하면, 고활성이고, 내열성이 우수한 질소 산화물 제거용 촉매를 얻을 수 있고, HRSG(high recovery steam generator)를 가지지 않은 가스 터빈 배기 가스 등의 고온 배기 가스 중의 NOx를 효율적으로 정화할 수 있다. 또한 본 발명의 방법은, 공침법 등의 침전 조작 등의 복잡한 공정을 필요로 하지 않고, 촉매원료를 혼합후 각종 담체에 담지한다고 하는 극히 적은 공정으로 얻을 수 있다. 이 것은, 저렴하고 우수한 배기 가스 정화 장치를 제공해서 환경개선에 공헌한다고 하는 사회적인 효과와 연결되는 것이다.According to the inventions of claims 1 to 7, the catalyst for nitrogen oxide removal which is highly active and excellent in heat resistance can be obtained, and NOx in hot exhaust gas, such as gas turbine exhaust gas, which does not have a high recovery steam generator (HRSG). Can be efficiently purified. In addition, the method of the present invention can be obtained in a very small process such that the catalyst raw material is supported on various carriers after mixing, without requiring complicated steps such as precipitation operation such as coprecipitation method. This is connected with the social effect of providing an inexpensive and excellent exhaust gas purification device and contributing to environmental improvement.
청구의 범위 8에 기재된 발명에 의하면, 고활성의 촉매를 사용함으로써, 콤팩트한 탈질 장치가 실현됨과 아울러 내열성을 필요로 하는 고가의 재료로 된 반응기를 작게 또한 경량화할 수 있다.According to the invention described in Claim 8, by using a highly active catalyst, a compact denitrification apparatus can be realized, and the reactor made of an expensive material requiring heat resistance can be made smaller and lighter.
청구의 범위 9 ~ 11에 기재된 발명에 의하면, 고온 배기 가스 중의 질소 산화물을 고효율로 제거할 수 있다.According to invention of Claims 9-11, nitrogen oxide in high-temperature exhaust gas can be removed at high efficiency.
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056240A JP4225735B2 (en) | 2002-03-01 | 2002-03-01 | Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide |
JPJP-P-2002-00056240 | 2002-03-01 | ||
PCT/JP2003/002326 WO2003074170A1 (en) | 2002-03-01 | 2003-02-28 | Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040093073A true KR20040093073A (en) | 2004-11-04 |
KR100911797B1 KR100911797B1 (en) | 2009-08-12 |
Family
ID=27784632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020047013411A KR100911797B1 (en) | 2002-03-01 | 2003-02-28 | Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides |
Country Status (12)
Country | Link |
---|---|
US (1) | US7585807B2 (en) |
EP (1) | EP1484109B1 (en) |
JP (1) | JP4225735B2 (en) |
KR (1) | KR100911797B1 (en) |
CN (1) | CN1301153C (en) |
AT (1) | ATE411846T1 (en) |
AU (1) | AU2003211354A1 (en) |
CA (1) | CA2486158C (en) |
DE (1) | DE60324258D1 (en) |
NO (1) | NO20043942L (en) |
TW (1) | TWI278343B (en) |
WO (1) | WO2003074170A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5156173B2 (en) * | 2004-05-11 | 2013-03-06 | バブコック日立株式会社 | Method for producing catalyst for removing nitrogen oxides |
US7491676B2 (en) * | 2004-10-19 | 2009-02-17 | Millennium Inorganic Chemicals | High activity titania supported metal oxide DeNOx catalysts |
US20080132409A1 (en) * | 2006-12-01 | 2008-06-05 | Nissan Motor Co., Ltd. | Fibrous Catalyst |
JP5401049B2 (en) * | 2008-04-22 | 2014-01-29 | 日立造船株式会社 | Slurry for producing denitration catalyst, method for producing the slurry, method for producing denitration catalyst using the slurry, and denitration catalyst produced by the method |
JP2010247079A (en) * | 2009-04-16 | 2010-11-04 | Denso Corp | Method for manufacturing exhaust gas-cleaning catalyst |
US8865082B2 (en) * | 2009-10-05 | 2014-10-21 | GM Global Technology Operations LLC | Method and system for monitoring a hydrocarbon adsorber |
JPWO2011042953A1 (en) | 2009-10-06 | 2013-02-28 | 三菱重工業株式会社 | Denitration catalyst for high temperature exhaust gas and method for producing the same, high temperature exhaust gas denitration method |
US8617502B2 (en) * | 2011-02-07 | 2013-12-31 | Cristal Usa Inc. | Ce containing, V-free mobile denox catalyst |
JP2013078768A (en) * | 2013-02-04 | 2013-05-02 | Mitsubishi Heavy Ind Ltd | Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas |
CN104645829B (en) * | 2013-08-29 | 2017-01-04 | 天津大学 | Application of ternary metal modified titanium dioxide catalyst in removing nitrogen oxide in diesel engine tail gas |
JP6292159B2 (en) | 2015-04-13 | 2018-03-14 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
CN106582739B (en) * | 2016-12-16 | 2019-10-29 | 龙岩紫荆创新研究院 | A kind of heteropoly acid doped cerium oxide SCR denitration and preparation method and application |
CN107649116A (en) * | 2017-11-02 | 2018-02-02 | 北京化工大学 | Cerium tin composite oxides denitrating catalyst and its preparation method and application |
CN108479794A (en) * | 2017-12-17 | 2018-09-04 | 启源(西安)大荣环保科技有限公司 | A kind of corrugated denitrating catalyst and preparation method thereof suitable for low-temperature flue gas |
CN111530477B (en) * | 2020-05-18 | 2023-02-28 | 中国科学院兰州化学物理研究所 | Manganese-based ultralow-temperature denitration catalyst powder and preparation method thereof |
CN115957748A (en) * | 2022-10-11 | 2023-04-14 | 重庆大学 | Method for preparing wide-temperature denitration catalyst by using stone coal vanadium ore vanadium extraction tailings |
CN115739127A (en) * | 2022-10-14 | 2023-03-07 | 重庆大学 | Preparation of NH from stone coal vanadium extraction tailings 3 Method for SCR catalyst |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52122293A (en) * | 1976-04-08 | 1977-10-14 | Nippon Shokubai Kagaku Kogyo Co Ltd | Catalyst for purifying nox |
JPS5935026A (en) * | 1982-08-19 | 1984-02-25 | Mitsubishi Heavy Ind Ltd | Preparation of calcined titanium oxide and catalyst |
JPS5935028A (en) * | 1982-08-19 | 1984-02-25 | Mitsubishi Heavy Ind Ltd | Preparation of calcined titanium oxide and catalyst |
DE3643605C1 (en) * | 1986-12-19 | 1988-07-14 | Otto Feuerfest Gmbh | Carrier catalyst, process for its preparation and its use for the reduction of nitrogen oxides |
US5087600A (en) * | 1987-06-05 | 1992-02-11 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a catalyst for denitration by catalytic reduction using ammonia |
US4931421A (en) * | 1988-06-27 | 1990-06-05 | Motonobu Shibata | Catalyst carriers and a method for producing the same |
DE4025587A1 (en) * | 1990-08-11 | 1992-02-13 | Basf Ag | METHOD FOR PRODUCING CATALYSTS |
DE4206699C2 (en) * | 1992-03-04 | 1996-02-01 | Degussa | NO¶x¶ reduction in the lean exhaust of automotive engines |
JP3537210B2 (en) * | 1995-03-24 | 2004-06-14 | 株式会社日本触媒 | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst |
-
2002
- 2002-03-01 JP JP2002056240A patent/JP4225735B2/en not_active Expired - Lifetime
-
2003
- 2003-02-27 TW TW092104298A patent/TWI278343B/en not_active IP Right Cessation
- 2003-02-28 KR KR1020047013411A patent/KR100911797B1/en active IP Right Grant
- 2003-02-28 CA CA2486158A patent/CA2486158C/en not_active Expired - Fee Related
- 2003-02-28 AT AT03707175T patent/ATE411846T1/en active
- 2003-02-28 EP EP03707175A patent/EP1484109B1/en not_active Expired - Lifetime
- 2003-02-28 WO PCT/JP2003/002326 patent/WO2003074170A1/en active Application Filing
- 2003-02-28 CN CNB038071088A patent/CN1301153C/en not_active Expired - Lifetime
- 2003-02-28 AU AU2003211354A patent/AU2003211354A1/en not_active Abandoned
- 2003-02-28 DE DE60324258T patent/DE60324258D1/en not_active Expired - Lifetime
- 2003-02-28 US US10/506,444 patent/US7585807B2/en not_active Expired - Lifetime
-
2004
- 2004-09-21 NO NO20043942A patent/NO20043942L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
TWI278343B (en) | 2007-04-11 |
ATE411846T1 (en) | 2008-11-15 |
CA2486158C (en) | 2011-11-15 |
TW200303781A (en) | 2003-09-16 |
EP1484109A1 (en) | 2004-12-08 |
EP1484109B1 (en) | 2008-10-22 |
NO20043942L (en) | 2004-09-21 |
DE60324258D1 (en) | 2008-12-04 |
US20050130836A1 (en) | 2005-06-16 |
WO2003074170A1 (en) | 2003-09-12 |
KR100911797B1 (en) | 2009-08-12 |
JP2003251180A (en) | 2003-09-09 |
CN1642636A (en) | 2005-07-20 |
US7585807B2 (en) | 2009-09-08 |
AU2003211354A1 (en) | 2003-09-16 |
CN1301153C (en) | 2007-02-21 |
CA2486158A1 (en) | 2003-09-12 |
EP1484109A4 (en) | 2006-08-09 |
JP4225735B2 (en) | 2009-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100911797B1 (en) | Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides | |
EP0686423B1 (en) | Use of ammonia decomposition catalysts | |
KR20070099177A (en) | Preparation method of vanadium/titania-based catalyst showing excellent nitrogen oxide-removal performance at wide temperature window through introduction of ball milling, and use thereof | |
CN111871455A (en) | Preparation method and application of CHA-type aluminum-silicon molecular sieve and SCR (Selective catalytic reduction) catalyst | |
KR101102714B1 (en) | Method for preparing a catalyst for removal of nitrogen oxides using dry ball-milling | |
US6380128B1 (en) | V2O5-based catalyst for removing NOx from flue gas and preparing method therefor | |
WO2011042953A1 (en) | Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas | |
KR20210046786A (en) | Catalysts for use in selective catalytic reduction (SCR) of nitrogen oxides | |
JP5164821B2 (en) | Nitrogen oxide selective catalytic reduction catalyst | |
JPH11342334A (en) | Nox removal catalyst, its production and method for removing nox using the same | |
JP4798909B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
JP5156173B2 (en) | Method for producing catalyst for removing nitrogen oxides | |
KR100382051B1 (en) | Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature | |
JPH11267459A (en) | Reducing method of nitrogen oxide and so3 in exhaust gas | |
JP4335583B2 (en) | Exhaust gas purification catalyst and production method thereof | |
JPH09155190A (en) | Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst | |
JP3495548B2 (en) | Reduction method of sulfur trioxide | |
JPH01317545A (en) | Preparation of denitrification catalyst | |
JP2743336B2 (en) | Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas | |
JP3388941B2 (en) | Exhaust gas purification method | |
JPH08309188A (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
JPH038820B2 (en) | ||
KR20230073794A (en) | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME | |
KR20030006598A (en) | Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof | |
JPH0596165A (en) | Denitrating catalyst inhibiting oxyidation of sulfur dioxide and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120621 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130618 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140725 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150716 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160630 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170720 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180717 Year of fee payment: 10 |