JPH11267459A - Reducing method of nitrogen oxide and so3 in exhaust gas - Google Patents

Reducing method of nitrogen oxide and so3 in exhaust gas

Info

Publication number
JPH11267459A
JPH11267459A JP10071532A JP7153298A JPH11267459A JP H11267459 A JPH11267459 A JP H11267459A JP 10071532 A JP10071532 A JP 10071532A JP 7153298 A JP7153298 A JP 7153298A JP H11267459 A JPH11267459 A JP H11267459A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
denitration
nox
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10071532A
Other languages
Japanese (ja)
Other versions
JP3495591B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Masashi Kiyozawa
正志 清澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07153298A priority Critical patent/JP3495591B2/en
Publication of JPH11267459A publication Critical patent/JPH11267459A/en
Application granted granted Critical
Publication of JP3495591B2 publication Critical patent/JP3495591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To decrease both of NOx concn. and SO3 concn. in an exhaust gas by adding ammonia to the exhaust gas containing NOx and SO3 and then, bringing the exhaust gas into contact with a SO3 reducing catalyst and a denitration catalyst to reduce the NOx and the SO3 in the exhaust gas. SOLUTION: In a process to selectively decompose NOx into nitrogen and water in order to prevent NOx and SO3 present in a combustion exhaust gas such as a boiler from being exhausted into the air, after ammonia is added to the exhaust gas, the exhaust gas is brought into contact with a SO3 reducing catalyst and a denitration catalyst to reduce the NOx and the SO3 in the exhaust gas. As the SO3 reducing catalyst, a catalyst prepared by carrying ruthenium on a carrier comprising titania or alumina is used. As the denitration catalyst, a catalyst prepared by adding vanadia, tungsten oxide or molybdenum oxide on a carrier made of titania is used. The SO3 reducing catalyst and the denitration catalyst may be a same material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ等の燃焼排
ガス中に存在する窒素酸化物(NOX )及びSO 3 の還
元処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the combustion exhaust of a boiler or the like.
Nitrogen oxides (NOX) And SO ThreeReturn of
Original processing method.

【0002】[0002]

【従来の技術】大気汚染の防止の観点から、ボイラや各
種燃焼炉から発生するNOX の大気中への排出を防止す
るための方法として、排ガス中にアンモニアを添加し
て、脱硝触媒と接触させ、NOX を選択的に窒素と水に
分解する脱硝方法が適用されている。
From the viewpoint of prevention of the Related Art Air pollution, as a method for preventing the discharge of the NO X in the air generated from boilers and various combustion furnaces, with the addition of ammonia in the exhaust gas contacts the denitration catalyst Then, a denitration method of selectively decomposing NO X into nitrogen and water is applied.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の脱硝方
法を用いた場合、重質油、オリマルジョン等の粗悪な燃
料を燃焼させて生じる排ガスは、多量の硫黄酸化物(S
X )を含有する。SO X の中でも、SO3 は腐食性の
ガスであり、後流の空気予熱器や電気集塵器に硫酸や酸
性硫安等の形態で凝縮し、腐食や目づまりの原因とな
る。また、粗悪な燃料油の燃焼において、燃焼方法によ
ってはSO3 が多く排出される場合がある。更に、脱硝
の際、脱硝触媒上において、副反応であるSO2 のSO
3 への酸化によって、SO3 濃度が増加する。そこで、
本発明者らは、排ガス中の窒素酸化物とSO3 を共に除
去する方法を検討した結果、本発明を完成するに至っ
た。
However, the above denitration method
When the method is used, poor fuel such as heavy oil and
Exhaust gas generated by burning the fuel contains a large amount of sulfur oxides (S
OX). SO XAmong them, SOThreeIs corrosive
It is a gas, and sulfuric acid or acid is added to the downstream air preheater or electric dust collector.
Condensed in the form of volatile ammonium sulfate, etc., causing corrosion and clogging.
You. In addition, in the combustion of poor fuel oil,
What is SOThreeMay be emitted in large quantities. Furthermore, denitration
At this time, on the denitration catalyst, SOTwoSO
ThreeOxidation to SOThreeThe concentration increases. Therefore,
The present inventors have found that nitrogen oxides and SOThreeTogether
As a result of studying the method of
Was.

【0004】[0004]

【課題を解決するための手段】本発明の排ガス中の窒素
酸化物及びSO3 の還元処理方法は、窒素酸化物(NO
X )及びSO3 を含有する排ガスにアンモニアを添加し
た後、該排ガスを、SO3 還元触媒及び脱硝触媒と接触
させて、該排ガス中の窒素酸化物及びSO3 を還元する
ことを特徴とする(請求項1)。上記SO3 還元触媒
は、活性金属として、例えばRu(ルテニウム)を含有
する(請求項2)。上記SO3 還元触媒と上記脱硝触媒
は、同一物質であってもよい(請求項3)。上記SO3
還元触媒及び上記脱硝触媒として、脱硝触媒上にSO3
還元触媒を担持させてなる触媒を用いてもよい(請求項
4)。
SUMMARY OF THE INVENTION The present invention provides a method for reducing nitrogen oxides and SO 3 in exhaust gas, comprising the steps of:
X) and after the addition of ammonia to the exhaust gas containing SO 3, the exhaust gas is contacted with the SO 3 reduction catalyst and the denitration catalyst, which comprises reducing nitrogen oxides and SO 3 in the exhaust gas (Claim 1). The SO 3 reduction catalyst contains, for example, Ru (ruthenium) as an active metal (claim 2). The SO 3 reduction catalyst and the denitration catalyst may be the same substance. The above SO 3
As a reduction catalyst and the above denitration catalyst, SO 3
A catalyst carrying a reduction catalyst may be used (claim 4).

【0005】[0005]

【発明の実施の形態】本発明で用いるSO3 還元触媒と
脱硝触媒は共に、アンモニアが還元剤として有効に作用
する。したがって、アンモニアを添加した排ガスを、こ
れらの触媒と接触させることによって、SO3 はSO2
に還元され、NOX は窒素(N2 )に還元される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In both the SO 3 reduction catalyst and the denitration catalyst used in the present invention, ammonia effectively acts as a reducing agent. Therefore, by bringing the exhaust gas to which ammonia is added into contact with these catalysts, SO 3 becomes SO 2
And NO x is reduced to nitrogen (N 2 ).

【0006】SO3 還元触媒としては、例えば、チタニ
ア(TiO2 )、アルミナ(Al23 )、シリカ(S
iO2 )、ジルコニア(ZrO2 )、シリカライト、メ
タロシリケートからなる群より選ばれた1種以上から構
成されるものを担体とし、該担体に活性金属としてルテ
ニウム(Ru)を担持したものを用いることができる。
ここで、シリカライトは、ペンタシル型の結晶構造を有
するSiとOのみからなるシリケートである。
As the SO 3 reduction catalyst, for example, titania (TiO 2 ), alumina (Al 2 O 3 ), silica (S
a carrier composed of at least one selected from the group consisting of iO 2 ), zirconia (ZrO 2 ), silicalite, and metallosilicate, and a carrier having ruthenium (Ru) as an active metal supported on the carrier. be able to.
Here, silicalite is a silicate composed of only Si and O having a pentasil-type crystal structure.

【0007】メタロシリケートは、下記表1に示される
X線回折パターンを有し、脱水された状態において酸化
物のモル比で表して、次の化学式を有する結晶性シリケ
ートである。 (1±0.8)R2 O・[aM2 3 ・bM’O・cA
2 3 ]・ySiO2 (式中、Rはアルカリ金属イオン及び/または水素イオ
ンであり、MはVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン、ガリウムからな
る群より選ばれる少なくとも1種以上の元素イオンであ
り、M’はマグネシウム、カルシウム、ストロンシウ
ム、バリウムのいずれかのアルカリ土類金属イオンであ
り、a、b、cは、a>0、20>b≧0、a+c=1
の関係を満たし、yは3000>y>11である。)
Metallosilicate is a crystalline silicate having an X-ray diffraction pattern shown in Table 1 below and expressed by the molar ratio of oxide in a dehydrated state and having the following chemical formula. (1 ± 0.8) R 2 O · [aM 2 O 3 · bM'O · cA
l 2 O 3 ] · ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, and M is selected from the group consisting of group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium. M ′ is an alkaline earth metal ion of any of magnesium, calcium, strontium and barium, and a, b and c are a> 0, 20> b ≧ 0 , A + c = 1
And y is 3000>y> 11. )

【0008】[0008]

【表1】 VS:非常に強い S:強い M:中級 W:弱い (X線源:Cu Kα)[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak (X-ray source: Cu Kα)

【0009】本発明で用いる脱硝触媒として、通常、チ
タニア(TiO2 )からなる担体に、活性金属としてバ
ナジア(V2 5 )、助触媒として酸化タングステン
(WO 3 )または酸化モリブデン(MoO3 )を添加し
た触媒を用いる。SO3 還元触媒と脱硝触媒は、直列で
配置する。配置の順序は、任意であるが、一般的には、
SO3 還元触媒を前側に配置した方が、還元剤のアンモ
ニアを多く供給する場合、SO3 還元活性が高くなるの
で好ましい。SO3 還元触媒と脱硝触媒のいずれも、排
ガスの処理における圧力損失の少ないハニカム形状とす
るのが好ましい。
As the denitration catalyst used in the present invention, generally,
Tania (TiOTwo) As active metal
Nazia (VTwoOFive), Tungsten oxide as co-catalyst
(WO Three) Or molybdenum oxide (MoO)Three)
Use a catalyst. SOThreeThe reduction catalyst and the denitration catalyst are connected in series.
Deploy. The order of arrangement is arbitrary, but in general,
SOThreeIt is better to place the reduction catalyst on the front side
If you supply a lot of nearThreeThe reduction activity is higher
Is preferred. SOThreeBoth the reduction catalyst and the deNOx catalyst
Honeycomb shape with low pressure loss in gas processing
Preferably.

【0010】本発明において、脱硝能とSO3 還元能の
双方を有する触媒を用いることもできる。この触媒は、
例えば、脱硝触媒上に、SO3 還元能を持つRuを担持
させて、調製することができる。アンモニアを還元剤と
して用いた、SO3 還元触媒によるSO3 還元反応は、
次式(1)、(2)で表される。 3SO3 +2NH3 → 3SO2 +N2 +3H2 O (1) 2SO3 +2NH3 +1/2O2 → 2SO2 +N2 +3H2 O (2) 担持するRu量は、100重量部の担体当たり、0.0
02重量部以上で活性を有し、好ましくは0.02重量
部以上で高い活性を有する。Ruの担体への担持方法と
しては、含浸法、イオン交換法等が挙げられる。
In the present invention, a catalyst having both a denitration ability and an SO 3 reducing ability can be used. This catalyst
For example, it can be prepared by supporting Ru having SO 3 reducing ability on a denitration catalyst. The SO 3 reduction reaction by the SO 3 reduction catalyst using ammonia as a reducing agent is as follows:
It is expressed by the following equations (1) and (2). 3SO 3 + 2NH 3 → 3SO 2 + N 2 + 3H 2 O (1) 2SO 3 + 2NH 3 + / O 2 → 2SO 2 + N 2 + 3H 2 O (2) The amount of Ru to be supported is 0.0 per 100 parts by weight of the carrier.
It has an activity of at least 02 parts by weight, and preferably has a high activity of at least 0.02 parts by weight. Examples of a method for supporting Ru on a carrier include an impregnation method and an ion exchange method.

【0011】一方、脱硝触媒による脱硝反応は、次式で
表される。 4NO+4NH3 +O2 → 4N2 +6H2 O (3) また、NOX 中にNO2 が多い場合は、次式で表され
る。 6NO2 +8NH3 → 7N2 +12H2 O (4)
On the other hand, the denitration reaction by the denitration catalyst is represented by the following equation. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3) When there is a large amount of NO 2 in NO X , it is expressed by the following equation. 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (4)

【0012】脱硝触媒として担体に担持するバナジア
(V2 5 )の量は、一般に、100重量部の担体当た
り、0〜15重量部である。なお、バナジアが全く存在
しない場合であっても、活性を有する温度域がある。助
触媒として添加する酸化タングステン(WO3 )または
酸化モリブデン(MoO3 )の量は、100重量部の担
体当たり、0〜25重量部である。
The amount of vanadia (V 2 O 5 ) supported on the carrier as a denitration catalyst is generally from 0 to 15 parts by weight per 100 parts by weight of the carrier. In addition, even when vanadia does not exist at all, there is a temperature range in which the activity is obtained. The amount of tungsten oxide to be added as a co-catalyst (WO 3) or molybdenum oxide (MoO 3), the per carrier 100 parts by weight and 0-25 parts by weight.

【0013】本発明において、SO3 の還元剤とNOX
の還元剤は、共にアンモニアである。したがって、アン
モニアの添加量は、通常の脱硝装置の場合より多くし
て、NH3 /NOX のモル比で0.8以上とすることが
好ましい。また、高いSO3 還元率及び脱硝率を得るた
めには、アンモニアの添加量を多くすればよい。
In the present invention, the reducing agent for SO 3 and NO x
Are both ammonia. Therefore, it is preferable that the addition amount of ammonia is larger than that in the case of a general denitration apparatus, and is set to 0.8 or more in a molar ratio of NH 3 / NO X. Further, in order to obtain a high SO 3 reduction rate and a high denitration rate, the amount of added ammonia may be increased.

【0014】[0014]

【実施例】以下、本発明の具体的な実施例を挙げて、本
発明の効果を明らかにする。実施例1 (SO3 還元触媒の調製法)100重量部のチタニア
(TiO2 )当たり、10重量部の酸化タングステン
(WO3 )を含有したアナターゼ型チタニア粉末に対し
て、塩化ルテニウム(RuCl3 )水溶液を含浸して、
100重量部のアナターゼ型チタニア粉末当たり、1重
量部のRuを該粉末に担持させ、蒸発、乾燥後、500
℃、5時間焼成を行って、粉末触媒(No.1)を調製
した。粉末触媒(No.1)に水を加え、湿式ボールミ
ル粉砕を行い、ウォッシュコート用スラリーとした。次
に、コージェライト製モノリス基材(7.4mmピッ
チ、壁厚0.6mm)を上記スラリーに浸漬し、200
℃で乾燥させた。粉末触媒(No.1)の被覆量は、基
材の表面積1m2 当たり200gとし、得られた被覆物
をハニカムSO3 還元触媒(No.1)とした。
EXAMPLES Hereinafter, the effects of the present invention will be clarified with reference to specific examples of the present invention. Example 1 (Preparation of SO 3 reduction catalyst) Ruthenium chloride (RuCl 3 ) was added to anatase type titania powder containing 10 parts by weight of tungsten oxide (WO 3 ) per 100 parts by weight of titania (TiO 2 ). Impregnate with the aqueous solution,
1 part by weight of Ru per 100 parts by weight of anatase titania powder is supported on the powder, and after evaporation and drying, 500 parts by weight
C. for 5 hours to prepare a powdery catalyst (No. 1). Water was added to the powder catalyst (No. 1), and wet ball milling was performed to obtain a wash coat slurry. Next, a cordierite monolith substrate (7.4 mm pitch, wall thickness 0.6 mm) was immersed in the slurry,
Dry at ℃. The coating amount of the powder catalyst (No. 1) was 200 g per 1 m 2 of the surface area of the base material, and the obtained coating was used as a honeycomb SO 3 reduction catalyst (No. 1).

【0015】(脱硝触媒の調製法)アナターゼ型チタニ
ア(TiO2 )粉末にメタバナジン酸アンモニウム(N
3 VO3 )とパラタングステン酸アンモニウム((N
4 10101246・6H2 O)のメチルアミン水溶
液を含浸させ、100重量部のTiO2 当たり、V 2
5 を0.6重量部、WO3 を8重量部担持させ、蒸発乾
固後、500℃で5時間加熱焼成を行なった。得られた
粉末を粉末脱硝触媒(No.1)とした。粉末脱硝触媒
(No.1)に無機バインダーとして粘土を、さらに有
機バインダーとして酢酸セルロースを添加して、混練
後、一体型押し出し触媒(7.4mmピッチ、壁厚1m
m)に成型した。成型後、マイクロ波乾燥を行い、50
0℃で5時間焼成し、有機バインダーを除去した。得ら
れたハニカム触媒をハニカム脱硝触媒(No.1)とし
た。
(Preparation method of denitration catalyst) Anatase type titani
A (TiOTwo) Powder of ammonium metavanadate (N
H ThreeVOThree) And ammonium paratungstate ((N
HFour)TenHTenW12O46・ 6HTwoO) Methylamine aqueous solution
100 parts by weight of TiO.TwoHit, V TwoO
Five0.6 parts by weight, WOThree8 parts by weight, and dried by evaporation.
After solidification, heating and baking were performed at 500 ° C. for 5 hours. Got
The powder was used as a powder denitration catalyst (No. 1). Powder denitration catalyst
(No. 1) clay as inorganic binder
Add cellulose acetate as binder and knead
After that, an integrated extruded catalyst (7.4 mm pitch, 1 m wall thickness)
m). After molding, microwave drying is performed and 50
It was baked at 0 ° C. for 5 hours to remove the organic binder. Get
The honeycomb catalyst thus obtained is referred to as a honeycomb denitration catalyst (No. 1).
Was.

【0016】(脱硝試験)図1に示すように、前段に上
記ハニカムSO3 還元触媒(No.1)を、後段に上記
ハニカム脱硝触媒(No.1)を設置して、脱硝試験を
行った。試験条件は次の通りである。 ・ガス組成 NO:150ppm、NH3 :200ppm、SO2
2,000ppm、SO3 :100ppm、O2 :1.
3%、H2 O:10% ・試験条件 ガス量:27Nm3 /h、温度:380℃、線速度:
3.3Nm/s 触媒形状:SO3 還元触媒 6×6セル、870mm
(1本) 脱硝触媒 6×6セル、870mm(3本)
(Denitration Test) As shown in FIG. 1, the above-mentioned honeycomb SO 3 reduction catalyst (No. 1) was installed in the first stage, and the above-mentioned honeycomb de-NOx catalyst (No. 1) was installed in the second stage, and a denitration test was conducted. . The test conditions are as follows. Gas composition NO: 150ppm, NH 3: 200ppm , SO 2:
2,000 ppm, SO 3 : 100 ppm, O 2 : 1.
3%, H 2 O: 10% Test conditions Gas amount: 27 Nm 3 / h, temperature: 380 ° C., linear velocity:
3.3 Nm / s Catalyst shape: SO 3 reduction catalyst 6 × 6 cells, 870 mm
(1) DeNOx catalyst 6 x 6 cells, 870mm (3)

【0017】触媒の配置図を図1に、触媒出口ガス組成
を表2に示す。図1において、排ガスは、ハニカムSO
3 還元触媒(No.1)、ハニカム脱硝触媒(No.
1)、ハニカム脱硝触媒(No.1)、ハニカム脱硝触
媒(No.1)の順で処理される。表2に示す測定値
は、図1中のA、B、C、Dの各地点で採取したガスを
用いて得た。表2から、3本の脱硝触媒を通過した後の
排ガス中のSO3 濃度は、ハニカムSO3 還元触媒(N
o.1)への導入前の排ガス中のSO3 濃度よりも小さ
いことが判る。すなわち、一連の触媒層を通過しても、
SO3 は増加せず、NOX のみを大幅に低減させること
ができる。このように、既存の脱硝装置において、脱硝
触媒の前段にSO3 還元触媒を設置するというわずかな
改造を加えるだけで、SO3 の発生を抑制する脱硝装置
を実現することができる。
FIG. 1 shows the layout of the catalyst, and Table 2 shows the composition of the gas at the outlet of the catalyst. In FIG. 1, the exhaust gas is a honeycomb SO.
3 Reduction catalyst (No. 1), honeycomb denitration catalyst (No.
1), the honeycomb denitration catalyst (No. 1), and the honeycomb denitration catalyst (No. 1). The measurement values shown in Table 2 were obtained using gases collected at points A, B, C, and D in FIG. From Table 2, the SO 3 concentration in the exhaust gas after passing through the three denitration catalysts is determined by the honeycomb SO 3 reduction catalyst (N
o. It can be seen that the SO 3 concentration in the exhaust gas before introduction into 1) is lower. That is, even after passing through a series of catalyst layers,
SO 3 does not increase, and only NO X can be significantly reduced. As described above, in the existing denitration apparatus, it is possible to realize a denitration apparatus that suppresses the generation of SO 3 with only a slight modification of installing the SO 3 reduction catalyst before the denitration catalyst.

【0018】実施例2 ハニカム脱硝触媒(No.1)の代わりにハニカムSO
3 還元触媒(No.1)を配置した他は実施例1と同様
にして、脱硝試験を行った。この場合でも、表2に示す
ように、ガス中のSO3 の濃度のみならず、窒素酸化物
の濃度も減少した。すなわち、ハニカムSO3 還元触媒
(No.1)は、脱硝触媒としても働いている。このよ
うに、本発明において、SO3 還元触媒と脱硝触媒は、
同一物質であってもよい。
Example 2 Instead of the honeycomb denitration catalyst (No. 1), a honeycomb SO was used.
A denitration test was performed in the same manner as in Example 1 except that 3 reduction catalyst (No. 1) was arranged. Also in this case, as shown in Table 2, not only the concentration of SO 3 in the gas but also the concentration of nitrogen oxides decreased. That is, the honeycomb SO 3 reduction catalyst (No. 1) also functions as a denitration catalyst. Thus, in the present invention, the SO 3 reduction catalyst and the denitration catalyst
The same substance may be used.

【0019】実施例3 前段にハニカム脱硝触媒(No.1)を3本配置し、後
段にハニカムSO3 還元触媒(NO.1)を1本配置し
た他は実施例1と同様にして、脱硝試験を行った。
Example 3 Denitration was carried out in the same manner as in Example 1 except that three honeycomb denitration catalysts (No. 1) were arranged at the front stage and one honeycomb SO 3 reduction catalyst (NO. 1) was arranged at the rear stage. The test was performed.

【0020】実施例4 実施例1で用いたSO3 還元触媒の粉末触媒(No.
1)を、実施例1で用いたハニカム脱硝触媒(No.
1)上に、ハニカム表面積1m2 当たり200gの添加
量となるように被覆した。この被覆物をハニカムSO3
還元触媒(No.2)とした。このハニカムSO3 触媒
(No.2)を、実施例1と同様に直列に4本配置し
て、脱硝試験を行った。本実施例は、SO3 還元触媒及
び脱硝触媒として、脱硝触媒上にSO3 還元触媒を担持
させてなる触媒を用いた例である。なお、実施例4で
は、入口アンモニア濃度が200ppmの場合と250
ppmの場合の各々について試験した。以上の各実施例
における触媒の配置図を図1に、触媒出口ガス組成を表
2にまとめて示す。
Example 4 The powdery catalyst of the SO 3 reduction catalyst used in Example 1 (No.
1) was replaced with the honeycomb denitration catalyst (No. 1) used in Example 1.
1) The coating was performed on the upper surface so that the addition amount was 200 g per 1 m 2 of the honeycomb surface area. This coating is applied to the honeycomb SO 3
It was set as a reduction catalyst (No. 2). Four honeycomb SO 3 catalysts (No. 2) were arranged in series similarly to Example 1, and a denitration test was performed. This embodiment is an example in which a catalyst obtained by supporting an SO 3 reduction catalyst on a denitration catalyst is used as the SO 3 reduction catalyst and the denitration catalyst. In Example 4, the case where the inlet ammonia concentration was 200 ppm and the case where the ammonia concentration was 250 ppm were used.
Each of the ppm cases was tested. FIG. 1 shows the arrangement of the catalysts in each of the above examples, and Table 2 shows the composition of the gas at the catalyst outlet.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から、実施例1〜4のいずれにおいて
も、排ガス中のSO3 濃度が減少すると同時に、高い脱
硝率を得ていることが判る。
From Table 2, it can be seen that in all of Examples 1 to 4, the SO 3 concentration in the exhaust gas is reduced and a high denitration rate is obtained.

【0023】[0023]

【発明の効果】本発明の方法によれば、排ガス中の窒素
酸化物の濃度とSO3 の濃度を共に減少させることがで
きる。
According to the method of the present invention, both the concentration of nitrogen oxides and the concentration of SO 3 in exhaust gas can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す工程図である。FIG. 1 is a process chart showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ハニカムSO3 還元触媒(No.1) 2,3,4 ハニカム脱硝触媒(No.1)1 Honeycomb SO 3 reduction catalyst (No. 1) 2, 3, 4 Honeycomb denitration catalyst (No. 1)

フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/36 102A Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/36 102A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物及びSO3 を含有する排ガス
にアンモニアを添加した後、該排ガスを、SO3 還元触
媒及び脱硝触媒と接触させて、該排ガス中の窒素酸化物
及びSO3 を還元することを特徴とする排ガス中の窒素
酸化物及びSO3 の還元処理方法。
[Claim 1] After adding ammonia to the exhaust gas containing nitrogen oxides and SO 3, the exhaust gas is contacted with the SO 3 reduction catalyst and a denitration catalyst, nitrogen oxides and SO 3 in the exhaust gas recirculation A method for reducing nitrogen oxides and SO 3 in exhaust gas.
【請求項2】 上記SO3 還元触媒がRuを含有する請
求項1に記載の方法。
2. The method according to claim 1, wherein said SO 3 reduction catalyst contains Ru.
【請求項3】 上記SO3 還元触媒と上記脱硝触媒が同
一物質である請求項1に記載の方法。
3. The method according to claim 1, wherein the SO 3 reduction catalyst and the denitration catalyst are the same substance.
【請求項4】 上記SO3 還元触媒及び上記脱硝触媒と
して、脱硝触媒上にSO3 還元触媒を担持させてなる触
媒を用いる請求項1に記載の方法。
4. The method according to claim 1, wherein a catalyst obtained by supporting an SO 3 reduction catalyst on a denitration catalyst is used as the SO 3 reduction catalyst and the denitration catalyst.
JP07153298A 1998-03-20 1998-03-20 Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas Expired - Fee Related JP3495591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07153298A JP3495591B2 (en) 1998-03-20 1998-03-20 Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07153298A JP3495591B2 (en) 1998-03-20 1998-03-20 Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas

Publications (2)

Publication Number Publication Date
JPH11267459A true JPH11267459A (en) 1999-10-05
JP3495591B2 JP3495591B2 (en) 2004-02-09

Family

ID=13463451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07153298A Expired - Fee Related JP3495591B2 (en) 1998-03-20 1998-03-20 Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas

Country Status (1)

Country Link
JP (1) JP3495591B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452222A1 (en) * 2003-02-27 2004-09-01 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and exhaust gas treatment
JP2006136869A (en) * 2004-10-14 2006-06-01 Mitsubishi Heavy Ind Ltd Exhaust gas treating catalyst, exhaust gas treating method and exhaust gas treating apparatus
WO2006114831A1 (en) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
JP2007083161A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
US8910468B2 (en) 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus
CN105797711A (en) * 2016-04-07 2016-07-27 青岛大学 Preparation method of catalyst for catalyzing glucose to generate 5-hydroxymethylfurfural through dehydration process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748895B1 (en) 2014-11-07 2015-07-15 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and treatment method
JP5748894B1 (en) 2014-11-07 2015-07-15 三菱重工業株式会社 Exhaust gas treatment method and denitration / SO3 reduction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452222A1 (en) * 2003-02-27 2004-09-01 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and exhaust gas treatment
JP2006136869A (en) * 2004-10-14 2006-06-01 Mitsubishi Heavy Ind Ltd Exhaust gas treating catalyst, exhaust gas treating method and exhaust gas treating apparatus
WO2006114831A1 (en) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
US20120225772A1 (en) * 2005-04-06 2012-09-06 Mitsubishi Heavy Industries, Ltd. So3 reduction catalyst for purifying an exhaust gas, preparation process thereof, and exhaust gas purifying method using the catalyst
JP2007083161A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
US8910468B2 (en) 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus
CN105797711A (en) * 2016-04-07 2016-07-27 青岛大学 Preparation method of catalyst for catalyzing glucose to generate 5-hydroxymethylfurfural through dehydration process

Also Published As

Publication number Publication date
JP3495591B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
EP3511620B1 (en) Combustion system
USRE39041E1 (en) Ammonia decomposition catalysts
US8852518B2 (en) Catalyst for removing nitrogen oxides
KR100549778B1 (en) Vanadium/titania-based catalyst for the removal of nitrogen oxide at low temperature, its uses and method of removing nitrogen oxide using the same
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
EP0365308A2 (en) Exhaust gas-purifying catalyst, process for producing the catalyst and use of the catalyst
US7585807B2 (en) Production of catalyst for removal of introgen oxides
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2000000464A (en) Support for catalyst, its production and denitration catalyst and denitration method
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP2583912B2 (en) Nitrogen oxide removal catalyst
KR100549777B1 (en) Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3495548B2 (en) Reduction method of sulfur trioxide
JPH11300213A (en) Denitration catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH08196904A (en) Nitrogen oxide removing catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

LAPS Cancellation because of no payment of annual fees