JPS5935028A - Preparation of calcined titanium oxide and catalyst - Google Patents

Preparation of calcined titanium oxide and catalyst

Info

Publication number
JPS5935028A
JPS5935028A JP57143667A JP14366782A JPS5935028A JP S5935028 A JPS5935028 A JP S5935028A JP 57143667 A JP57143667 A JP 57143667A JP 14366782 A JP14366782 A JP 14366782A JP S5935028 A JPS5935028 A JP S5935028A
Authority
JP
Japan
Prior art keywords
titanium oxide
catalyst
fired
calcined
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57143667A
Other languages
Japanese (ja)
Other versions
JPH0114810B2 (en
Inventor
Toshikuni Sera
世良 俊邦
Shigeaki Mitsuoka
光岡 薫明
Takafuru Kobayashi
敬古 小林
Toru Seto
徹 瀬戸
Junsuke Miyake
三宅 淳介
Kazumitsu Abe
阿倍 一允
Tadao Nakatsuji
忠夫 仲辻
Toshikatsu Baba
敏勝 馬場
Toshiaki Matsuda
松田 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sakai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57143667A priority Critical patent/JPS5935028A/en
Publication of JPS5935028A publication Critical patent/JPS5935028A/en
Publication of JPH0114810B2 publication Critical patent/JPH0114810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled calcined material, having a large surface area and improved strength and heat resistance, and suitable for a catalyst or catalytic carrier, by calcining metatitanic acid in the form of a sol containing one or more compounds selected from a tungsten compound and a molybdenum compound and fine particulate silicic acid. CONSTITUTION:Metatitanic acid in the form of a sol containing (A) fine particulate silicic acid and (B) a tungsten compound and/or a molybdenum compound is calcined to prepare a calcined titanium oxide. The calcined titanium oxide remains in the form of ungrown anatase type crystal by the action of the respective compounds contained in the titanium oxide in the calcination. The resultant calcined material has a large surface area, and the mechanical strength and the heat resistance are remarkably improved. The resultant calcined material as a carrier is used to support metallic oxides having the catalytic activity of removing nitrogen oxide. Thus, an excellent catalyst having the activity of removing the nitrogen oxide for a long term by the synergistic action of the metallic oxides, anatase type titanium oxide and the fine prticulate silicic acid and a very low oxidation ratio of SO2 into SO3 is obtained.

Description

【発明の詳細な説明】 本発明は酸化チタン焼成品及び触媒の製造方法に関し、
詳しくは、酸化チタンを主成分とし、表面積が大きく、
且つ、強度及び耐熱性にすぐれ、従って、触媒担体やそ
のまま触媒として好適に用いることができる酸化チタン
焼成品の製造方法、及びこの酸化チタン焼成品を担体と
する窒素酸化物除去用触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fired titanium oxide product and a catalyst.
In detail, the main component is titanium oxide, which has a large surface area.
Furthermore, a method for producing a fired titanium oxide product that has excellent strength and heat resistance and can therefore be suitably used as a catalyst carrier or a catalyst as it is, and a method for producing a catalyst for removing nitrogen oxides using this fired titanium oxide product as a carrier. Regarding.

酸化チタン焼成品を担体又は触媒として用いることは既
に知られているが、担体又は触媒機能に重要な影響を与
える表面積、結晶形、機械的強度、耐熱性等はその製造
方法や添加物質の有無、種類、量等によって異なるため
、従来より種々の製造方法が提案されている。
It is already known that fired titanium oxide products are used as carriers or catalysts, but surface area, crystal form, mechanical strength, heat resistance, etc., which have important effects on carrier or catalyst functions, depend on the manufacturing method and the presence or absence of additives. , differs depending on the type, amount, etc., and various manufacturing methods have been proposed in the past.

例えば、酸化チタンにシリカ等の添加剤を添加して焼成
すれば、一般的には、得られる焼成品は表面積が大きく
なり、耐熱性も改善されるが、しかし、従来におりるよ
うに、四塩化チタンや硫酸チタンのようなチタン塩類に
添加剤を添加し、中和加水分解して、かくして生成した
水酸化チタンを焼成して酸化チタンを形成させる方法に
よれば、加水分解によって生成する水酸化チタンがオル
ソチタン酸となりやずく、従って、これを焼成すれば、
tU体又は触媒として不適当なルチル型酸化チタンにな
りやすい問題がある。
For example, if additives such as silica are added to titanium oxide and fired, the resulting fired product will generally have a larger surface area and improved heat resistance. According to the method, titanium oxide is formed by adding additives to titanium salts such as titanium tetrachloride or titanium sulfate, neutralizing and hydrolyzing the titanium salts, and calcining the titanium hydroxide thus formed. Titanium hydroxide becomes orthotitanic acid, so if this is fired,
There is a problem that titanium oxide tends to become tU-type titanium oxide or rutile-type titanium oxide, which is unsuitable as a catalyst.

一方、メタチタン酸を焼成すれば、他の要因もあるが、
 ・般に担体や触媒として好ましい結晶形であるアナタ
ーゼ型酸化チタンを与えることも既に知られている。し
かしながら、メタチタン酸にシリカ等の添加剤を添加し
て焼成する方法によれば、組成の均一な混合物を得るこ
とが困絆であり、特に添加剤をメタチタン酸に添加する
場合には、メタチタン酸がゲル状であるため、、添加剤
をメタチタン酸に均一に分散させることができず、従っ
て、高性能の担体や触媒を得ることができない。
On the other hand, if metatitanic acid is fired, there are other factors as well.
- It is already known that anatase-type titanium oxide, which is a crystalline form that is generally preferred as a carrier or a catalyst, can be obtained. However, according to the method of adding additives such as silica to metatitanic acid and firing, it is difficult to obtain a mixture with a uniform composition. Since it is gel-like, the additive cannot be uniformly dispersed in metatitanic acid, and therefore, a high-performance support or catalyst cannot be obtained.

本発明者らは上記した種々の問題を解決するために鋭意
研究した結果、添加剤として微粒子ケイ酸と共に、タン
グステン化合物及び/又はモリブデン化合物を用い、且
つ、これらをゾル化したメタチタン酸に存在させて焼成
することにより、メタチタン酸の焼成時に酸化チタンの
結晶成長を抑えて、未成長のアナターゼ型結晶に留まら
しめ、かくして、表面積が大きく、機械的強度及び耐熱
性の改善された焼成品を得ることができることを見出し
、また、これを担体としである種の金属酸化物を担持さ
せることにより、担体におりる各酸化物とこれら金属酸
化物の相乗作用により、従来にない改善された窒素酸化
物除去触媒を得ることができることを見出して、本発明
に至ったものである。
As a result of intensive research in order to solve the various problems described above, the present inventors found that they used a tungsten compound and/or a molybdenum compound as well as particulate silicic acid as additives, and made them exist in sol-formed metatitanic acid. By firing the metatitanic acid, the crystal growth of titanium oxide is suppressed and the ungrown anatase crystals remain, thereby obtaining a fired product with a large surface area and improved mechanical strength and heat resistance. Furthermore, by using this as a carrier to support certain metal oxides, the synergistic effect of each oxide on the carrier and these metal oxides led to an unprecedented improvement in nitrogen oxidation. The present invention was based on the discovery that a catalyst for removing substances can be obtained.

本発明による焼成品の製造方法は、(81微粒子ケイ酸
と、(b)タングステン化合物及びモリブデン化合物か
ら選ばれる少なくとも1種の化合物を含有するゾル化し
たメタチタン酸を焼成することを特徴とする。
The method for producing a fired product according to the present invention is characterized by firing a sol-formed metatitanic acid containing (81) fine-particle silicic acid and (b) at least one compound selected from a tungsten compound and a molybdenum compound.

本発明において用いる微粒子ケイ酸とは、ホワイトカー
ボンの別名でも知られており、比表面積が非常に大きい
点に一つの特徴を有する。これら微粒子ケイ酸は個我法
、乾式法いずれの方法によって製造されたものでもよ(
、本発明においては通電の市販品を用いることができる
。本発明において好適に用いることができる微粒子ケイ
酸の市販品としては、例えば、ファインシール、ハイク
ル、バルカシル、カープレックス、ニップシール、トク
シール、ビタシール、シロイド、アエロジル等を挙げる
ことができるが、これらの中でも特に平均粒径がlO〜
50mμ、比表面積が200〜300rrr/gである
ものが好ましく用いられる。
The fine particle silicic acid used in the present invention is also known as white carbon, and one of its characteristics is that it has a very large specific surface area. These fine particles of silicic acid may be produced by either the individual method or the dry method (
In the present invention, commercially available energized products can be used. Commercial products of fine particle silicic acid that can be suitably used in the present invention include, for example, Fine Seal, Hycle, Vulcasil, Carplex, Nip Seal, Toku Seal, Vita Seal, Siloid, and Aerosil. In particular, the average particle size is 1O ~
Those having a specific surface area of 50 mμ and a specific surface area of 200 to 300 rrr/g are preferably used.

また、本発明において用いるタングステン化合物は、酸
化タングステン及び焼成によって酸化タングステンを形
成する前駆体であり、この前駆体として、例えば、メタ
タングステン酸アンモニウム等を挙げることができる。
Further, the tungsten compound used in the present invention is tungsten oxide and a precursor that forms tungsten oxide by firing, and examples of this precursor include ammonium metatungstate.

また、同様に、本発明において用いるモリブデン化合物
は、酸化モリブデン及び焼成によって酸化モリブデンを
与える前駆体であって、その前駆体として、例えば、モ
リブデン酸アンモニウム等を挙げることができる。
Similarly, the molybdenum compound used in the present invention is molybdenum oxide and a precursor that gives molybdenum oxide by calcination, and examples of the precursor include ammonium molybdate.

本発明において、微粒子ケイ酸、タングステン化合物及
びモリブデン化合物の添加量は、その合針量が酸化チタ
ンに基づいて5〜50重景%重量り、5重量%よりも少
ないときは、メタチタン酸の焼成時においてその結晶成
長を抑える効果が乏しく、焼成品におけるこれら添加物
の添加による担体又は触媒性能の改善の効果が小さく、
一方、50重重量を越えるときは、ゾル化したメタチタ
ン酸との混合物がゲル化するため、均一な混合が困難と
なると共に、得られる焼成品において、相対的に酸化チ
タンの含有量が少なくなって1.これを担体やそのまま
で触媒として用いるとき、酸化チタンに基づく担体及び
触媒の性能が低下するので好ましくない。
In the present invention, the amount of fine particle silicic acid, tungsten compound, and molybdenum compound added is 5 to 50% by weight based on titanium oxide, and when it is less than 5% by weight, the addition amount is 5% to 50% by weight based on titanium oxide. Sometimes, the effect of suppressing the crystal growth is poor, and the effect of improving the carrier or catalyst performance by adding these additives in the fired product is small.
On the other hand, if the weight exceeds 50 weight, the mixture with sol-formed metatitanic acid will gel, making it difficult to mix uniformly, and the resulting fired product will have a relatively low content of titanium oxide. 1. When this is used as a carrier or as a catalyst as it is, it is not preferable because the performance of the carrier and catalyst based on titanium oxide deteriorates.

本発明においては、好ましくは、メタチタン酸をゾル化
し、これに微粒子ケイ酸と、上記タングステン化合物及
びモリブデンから選ばれる少なくとも1種の化合物を添
加し、混合した後、焼成する。また、メタチタン酸に微
粒子ケイ酸と、上記タングステン化合物及びモリブデン
から選ばれる少なくともlfiの化合物を添加した後、
メタチタン酸をゾル化し、混合してもよい。いずれにし
ても、一部又は全部をゾル化したメタチタン酸中に微粒
子ケイ酸と、上記化合物を存在させることが必要であり
、これによって、これら添加剤をメタチタン酸と均一に
混合することができる。
In the present invention, preferably, metatitanic acid is made into a sol, and particulate silicic acid and at least one compound selected from the above-mentioned tungsten compound and molybdenum are added thereto, mixed, and then fired. Further, after adding fine particle silicic acid and at least lfi of compounds selected from the above tungsten compound and molybdenum to metatitanic acid,
Metatitanic acid may be solized and mixed. In any case, it is necessary to have particulate silicic acid and the above compound present in the metatitanic acid that has been partially or completely solified, so that these additives can be uniformly mixed with the metatitanic acid. .

ゾル化の方法は特に制限されず、例えば、メタチタン酸
を水洗して、硫酸根を大部分除去した後、塩酸又は硝酸
を加えて一部又は全部をゾル化する。
The method of solization is not particularly limited, and for example, metatitanic acid is washed with water to remove most of the sulfuric acid groups, and then hydrochloric acid or nitric acid is added to partially or completely solize it.

又は、特に水洗により硫酸根を除かない場合は、メタチ
タン酸に塩化バリウム、塩化ストロンチウム、塩化カル
シウム等のアルカリ土類金属の塩化物、若しくは硝酸バ
リウム、硝酸ストロンチウム、硝酸カルシウム等のアル
カリ土類金属の硝酸塩を添加し、硫酸根を水不溶性のバ
リウム塩とし゛ζ固定し”)″)、反応混合物を一部又
は全部をゾル化する。これらのゲル化剤の添加量は反応
混合物をどの程度ゾル化するかによって、適宜に選ばれ
る。
Alternatively, if sulfate roots are not removed by washing with water, add alkaline earth metal chlorides such as barium chloride, strontium chloride, and calcium chloride to metatitanic acid, or alkaline earth metal chlorides such as barium nitrate, strontium nitrate, and calcium nitrate. A nitrate is added to fix the sulfate group as a water-insoluble barium salt (")"), and a part or all of the reaction mixture is made into a sol. The amount of these gelling agents added is appropriately selected depending on the degree to which the reaction mixture is to be made into a sol.

尚、メタブタン酸ゾルは、pHl〜2以上でゲル化する
ため、これにタングステン及び/又はモリブデン化合物
を十分均一に混合した後であれば、必要に応じてゲル化
しても差支えない。
Note that metabutanoic acid sol gels at a pH of 1 to 2 or more, so it may be gelled if necessary, as long as the tungsten and/or molybdenum compound is sufficiently uniformly mixed therein.

このようにして得られたメタチタン酸と、微粒子ケイ酸
と、上記タングステン及び/又はモリブデン化合物との
混合物は、乾燥し、次いで、800℃以下、好ましくは
、700〜200℃の温度で焼成し、粉砕すれば、粉状
の焼成品を得る。この場合、本発明によれば、メタチタ
ン酸を用いるため、焼成において担体や触媒として好ま
しいアナターゼ型酸化チタンになる。尚、焼成品をハニ
カム状等の所定の形状として担体又は触媒に用いる場合
、」二記混合物を乾燥して得られる乾燥品を従来より知
られている任、意の方法、例えば、押出成形、転動造粒
等の方法により成形したに焼成してもよい。また、上記
の粉末状焼成品を所要形状に成形した後、再び焼成する
こともできる。この場合は、所要形状に成形した後、再
び800℃以下、好ましくは700〜200℃の温度で
焼成すればよい。このようにして、本発明によれば、粉
末状又は成形品として酸化チタン焼成品を得ることがで
きる。
The mixture of metatitanic acid, particulate silicic acid, and the tungsten and/or molybdenum compound thus obtained is dried, and then calcined at a temperature of 800°C or less, preferably 700 to 200°C, When crushed, a powdered baked product is obtained. In this case, according to the present invention, metatitanic acid is used, resulting in anatase-type titanium oxide, which is preferable as a carrier or catalyst in calcination. In addition, when the fired product is used as a carrier or catalyst in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the mixture mentioned above can be processed by any conventionally known method such as extrusion molding, It may be molded by a method such as rolling granulation and then fired. Further, the powdered fired product described above can be molded into a desired shape and then fired again. In this case, after forming into the desired shape, it may be fired again at a temperature of 800°C or lower, preferably 700 to 200°C. In this way, according to the present invention, a fired titanium oxide product can be obtained in the form of a powder or a molded product.

尚、本発明においては、上記いずれの場合においζも、
粉末状の乾燥品又は焼成品に新たにメタチタン酸ゾル又
はゲルを存在させて所要形状に成形し、これを焼成すれ
ば、機械的強度、気孔率、比表面積、細孔分布等の諸物
性を向上させることができると共に、焼成時の収縮率を
抑えることができる。かがる場合のメタチタン酸ゾル又
はゲルの添加量は酸化チタン換算で成形品重量の5〜5
0重景%重量当である。また、成形に際して、従来より
知られている通審の成形助剤、例えば、アビセル、メチ
ルセルロース等を使用してもよいのは勿論である。
In addition, in the present invention, in any of the above cases, ζ is also
By adding metatitanic acid sol or gel to a powdered dried or fired product, molding it into the desired shape, and firing it, various physical properties such as mechanical strength, porosity, specific surface area, and pore distribution can be improved. The shrinkage rate during firing can be suppressed. When darning, the amount of metatitanic acid sol or gel added is 5 to 5% of the weight of the molded product in terms of titanium oxide.
It is 0 weight percent weight. In addition, it is of course possible to use conventionally known molding aids such as Avicel and methyl cellulose during molding.

尚、本発明において焼成の雰囲気は何ら制限されず、空
気、燃焼ガス、不活性気体等のいずれであってもよい。
In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like.

以上のようにして、本発明により得られる酸化チタン焼
成品は、理論により何ら限定されるものではないが、微
粒子ケイ酸と、タングステン化合物及び/又はモリブデ
ン化合物の存在により、メタチタン酸の焼成時に酸化チ
タンの結晶成長が抑制され、未成長のアナターゼ型結晶
で留まっているため、得られる焼成品は表面積が大きく
、且つ、機械的強度及び耐熱性にもすぐれており、触媒
担体として、また、そのままで触媒として好適に用いる
ことができる。
As described above, the fired titanium oxide product obtained according to the present invention is not limited in any way by theory, but due to the presence of fine particles of silicic acid, a tungsten compound, and/or a molybdenum compound, metatitanic acid is oxidized during firing. Since the crystal growth of titanium is suppressed and remains as an ungrown anatase crystal, the resulting fired product has a large surface area and has excellent mechanical strength and heat resistance, and can be used as a catalyst carrier or as it is. It can be suitably used as a catalyst.

本発明により得られる焼成品が未成長のアナターゼで留
まっていることは、第1図に示したように、そのX線ス
ペクトルが低く、且つ、幅広いピークを示すことによっ
て確認され、一方、顔料用のアナターゼ型酸化チタンの
場合は、そのX線スペクトルを第2図に示すように、結
晶が極めてよく成長し”Cいるため、そのピークが高く
、且つ、鋭い。
The fact that the fired product obtained by the present invention contains ungrown anatase is confirmed by its X-ray spectrum showing low and broad peaks, as shown in Figure 1; In the case of anatase-type titanium oxide, its X-ray spectrum is shown in Figure 2, as the crystals grow extremely well and the peak is high and sharp.

本発明による酸化チタン焼成品は担体として用いるに好
適であり、また、反応の1!頬にょっ°ζはそのままで
も触媒として用いることができる。例えば、上記焼成品
はこのままでも、アンモニアを還元剤とする窒素酸化物
の接触還元活性を有し、実用し得る。しがし、本発明に
従って、以上のようにして得られる酸化チタン焼成品を
担体として用い、この担体に従来より窒素酸化物除去の
触媒活性を有することが知られている酸化物を担持させ
れば、焼成品を構成する酸化物との予期しない相乗作用
により、アンモニアを還元剤とする窒素酸化物の選択的
接触還元活性にすぐれた窒素酸化物陳去触媒を得ること
ができる。
The fired titanium oxide product according to the present invention is suitable for use as a carrier, and is also suitable for use in reaction 1! Cheek Niyo°ζ can be used as a catalyst as it is. For example, the above-mentioned fired product has a catalytic reduction activity of nitrogen oxides using ammonia as a reducing agent and can be put to practical use as it is. However, according to the present invention, the calcined titanium oxide product obtained as described above is used as a carrier, and an oxide conventionally known to have catalytic activity for removing nitrogen oxides is supported on this carrier. For example, due to an unexpected synergistic effect with the oxides constituting the fired product, it is possible to obtain a nitrogen oxide removal catalyst with excellent selective catalytic reduction activity of nitrogen oxides using ammonia as a reducing agent.

即も、本発明による窒素酸化物除去触媒は、+ai微粒
子ケイ酸と、tb)タングステン化合物及びモリブデン
化合物から選ばれる少なくとも1種の化合物を含有する
ゾル化したメタチタン酸を焼成し、かくして得た焼成品
にバナジウム、タングステン、モリブデン、銅、鉄、ク
ロム、マンガン及びセリウムから選ばれる少なくとも1
種の元素の酸化物を担持させることを特徴とする。この
方法においζ、焼成品の製造は前記したとおりである。
Immediately, the nitrogen oxide removal catalyst according to the present invention is produced by calcining sol-formed metatitanic acid containing +ai fine particle silicic acid and tb) at least one compound selected from tungsten compounds and molybdenum compounds. at least one selected from vanadium, tungsten, molybdenum, copper, iron, chromium, manganese and cerium.
It is characterized by supporting oxides of certain elements. In this method, the production of the fired product is as described above.

本発明による酸化チタン焼成品に上記酸化物を担持させ
る方法は、従来より触媒の調製に用いられている任意の
方法によることができ、例えば、所定形状に成形した焼
成品に前記酸化物又はその前駆体を含rfする溶液又は
分散液を含浸若しくはコーティングした後、必要に応じ
て所定温度に焼成すればよい。また、勿論、粉末状焼成
品と前記熔11η、は分散液と混練し、所要形状に成形
した後、必要にLca L゛: ′(所定温度に焼成す
ることによっても、本発明の窒素酸化物除去触媒を得る
ことができる。
The method for supporting the above-mentioned oxide on the titanium oxide fired product according to the present invention can be any method conventionally used for preparing catalysts. For example, the above-mentioned oxide or its After impregnating or coating with a solution or dispersion containing an RF precursor, it may be fired to a predetermined temperature as necessary. Of course, the powdered fired product and the melt 11η may be kneaded with a dispersion liquid, molded into a desired shape, and then fired to a predetermined temperature as necessary to form the nitrogen oxide of the present invention. A removal catalyst can be obtained.

本発明の触媒により窒素酸化物を含有する混合ガスから
窒素酸化物を除去するには、その混合ガスが含有する窒
素酸化物の0.5〜5倍モル、好ましくは1〜2倍モル
のアンモニアを加え、これを触媒を充填した反応層を通
過させる。反応層は移動層、流動層、固定層等、いずれ
も使用できる。
In order to remove nitrogen oxides from a mixed gas containing nitrogen oxides using the catalyst of the present invention, ammonia is added in an amount of 0.5 to 5 times the mole of nitrogen oxides contained in the mixed gas, preferably 1 to 2 times the mole of nitrogen oxides contained in the mixed gas. is added and passed through a reaction bed filled with a catalyst. Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed.

本発明の触媒は微粒子ケイ酸を含有して耐熱性にすぐれ
るため、反応温度は200〜600℃の範囲にわたって
よいが、好ましくは300〜500℃の範囲である。ま
た、ガスの空間速度ば1000〜100000hr  
、好ましくは3000〜3000001+r  の範囲
である。
Since the catalyst of the present invention contains particulate silicic acid and has excellent heat resistance, the reaction temperature may range from 200 to 600°C, but preferably from 300 to 500°C. In addition, the space velocity of gas is 1000 to 100000 hr.
, preferably in the range of 3,000 to 3,000,001+r.

本発明による触媒は窒素酸化物を含有する任意のガス処
理に用いることができるが、特に、ボイラー排ガス、即
も、100〜1000 ppmの窒素酸化物、主として
一酸化窒素の他に、200〜2000 ppmのイオウ
酸化物、主として二酸化イオウ、1〜10容量%の酸素
、5〜20容量%の炭酸ガス、5〜20容量%の水蒸気
が含有され°ζいる排ガス中の窒素酸化物を除去するの
に好適に用いることができる。
The catalyst according to the invention can be used to treat any gas containing nitrogen oxides, but in particular boiler exhaust gas, i.e. 100 to 1000 ppm of nitrogen oxides, mainly nitrogen monoxide, as well as 200 to 2000 ppm of nitrogen oxides. It removes nitrogen oxides from exhaust gas that contains ppm of sulfur oxides, mainly sulfur dioxide, 1 to 10% by volume of oxygen, 5 to 20% by volume of carbon dioxide, and 5 to 20% by volume of water vapor. It can be suitably used for.

本発明の方法は、以上のように、ゾル化したメタチタン
酸に微粒子ケイ酸と、クンゲス・テン化合物及びモリブ
デン化合物から選ばれる少なくとも1種を存在させるの
で、得られる混合物においてこれら化合物が均一に分散
されており、しかも、これを焼成するとき、酸化チタン
が上記化合物の作用により未成長のアナターゼ型結晶に
留まっているため、得られる焼成品は表面積が大きく、
且つ、その機械的強度及び耐熱性が顕著に改善されてい
る。従って、かかる焼成品を担体として、これに窒素酸
化物除去の触媒活性を有する金属酸化物を担持させて得
られる本発明による窒素酸化物除去触媒においては、こ
れら金属酸化物と発達の抑制されたアナターゼ型酸化チ
タン及び微粒子ケイ酸との相乗作用により、厳しい使用
条件の下においても長期間にわたって高い窒素酸化物除
去活性を保持するのめならず、二酸化イオウの二酸化イ
オウへの酸化率が極めて低いので、実用的、工業的な窒
素酸化物除去触媒としてずぐれている。
As described above, in the method of the present invention, since fine particle silicic acid and at least one selected from Kunges-Then compounds and molybdenum compounds are present in the sol-formed metatitanic acid, these compounds are uniformly dispersed in the resulting mixture. Moreover, when this is fired, the titanium oxide remains in the ungrown anatase crystal form due to the action of the above compounds, so the fired product obtained has a large surface area.
Moreover, its mechanical strength and heat resistance are significantly improved. Therefore, in the nitrogen oxide removal catalyst of the present invention obtained by using such a calcined product as a carrier and supporting metal oxides having catalytic activity for removing nitrogen oxides, it is possible to obtain Due to its synergistic effect with anatase-type titanium oxide and particulate silicic acid, it maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, and the rate of oxidation of sulfur dioxide to sulfur dioxide is extremely low. Therefore, it is outstanding as a practical and industrial catalyst for removing nitrogen oxides.

辺土に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら制限されるものではない。
Although the present invention will be explained with reference to examples, the present invention is not limited to these examples in any way.

実施例1 硫酸法による酸化チタンの製造工程より得られる硫酸チ
タン溶液を熱加水分解してメタチタン酸を得、これを酸
化チタンとして1 kg取り出し、これに塩化バリウム
(三水和物)80gを加えてゾル化し、十分に攪拌、混
合した。次いで、微粒子ケイ酸ファインシール(徳山曹
達側層)200gと、パラタングステン酸アンモニウム
110gを含有するlO%メチルアミン溶液250m1
を添加し、十分に攪拌、混合した後、100°Cで12
時間乾燥し、更に500℃の温度で3時間焼成した。
Example 1 A titanium sulfate solution obtained from a titanium oxide production process using a sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, 1 kg of this was taken as titanium oxide, and 80 g of barium chloride (trihydrate) was added to this. The mixture was made into a sol and thoroughly stirred and mixed. Next, 250 ml of 10% methylamine solution containing 200 g of fine silicic acid fine seal (Tokuyama Soda side layer) and 110 g of ammonium paratungstate was added.
After stirring and mixing thoroughly, heat at 100°C for 12 hours.
It was dried for an hour and then fired at a temperature of 500°C for 3 hours.

この焼成品をテンプルミルにより粉砕し、粒度を調整し
た。これに適量の水を加え、混練した後、押出機により
格子状成形物に押出成形し、常温から100℃に加熱し
て乾燥し、次いで、500 ’Cで3時間焼成して、焼
成品を得た。この焼成品をそのまま窒素酸化物除去用触
媒として使用した。
This fired product was pulverized using a temple mill to adjust the particle size. After adding an appropriate amount of water and kneading, the mixture is extruded into a lattice-shaped molded product using an extruder, heated from room temperature to 100°C to dry, and then fired at 500'C for 3 hours to produce a fired product. Obtained. This calcined product was used as it was as a catalyst for removing nitrogen oxides.

このようにしζ得られた焼成品のX線スペクトルを第1
図に示す。ピークが低く、且つ、幅広いのでアナターv
型結晶が未成長のままで留まっていることが明らかであ
る。
The X-ray spectrum of the fired product obtained in this way is
As shown in the figure. Since the peak is low and wide, it is
It is clear that the type crystal remains ungrown.

尚、X線スペクトルは理学電機曲製X線回折装置RΔD
−HAを用いて測定し、その測量条件は次のとおりであ
る。
In addition, the X-ray spectrum was obtained using an X-ray diffractometer RΔD manufactured by Rigaku Denki Koku.
- Measured using HA, and the surveying conditions are as follows.

走査速度       1°/4分 フルスケール     1000 cpS時定数   
     1秒 ヂャート速度     10m1/分 ターゲット      銅 管電圧        30KV 管電流        10mA 尚、比較のために、市販の顔料アナターゼ酸化チタンの
X線スペクトルを第2図に示す。測定条件は上記におい
て、フルスケールが4000 cpsである以外は上記
と同じである。
Scanning speed 1°/4 min full scale 1000 cpS time constant
1 second dart speed: 10 m1/min Target: Copper tube voltage: 30 KV Tube current: 10 mA For comparison, the X-ray spectrum of the commercially available pigment anatase titanium oxide is shown in FIG. The measurement conditions are the same as above except that the full scale is 4000 cps.

実施例2 実施例1において、パラタングステン酸アンモニウムに
代えて、モリブデン酸アンモニウム120gを含有する
メチルアミン溶液300m1を用いた以外は実施例1と
全く同様にして焼成品を得た。
Example 2 A fired product was obtained in exactly the same manner as in Example 1, except that 300 ml of a methylamine solution containing 120 g of ammonium molybdate was used instead of ammonium paratungstate.

これそのままで窒素酸化物除去用触媒として使用した。This was used as it was as a catalyst for removing nitrogen oxides.

実施例3 実施例1で得た粉末状焼成品に、パラタングステン酸ア
ンモニウム110g及びメタバナジン酸アンモニウム1
0gを含有する10%メチルアミン溶液250m1を添
加し、混練した後、押出機により格子状成形物に押出成
形し、品温から100℃に加熱して乾燥し、次いで、5
00℃で3時間焼成し、酸化タングステン及び酸化バナ
ジウムを担持さ−Uた窒素酸化物除去用触媒を得た。
Example 3 110 g of ammonium paratungstate and 1 gram of ammonium metavanadate were added to the powdered baked product obtained in Example 1.
After adding 250ml of 10% methylamine solution containing 0g and kneading, extrusion molding into a lattice-shaped molded product using an extruder, heating from the product temperature to 100°C to dry, and then
The catalyst was calcined at 00°C for 3 hours to obtain a -U catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported.

実施例4 実施例2で得た粉末状焼成品を実施例3と同様に処理し
て、酸化タングステン及び酸化バナジウムを担持させた
窒素酸化物除去用触媒をIMた。
Example 4 The powdered calcined product obtained in Example 2 was treated in the same manner as in Example 3 to prepare a catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported.

比較例1 実施例1において、塩化バリウムによるメタチタン酸の
ゾル化を行なわない以外は、実施例1と全く同様にして
、焼成品を得た。これをそのまま窒素酸化物除去触媒と
して用いた。
Comparative Example 1 A fired product was obtained in exactly the same manner as in Example 1, except that metatitanic acid was not sol-formed using barium chloride. This was used as it was as a nitrogen oxide removal catalyst.

比較例2 実施例1において、塩化バリウムによるメタチタン酸の
ゾル化を行なわず、且つ、実施例1におい′(バーンタ
ングステン酸アンモニウムに代えて、モリブデン酸アン
モニウム120gを含有するメヂルアミン溶液300m
1を用いた以外は実施例1と全く同様にして焼成品を得
た。これをそのままで窒素酸化物除去用触媒として使用
した。
Comparative Example 2 In Example 1, metatitanic acid was not sol-formed with barium chloride, and the odor of Example 1 (instead of ammonium burn tungstate, 300 ml of a mediylamine solution containing 120 g of ammonium molybdate was used).
A baked product was obtained in exactly the same manner as in Example 1 except that Example 1 was used. This was used as it was as a catalyst for removing nitrogen oxides.

比較例3 比較例1において得た焼成品に、メタバナジン酸アンモ
ニウムlog及びシュウwi25 gを含有する水溶液
を加え、十分に混練後、押出成形し、100℃で2時間
乾燥した後、500℃で3時間焼成して、窒素酸化物除
去触媒を得た。
Comparative Example 3 An aqueous solution containing log ammonium metavanadate and 25 g of Shuwi was added to the fired product obtained in Comparative Example 1, thoroughly kneaded, extruded, dried at 100°C for 2 hours, and then heated at 500°C for 3 hours. A nitrogen oxide removal catalyst was obtained by firing for a period of time.

比較例4 比較例2において得た焼成品に、メタバナジン酸アンモ
ニウム10g及びシコーウ825gを含有する水溶液を
加え、十分に混練後、押出成形し、100℃で2時間乾
燥した後、500℃で3時間焼成して、窒素酸化物除去
触媒を得た。
Comparative Example 4 To the fired product obtained in Comparative Example 2, an aqueous solution containing 10 g of ammonium metavanadate and 825 g of Shikou was added, thoroughly kneaded, extruded, dried at 100°C for 2 hours, and then heated at 500°C for 3 hours. The mixture was fired to obtain a nitrogen oxide removal catalyst.

比較例5 実施例1と同じメタチタン酸を酸化チタンとしてl k
g取り出し、塩化バリウム(二水和物)80gを添加し
、ゾル化し、十分に攪拌、混合した後、100℃で12
時間乾燥し、更に500℃で3時間焼成した。これを粉
砕し、粒度調整した。これに微粒子ケイ酸ファインシー
ル(徳山曹達01製)200gと、パラタングステン酸
アンモニウム110gを含有する10%メチルアミン溶
液250m1を添加し、十分に攪拌、混合した後、適量
の水を加え、混練し、押出機により格子状成形物に押出
成形し、品温から100℃に加熱して乾燥し、次いで、
500”Cで3時間焼成し、窒素酸化物除去用触媒を得
た。
Comparative Example 5 The same metatitanic acid as in Example 1 was used as titanium oxide.
g was taken out, 80 g of barium chloride (dihydrate) was added, the mixture was thoroughly stirred and mixed, and then heated at 100°C for 12 hours.
It was dried for an hour and then fired at 500°C for 3 hours. This was crushed and the particle size was adjusted. To this, 200 g of fine particle silicic acid Fine Seal (manufactured by Tokuyama Soda 01) and 250 ml of a 10% methylamine solution containing 110 g of ammonium paratungstate were added, and after stirring and mixing thoroughly, an appropriate amount of water was added and kneaded. , extrusion molded into a lattice-shaped molded product using an extruder, heated from product temperature to 100°C to dry, then,
The mixture was calcined at 500''C for 3 hours to obtain a catalyst for removing nitrogen oxides.

比較例6 比較例5において得た焼成品を用いた以外は、比較例3
と全く同様にして、窒素酸化物除去触媒を得た。
Comparative Example 6 Comparative Example 3 except that the fired product obtained in Comparative Example 5 was used.
A nitrogen oxide removal catalyst was obtained in exactly the same manner as above.

以上の実施例及び比較例で得た各窒素酸化物除去用触媒
に、窒素酸化物200ppm、アンモニア200 p凹
、水蒸気lO%、二酸化炭素12%、二酸化イオウ80
0ppm、残部窒素からなる組成の混合ガスを温度38
0℃、空間速度50001ぼ−1にて接触させ、窒素酸
化物(NOx )除去率及び二酸化イオウ(502)酸
化率を測定した。結果を第2表に示す。尚、窒素酸化物
除去率(%)及び二酸化イオウ酸化率く%)はそれぞれ
次式により求めた。
Each of the nitrogen oxide removal catalysts obtained in the above Examples and Comparative Examples contained 200 ppm of nitrogen oxides, 200 ppm of ammonia, 10% of water vapor, 12% of carbon dioxide, and 80% of sulfur dioxide.
A mixed gas with a composition of 0 ppm and the balance nitrogen was heated to a temperature of 38
The nitrogen oxide (NOx) removal rate and the sulfur dioxide (502) oxidation rate were measured by contacting at 0°C and a space velocity of 50,001°C. The results are shown in Table 2. Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas.

窒素酸化物除去率(%)=(触媒屑入ロN0xa度−触
媒層出口NOx濃度)/(触媒層入口NOx 71!i
度)X100 二酸化イオウ酸化率(%)=(触媒屑入ロS02濃度−
触媒層出口S02濃度)/(触媒層入口(S02十5o
3)濃度)X100 以上の結果から明らかなように、本発明の触媒によれば
、窒素酸化物除去率が高い一方、二酸化イオウ酸化率は
低く、ガス混合物中の窒素酸化物を除去する際に二酸化
イオウの生成に基づく不利益を除くことができる。
Nitrogen oxide removal rate (%) = (Catalyst waste input NOxa degree - catalyst layer outlet NOx concentration) / (catalyst layer inlet NOx 71!i
degree) X100 Sulfur dioxide oxidation rate (%) = (Catalyst waste S02 concentration -
Catalyst layer outlet S02 concentration)/(catalyst layer inlet (S02
3) Concentration) Disadvantages due to the formation of sulfur dioxide can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により得られる酸化チタン焼成品
のX線スペクトルを示し、第2図は比較のための顔料酸
化チタンのX線スペクトルを示す。 特許出願人  三菱重工業株式会社 第1図 2づ            2シ1        
     z6             z(、27
第2図 z3     24      237      i
6      17長崎市飽の浦町1番1号三菱重 工業株式会社長崎造船所内 0発 明 者 瀬戸徹 広島車面区観音新町4丁目6番 22号三菱重工業株式会社広島研 究所内 0発 明 者 三宅淳介 東京都千代田区丸の内2丁目5 の発 明 者 阿倍−光 堺市戎島町5丁1番地堺化学工 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 の発 明 者 馬場敏勝 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 0発 明 者 松田敏明 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内
FIG. 1 shows an X-ray spectrum of a fired titanium oxide product obtained by the method of the present invention, and FIG. 2 shows an X-ray spectrum of a titanium oxide pigment for comparison. Patent applicant: Mitsubishi Heavy Industries, Ltd. Figure 1 2d 2 1
z6 z(,27
Figure 2 z3 24 237 i
6 17 Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard & Machinery Works, 1-1 Akunoura-cho, Nagasaki City 0 Inventor: Toru Seto, 4-6-22 Kannon Shinmachi, Hiroshima-ku, Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center 0 Inventor: Junsuke Miyake, Tokyo Inventor: 2-5 Marunouchi, Chiyoda-ku Inventor: Toshikatsu Baba, Sakai Chemical Industry Co., Ltd. Central Research Laboratory, 5-1 Ebisujima-cho, Sakai-shi, Abe-Mitsu 5-1 Sakai Chemical Industry Co., Ltd. Central Research Laboratory 0 Inventors: Toshiaki Matsuda 5-1 Ebisujima-cho, Sakai City Sakai Chemical Industry Co., Ltd. Central Laboratory

Claims (1)

【特許請求の範囲】 +11  (8l微粒子ケイ酸と、(blタングステン
化合物及びモリブデン化合物から選ばれる少なくとも1
種の化合物を含有するゾル化したメタチタン酸を焼成す
ることを特徴とする酸化チタン焼成品の製造方法。 +21  (al ff1l[粒子ケイ酸と、Tblタ
ングステン化合物及びモリブデン化合物から選ばれる少
なくとも1種の化合物を含有するゾル化したメタチタン
酸を焼成し、かくして得た焼成品にバナジウム、タング
ステン、モリブデン、銅、鉄、クロム、マンガン及びセ
リウムから選ばれる少なくとも1種の元素の酸化物を担
持させることを特徴とする窒素酸化物除去用触媒の製造
方法。
[Claims] +11 (8l fine particle silicic acid, (bl
A method for producing a fired titanium oxide product, which comprises firing a sol-formed metatitanic acid containing a seed compound. +21 (al ff1l [Solized metatitanic acid containing particle silicic acid and at least one compound selected from Tbl tungsten compounds and molybdenum compounds is fired, and the fired product thus obtained contains vanadium, tungsten, molybdenum, copper, A method for producing a catalyst for removing nitrogen oxides, which comprises supporting an oxide of at least one element selected from iron, chromium, manganese, and cerium.
JP57143667A 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst Granted JPS5935028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143667A JPS5935028A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143667A JPS5935028A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Publications (2)

Publication Number Publication Date
JPS5935028A true JPS5935028A (en) 1984-02-25
JPH0114810B2 JPH0114810B2 (en) 1989-03-14

Family

ID=15344130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143667A Granted JPS5935028A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Country Status (1)

Country Link
JP (1) JPS5935028A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
EP1484109A1 (en) * 2002-03-01 2004-12-08 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
EP1598324A1 (en) * 2004-05-15 2005-11-23 Osada Giken Co., Ltd. Method for manufacturing shaped titanium oxide
WO2013099253A1 (en) * 2011-12-27 2013-07-04 日揮触媒化成株式会社 Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
JP2014079716A (en) * 2012-10-18 2014-05-08 Nippon Shokubai Co Ltd Catalyst for treating exhaust gas and exhaust gas treatment method
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34804E (en) * 1985-03-18 1994-12-06 Corning Incorporated Method of producing high-strength high surface area catalyst supports
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
EP1484109A1 (en) * 2002-03-01 2004-12-08 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
EP1484109A4 (en) * 2002-03-01 2006-08-09 Babcock Hitachi Kk Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
EP1598324A1 (en) * 2004-05-15 2005-11-23 Osada Giken Co., Ltd. Method for manufacturing shaped titanium oxide
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US9421519B2 (en) 2009-07-31 2016-08-23 Cristal USA, Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
WO2013099253A1 (en) * 2011-12-27 2013-07-04 日揮触媒化成株式会社 Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
JP2013132624A (en) * 2011-12-27 2013-07-08 Jgc Catalysts & Chemicals Ltd Titanium-containing granular powder, catalyst for treating exhaust gas using the same, and method for manufacturing the same
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
US9108185B2 (en) 2012-08-24 2015-08-18 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
JP2014079716A (en) * 2012-10-18 2014-05-08 Nippon Shokubai Co Ltd Catalyst for treating exhaust gas and exhaust gas treatment method

Also Published As

Publication number Publication date
JPH0114810B2 (en) 1989-03-14

Similar Documents

Publication Publication Date Title
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JPH0242536B2 (en)
US3948807A (en) Oxide catalysts and process for preparation thereof
JPS5935028A (en) Preparation of calcined titanium oxide and catalyst
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
US4119568A (en) Solid supported catalysts for catalytic reduction of nitrogen oxides in waste gases
JPS5935025A (en) Preparation of calcined titanium oxide and catalyst
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
CA1125730A (en) Catalyst for reducing nitrogen oxides and process for producing the same
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPH044251B2 (en)
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH0442328B2 (en)
JPH0568401B2 (en)
JPH0442327B2 (en)
JPH0559847B2 (en)
JP3103212B2 (en) Adsorbent for sulfur compounds