JPH044251B2 - - Google Patents

Info

Publication number
JPH044251B2
JPH044251B2 JP63124134A JP12413488A JPH044251B2 JP H044251 B2 JPH044251 B2 JP H044251B2 JP 63124134 A JP63124134 A JP 63124134A JP 12413488 A JP12413488 A JP 12413488A JP H044251 B2 JPH044251 B2 JP H044251B2
Authority
JP
Japan
Prior art keywords
catalyst
fired
titanium oxide
oxide
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63124134A
Other languages
Japanese (ja)
Other versions
JPS6445725A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP63124134A priority Critical patent/JPS6445725A/en
Publication of JPS6445725A publication Critical patent/JPS6445725A/en
Publication of JPH044251B2 publication Critical patent/JPH044251B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、酸化チタン焼成品の製造方法に関
し、詳しくは、酸化チタンを主成分とし、表面積
が大きく、耐熱性にすぐれると共に、成形後の強
度にすぐれ、従つて、触媒担体や、そのままでも
触媒として好適に用いることができる酸化チタン
焼成品の製造方法に関する。 従来の技術 酸化チタン焼成品を触媒担体又は触媒として用
いることは既に知られているが、担体又は触媒機
能に重要な影響を与える表面積、結晶形、耐熱
性、成形後の機械的強度等は、その製造方法や添
加物質の有無、種類、量等によつて異なるため、
従来より種々の製造方法が提案されている。 例えば、酸化チタンにシリカを添加して焼成す
れば、一般的には、得られる焼成品は表面積が大
きくなり、耐熱性も改善されるが、しかし、従来
におけるように、四塩化チタンや硫酸チタンのよ
うなチタン塩類にシリカを添加し、中和加水分解
して、かくして生成した水酸化チタンを焼成して
酸化チタンを形成させる方法によれば、加水分解
によつて生成する水酸化チタンがオルソチタン酸
となりやすく、従つて、これを焼成すれば、担体
又は触媒として不適当なルチル型酸化チタンにな
りやすい問題がある。 一方、チタン塩を熱加水分解すれば、メタチタ
ン酸になりやすく、これを焼成すれば、他の要因
もあるが、一般に担体や触媒として好ましい結晶
形であるアナターゼ型酸化チタンを与えることも
既に知られている。しかしながら、このようにし
て得られた水酸化チタン又は酸化チタンにシリカ
を添加して焼成する方法によれば、組成の均一な
混合物を得ることが困難であり、特にシリカを水
酸化チタンに添加する場合には、水酸化チタンが
ゲル状であるため、シリカを水酸化チタンに均一
に分散させることができず、従つて、高性能の担
体や触媒を得ることができない。 発明が解決しようとする課題 本発明は上記した種々の問題を解決するために
なされたものであつて、微粒子ケイ酸が均一に酸
化チタン中に分散され、従つて、表面積が大き
く、耐熱性にすぐれると共に、成形後の強度にす
ぐれ、従つて、触媒担体や、そのままでも触媒と
して好適に用いることができる酸化チタン焼成品
を製造する方法を提供することを目的とする。 課題を解決するための手段 本発明による焼成品の製造方法は、微粒子ケイ
酸を含有するゾル化したメタチタン酸を焼成する
ことを特徴とする。 本発明において用いる微粒子ケイ酸とは、ホワ
イトカーボンの別名でも知られており、比表面積
が非常に大きい点に一つの特徴を有する。これら
微粒子ケイ酸は湿式法、乾式法いずれの方法によ
つて製造されたものでもよく、本発明においては
通常の市販品を用いることができる。本発明にお
いて好適に用いることができる微粒子ケイ酸の市
販品としては、例えば、「フアインシール」(登録
商標、徳山曹達(株)製)や「アエロジル」(登録商
標、日本アエロジル(株)製)等を挙げることができ
るが、これらの中でも特に平均粒径が10〜50m
μ、比表面積が200〜300m2/gであるものが好ま
しく用いられる。微粒子ケイ酸の添加量は、酸化
チタンに基づいて5〜50重量%であり、5重量%
よりも少ないときは、焼成品における微粒子ケイ
酸の添加による担体又は触媒性能の改善の効果が
小さく、一方、50重量%を越えるときは、相対的
に酸化チタンの含有量が少なくなつて、これを担
体や、また、そのままで触媒として用いるとき、
酸化チタンに基づく担体及び触媒の性能が低下す
るので好ましくない。 本発明の方法においては、好ましくは、上記の
ような微粒子ケイ酸をメタチタン酸ゾルに添加し
て撹拌混合後に焼成するが、また、必要に応じ
て、メタチタン酸に微粒子ケイ酸を添加した後、
メタチタン酸をゾル化してもよい。メタチタン酸
はゲル状であるため、ゾル化させることにより、
一層微粒子ケイ酸をメタチタン酸中に均一に分散
させることができる。 ゾル化の方法は特に制限されず、例えば、メタ
チタン酸を水洗して、硫酸根を大部分除去した
後、塩酸又は硝酸を加えて一部又は全部をゾル化
する。又は、特に水洗により硫酸根を除かない場
合は、メタチタン酸に塩化バリウム、塩化ストロ
ンチウム、塩化カルシウム等のアルカリ土類金属
の塩化物、若しくは硝酸バリウム、硝酸ストロン
チウム、硝酸カルシウム等のアルカリ土類金属の
硝酸塩を添加し、硝酸根を水不溶性のバリウム塩
として固定しつつ、一部又は全部をゾル化する。
これらのゲル化剤の添加量はメタチタン酸をどの
程度ゾル化するかによつて、適宜に選ばれる。 尚、メタチタン酸はPHが1〜2以上でゲル化す
るため、必要に応じて、微粒子ケイ酸を均一に分
散させた後であれば、ゲル化しても差支えない。 このようにして得られたメタチタン酸と微粒子
ケイ酸との混合物は、水洗し、次いで、800℃以
下、好ましくは、700〜200℃の温度で焼成し、粉
砕すれば、粉状の焼成品を得る。この場合、本発
明によれば、メタチタン酸を用いるため、焼成に
おいて担体や触媒として好ましいアナターゼ型酸
化チタンになる。尚、焼成品をハニカム状等の所
定の形状として担体又は触媒に用いる場合、上記
混合物を乾燥して得られる乾燥品を従来より知ら
れている任意の方法、例えば、押出成形、転動造
粒等の方法により成形した後に焼成してもよい。
また、上記の粉末状焼成品を所要形状に成形した
後、再び焼成することもできる。この場合は、所
要形状に成形した後、再び800℃以下、好ましく
は700〜200℃の温度で焼成すればよい。このよう
にして、本発明によれば、成形品としての酸化チ
タン焼成品をも得ることができる。 尚、本発明においては、上記いずれの場合にお
いても、粉末状の乾燥品又は焼成品に新たにメタ
チタン酸ゾル又はゲルを存在させて所要形状に成
形し、これを焼成すれば、機械的強度、気孔率、
比表面積、細孔分布等の諸物性を向上させること
ができると共に、焼成時の収縮率を抑えることが
できる。かかる場合のメタチタン酸ゾル又はゲル
の添加量は酸化チタン換算で成形品重量の5〜50
重量%が適当である。また、成形に際して、従来
より知られている通常の成形助剤、例えば、メチ
ルセルロース等を使用してもよいのは勿論であ
る。 尚、本発明において焼成の雰囲気は何ら制限さ
れず、空気、燃焼ガス、不活性気体等のいずれで
あつてもよい。 以上のようにして、本発明により得られる酸化
チタン焼成品は、理論により何ら限定されるもの
ではないが、微粒子ケイ酸の存在により、メタチ
タン酸の焼成時に酸化チタンの結晶成長が抑制さ
れ、未成長のアナターゼ型結晶で留まつているた
め、得られる焼成品は表面積が大きく、耐熱性に
すぐれると共に、成形後の機械的強度にすぐれ、
触媒担体やそのまま触媒として好適に用いること
ができる。 本発明により得られる焼成品が未成長のアナタ
ーゼで留まつていることは、第1図に示したよう
に、そのX線スペクトルが低く、且つ、幅広いピ
ークを示すことによつて確認され、一方、顔料用
のアナターゼ型酸化チタンの場合は、そのX線ス
ペクトルを第2図に示すように、結晶が極めてよ
く成長しているため、そのピークが高く、且つ、
鋭い。 本発明による酸化チタン焼成品は担体として用
いるに好適であり、また、反応の種類によつては
そのままでも触媒として用いることができるが、
本発明に従つて、以上のようにして得られる酸化
チタン焼成品を担体として用い、この担体に従来
より窒素酸化物除去の触媒活性を有することが知
られている酸化物を担持させれば、焼成品を構成
する酸化物との予期しない相乗作用により、アン
モニアを還元剤とする窒素酸化物の選択的接触還
元活性にすぐれた窒素酸化物除去用触媒を得るこ
とができる。 かかる窒素酸化物除去用触媒は、本発明による
酸化チタン焼成品にバナジウム、タングステン、
モリブデン、銅、鉄、クロム、マンガン及びセリ
ウムから選ばれる少なくとも1種の元素の酸化物
を担持させることによつて得ることができる。 酸化チタン焼成品に上記酸化物を担持させる方
法は、従来より触媒の調製に用いられている任意
の方法によることができ、例えば、所定形状に成
形した焼成品に前記酸化物又はその前駆体を含有
する溶液又は分散液を含浸若しくはコーテイング
した後、必要に応じて所定温度に焼成すればよ
い。また、勿論、粉末状焼成品と前記溶液又は分
散液と混練し、所要形状に成形した後、必要に応
じて所定温度に焼成することによつても、窒素酸
化物除去用触媒を得ることができる。 かかる触媒を用いて、窒素酸化物を含有する混
合ガスから窒素酸化物を除去するには、その混合
ガスが含有する窒素酸化物の0.5〜5倍モル、好
ましくは1〜2倍モルのアンモニアを加え、これ
を触媒を充填した反応層を通過させる。反応層は
移動層、流動層、固定層等、いずれも使用でき
る。本発明の触媒は微粒子ケイ酸を含有して耐熱
性にすぐれるため、反応温度は200〜600℃の範囲
にわたつてよいが、好ましくは300〜500℃の範囲
である。また、ガスの空間速度は1000〜
100000hr-1、好ましくは3000〜300000hr-1の範囲
である。 このような窒素酸化物除去用触媒は、窒素酸化
物を含有する任意のガス処理に用いることができ
るが、特に、ボイラー排ガス、即ち、100〜
1000ppmの窒素酸化物、主として一酸化窒素の他
に、200〜2000ppmのイオウ酸化物、主として二
酸化イオウ、1〜10容量%の酸素、5〜20容量%
の炭酸ガス、5〜20容量%の水蒸気が含有されて
いる排ガス中の窒素酸化物を除去するのに好適に
用いることができる。 発明の効果 本発明の方法によれば、以上のように、一部又
は全部をゾル化したメタチタン酸中に微粒子ケイ
酸を存在させ、これを焼成するので、得られる焼
成品においては微粒子ケイ酸が均一に分散されて
おり、しかも、酸化チタンが微粒子ケイ酸の作用
により未成長のアナターゼ型結晶に留まつている
ため、表面積が大きく、耐熱性が顕著に改善され
ていると共に、成形後の機械的強度にもすぐれ
る。 従つて、本発明による酸化チタン焼成品は、例
えば、窒素酸化物除去用触媒の担体として用いる
に好適であり、本発明による酸化チタン焼成品を
担体として用いて得られる窒素酸化物除去用触媒
は、担体の表面積が大きく、触媒活性が高いのみ
ならず、前記触媒活性を有する金属酸化物と発達
の抑制されたアナターゼ型酸化チタン及び微粒子
ケイ酸との相乗作用により、厳しい使用条件の下
においても長期間にわたつて高い窒素酸化物除去
活性を保持するのみならず、二酸化イオウの三酸
化イオウへの酸化率が極めて低いので、実用的、
工業的な窒素酸化物除去触媒としてすぐれてい
る。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら制限されるもので
はない。尚、本発明による酸化チタン焼成品の性
質は、焼成品自体からなる窒素酸化物除去用触媒
の性能、及び焼成品を担体とし、これに更に窒素
酸化物除去の触媒活性を有する金属酸化物を担持
させてなる窒素酸化物除去用触媒の性能にて評価
した。 実施例 1 硫酸法による酸化チタンの製造工程より得られ
る硫酸チタンを熱加水分解してメタチタン酸を
得、これを酸化チタンとして1Kg取り出し、塩化
バリウム(二水和物)80gを添加し、撹拌してゾ
ル化した。次いで、微粒子ケイ酸「フアインシー
ル」(登録商標、徳山曹達(株)製)200gを添加し、
十分に撹拌混合した後、100℃で12時間乾燥した
後、500℃の温度で3時間焼成した。この焼成品
をサンプルミルにより粉砕し、粒度を調整して、
以下の窒素酸化物除去用触媒の担体に用いた。 このようにして得られた担体のX線スペクトル
を第1図に示す。ピークが低く、且つ、幅広いの
で、アナターゼ型結晶が未成長のままで留まつて
いることが明らかである。 尚、X線スペクトルは、理学電機(株)製X線回折
装置RAD−Aを用いて測定し、その測定条件
は次のとおりである。 走査速度 1゜/4分 フルスケール 1000cps 時定数 1秒 チヤート速度 10mm/分 ターゲツト 銅 管電圧 30KV 管電流 10mA 尚、比較のために、市販の顔料アナターゼ酸化
チタンのX線スペクトルを第2図に示す。測定条
件は上記において、フルスケールが4000cpsであ
る以外は上記と同じである。 次に、パラタングステン酸アンモニウム110g
及びメタバナジン酸アンモニウム10gを含有する
10%メチルアミン溶液250mlを上で得た担体に添
加し、混練した後、押出機により格子状成形物に
押出成形し、常温から100℃に加熱して乾燥し、
次いで、500℃で3時間焼成し、酸化タングステ
ン及び酸化バナジウムを担持させた窒素酸化物除
去用触媒を得た。 実施例 2 実施例1と同じく、酸化チタン換算で1Kgのメ
タチタン酸に微粒子ケイ酸「フアインシール」
(登録商標、徳山曹達(株)製)200gを添加し、混練
した後、塩化バリウム(二水和物)80gを添加し
てゾル化し、撹拌した。これを乾燥、焼成し、以
下、この焼成品に実施例1と同様にして、酸化タ
ングステン及び酸化バナジウムを担持させて窒素
酸化物除去用触媒を得た。 実施例 3 実施例1において、微粒子ケイ酸として四塩化
ケイ素を気相加水分解法により得られる「アエロ
ジル」(登録商標、日本アエロジル(株)製)を用い
た以外は、実施例1と全く同様にして担体を製造
し、これに実施例1と全く同様に酸化タングステ
ンと酸化バナジウムを担持させて、窒素酸化物除
去用触媒を得た。 比較例 1 実施例1において、メタチタン酸をゾル化しな
かつた以外は実施例1と全く同様にして、微粒子
ケイ酸を含有する酸化チタン焼成品を得、これを
実施例1と同様に処理して、酸化タングステン及
び酸化バナジウムを担持させた窒素酸化物除去用
触媒を得た。 比較例 2 実施例1において、メタチタン酸をゾル化した
後、微粒子ケイ酸を添加することなく、濾過、水
洗し、100℃で12時間乾燥した後、500℃の温度で
3時間焼成し、粉砕し、担体とした。 この担体を用いて、実施例1と全く同様にし
て、酸化タングステンと酸化バナジウムを担持さ
せた窒素酸化物除去用触媒を得た。 比較例 3 比較例2で得た酸化チタン焼成品担体に、パラ
タングステン酸アンモニウム110g及びメタバナ
ジン酸アンモニウム10gを含有する10%メチルア
ミン溶液250mlと微粒子ケイ酸「フアインシール」
(登録商標、徳山曹達(株)製)200gを添加し、混練
した。次に、これを格子状に押出成形し、100℃
で12時間乾燥し、更に500℃で3時間焼成して、
酸化タングステンと酸化バナジウムとを担持させ
た窒素酸化物除去用触媒を得た。 以上の実施例及び比較例で得た各窒素酸化物除
去用触媒に、窒素酸化物200ppm、アンモニア
200ppm、水蒸気10%、二酸化炭素12%、二酸化
イオウ800ppm、残部窒素からなる組成の混合ガ
スを温度380℃、空間速度5000hr-1にて接触させ、
窒素酸化物(NOx)除去率及び二酸化イオウ
(SO2)酸化率を測定した。結果を第1表に示す。
尚、窒素酸化物除去率(%)及び二酸化イオウ酸
化率(%)はそれぞれ次式により求めた。 窒素酸化物除去率(%)=(触媒層入口NOx濃度−触
媒層出口NOx濃度) /(触媒層入口NOx濃度)×100 二酸化イオウ酸化率(%)=(触媒層入口SO2
度−触媒層出口SO2濃度) /(触媒層入口(SO2+SO3)濃度)×100
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a fired titanium oxide product, and more specifically, it contains titanium oxide as the main component, has a large surface area, has excellent heat resistance, and has excellent strength after molding. The present invention relates to a method for producing a fired titanium oxide product that can be suitably used as a carrier or as a catalyst as it is. Conventional technology It is already known that titanium oxide calcined products are used as catalyst carriers or catalysts, but the surface area, crystal shape, heat resistance, mechanical strength after molding, etc., which have important effects on the carrier or catalyst function, It varies depending on the manufacturing method and presence/absence, type, amount, etc. of additive substances.
Various manufacturing methods have been proposed in the past. For example, if silica is added to titanium oxide and fired, the resulting fired product will generally have a larger surface area and improved heat resistance. According to a method in which silica is added to titanium salts such as, neutralized and hydrolyzed, and the titanium hydroxide thus produced is calcined to form titanium oxide, the titanium hydroxide produced by hydrolysis is There is a problem that it tends to become titanic acid, and therefore, when it is calcined, it tends to become rutile-type titanium oxide, which is unsuitable as a carrier or a catalyst. On the other hand, it is already known that if titanium salt is thermally hydrolyzed, it will easily become metatitanic acid, and if this is calcined, it will give anatase titanium oxide, which is generally the preferred crystalline form for carriers and catalysts, although there are other factors as well. It is being However, according to the method of adding silica to titanium hydroxide or titanium oxide obtained in this way and firing it, it is difficult to obtain a mixture with a uniform composition, and especially when silica is added to titanium hydroxide. In some cases, since titanium hydroxide is in the form of a gel, silica cannot be uniformly dispersed in titanium hydroxide, making it impossible to obtain a high-performance support or catalyst. Problems to be Solved by the Invention The present invention has been made in order to solve the various problems described above. It is an object of the present invention to provide a method for producing a fired titanium oxide product which has excellent strength after molding and can be suitably used as a catalyst carrier or as a catalyst as it is. Means for Solving the Problems The method for producing a fired product according to the present invention is characterized in that sol-formed metatitanic acid containing fine particles of silicic acid is fired. The fine particle silicic acid used in the present invention is also known as white carbon, and one of its characteristics is that it has a very large specific surface area. These fine particles of silicic acid may be produced by either a wet method or a dry method, and in the present invention, ordinary commercially available products can be used. Commercial products of fine particle silicic acid that can be suitably used in the present invention include, for example, "Fine Seal" (registered trademark, manufactured by Tokuyama Soda Co., Ltd.) and "Aerosil" (registered trademark, manufactured by Nippon Aerosil Co., Ltd.). Among these, especially those with an average particle size of 10 to 50 m.
A material having a specific surface area of 200 to 300 m 2 /g is preferably used. The amount of fine particle silicic acid added is 5 to 50% by weight based on titanium oxide, and 5% by weight
When the amount is less than 50% by weight, the effect of improving the carrier or catalyst performance due to the addition of fine silicic acid in the fired product is small; on the other hand, when it is more than 50% by weight, the content of titanium oxide is relatively small and this When used as a carrier or as a catalyst,
This is not preferred because the performance of the titanium oxide-based carrier and catalyst is degraded. In the method of the present invention, preferably, the above-mentioned fine-particle silicic acid is added to the metatitanic acid sol and fired after stirring and mixing, but if necessary, after adding the fine-particle silicic acid to the metatitanic acid,
Metatitanic acid may be made into a sol. Since metatitanic acid is in the form of a gel, by turning it into a sol,
Even finer particles of silicic acid can be uniformly dispersed in metatitanic acid. The method of solization is not particularly limited, and for example, metatitanic acid is washed with water to remove most of the sulfuric acid groups, and then hydrochloric acid or nitric acid is added to partially or completely solize it. Alternatively, if sulfate roots are not removed by washing with water, add alkaline earth metal chlorides such as barium chloride, strontium chloride, and calcium chloride to metatitanic acid, or alkaline earth metal chlorides such as barium nitrate, strontium nitrate, and calcium nitrate. A nitrate is added to fix the nitrate radical as a water-insoluble barium salt, while partially or completely turning it into a sol.
The amount of these gelling agents added is appropriately selected depending on the degree to which metatitanic acid is to be sol-formed. In addition, since metatitanic acid gels when the pH is 1 to 2 or more, it may be gelled if necessary after finely dispersed silicic acid particles are uniformly dispersed. The mixture of metatitanic acid and particulate silicic acid thus obtained is washed with water, then calcined at a temperature of 800°C or lower, preferably 700 to 200°C, and crushed to produce a powdered fired product. obtain. In this case, according to the present invention, metatitanic acid is used, resulting in anatase-type titanium oxide, which is preferable as a carrier or catalyst in calcination. In addition, when the fired product is used as a carrier or catalyst in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the above mixture can be processed by any conventionally known method, such as extrusion molding or rolling granulation. It may be baked after being molded by a method such as the above.
Further, the powdered fired product described above can be molded into a desired shape and then fired again. In this case, after forming into the desired shape, it may be fired again at a temperature of 800°C or lower, preferably 700 to 200°C. In this manner, according to the present invention, a fired titanium oxide product as a molded product can also be obtained. In addition, in the present invention, in any of the above cases, if a metatitanic acid sol or gel is newly added to the powdered dried product or fired product, the product is molded into the desired shape, and then fired, the mechanical strength and porosity,
Various physical properties such as specific surface area and pore distribution can be improved, and the shrinkage rate during firing can be suppressed. In such cases, the amount of metatitanic acid sol or gel added is 5 to 50% of the weight of the molded product in terms of titanium oxide.
Weight % is appropriate. Furthermore, it is of course possible to use conventionally known general molding aids such as methyl cellulose during molding. In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like. As described above, the fired titanium oxide product obtained according to the present invention is not limited in any way by theory, but due to the presence of fine particles of silicic acid, the crystal growth of titanium oxide is suppressed during firing of metatitanic acid, and the titanium oxide fired product is not limited in any way by theory. Because the anatase-type crystals remain, the resulting fired products have a large surface area, excellent heat resistance, and excellent mechanical strength after molding.
It can be suitably used as a catalyst carrier or as a catalyst as it is. The fact that the calcined product obtained according to the present invention contains ungrown anatase is confirmed by the fact that its X-ray spectrum shows a low and broad peak, as shown in Figure 1; In the case of anatase-type titanium oxide for pigments, its X-ray spectrum is shown in Figure 2, as the crystals have grown extremely well, so the peak is high, and
sharp. The fired titanium oxide product of the present invention is suitable for use as a carrier, and depending on the type of reaction, it can be used as it is as a catalyst.
According to the present invention, if the fired titanium oxide product obtained as described above is used as a carrier, and an oxide conventionally known to have catalytic activity for removing nitrogen oxides is supported on this carrier, Due to the unexpected synergistic effect with the oxides constituting the fired product, it is possible to obtain a catalyst for removing nitrogen oxides with excellent selective catalytic reduction activity of nitrogen oxides using ammonia as a reducing agent. Such a catalyst for removing nitrogen oxides contains vanadium, tungsten,
It can be obtained by supporting an oxide of at least one element selected from molybdenum, copper, iron, chromium, manganese, and cerium. The method for supporting the above-mentioned oxide on the titanium oxide fired product can be any method conventionally used for preparing catalysts. For example, the above-mentioned oxide or its precursor is supported on the fired product formed into a predetermined shape. After impregnating or coating with the solution or dispersion contained therein, it may be fired to a predetermined temperature as necessary. Of course, the catalyst for removing nitrogen oxides can also be obtained by kneading the powdered calcined product with the solution or dispersion, molding it into a desired shape, and then calcining it to a predetermined temperature as necessary. can. In order to remove nitrogen oxides from a mixed gas containing nitrogen oxides using such a catalyst, 0.5 to 5 times the mole of ammonia, preferably 1 to 2 times the mole of nitrogen oxides contained in the mixed gas, is added. In addition, this is passed through a reaction bed filled with a catalyst. Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed. Since the catalyst of the present invention contains fine particles of silicic acid and has excellent heat resistance, the reaction temperature may range from 200 to 600°C, but preferably from 300 to 500°C. Also, the space velocity of gas is 1000 ~
100,000 hr -1 , preferably in the range of 3,000 to 300,000 hr -1 . Such catalysts for removing nitrogen oxides can be used to treat any gas containing nitrogen oxides, but in particular boiler exhaust gas, i.e.
1000 ppm of nitrogen oxides, mainly nitric oxide, as well as 200-2000 ppm of sulfur oxides, mainly sulfur dioxide, 1-10% by volume of oxygen, 5-20% by volume.
It can be suitably used to remove nitrogen oxides from exhaust gas containing 5% to 20% by volume of water vapor and 5% to 20% by volume of water vapor. Effects of the Invention According to the method of the present invention, as described above, fine particles of silicic acid are present in metatitanic acid partially or completely solized, and this is fired, so that fine particles of silicic acid are present in the resulting fired product. is uniformly dispersed, and titanium oxide remains in the ungrown anatase crystal due to the action of fine silicic acid particles, resulting in a large surface area, significantly improved heat resistance, and It also has excellent mechanical strength. Therefore, the fired titanium oxide product according to the present invention is suitable for use as a carrier for a catalyst for removing nitrogen oxides, and the catalyst for removing nitrogen oxides obtained by using the fired titanium oxide product according to the present invention as a support is suitable for use as a support for a catalyst for removing nitrogen oxides. Not only does the carrier have a large surface area and high catalytic activity, but also the synergistic effect of the catalytically active metal oxide with the anatase-type titanium oxide and fine-particle silicic acid, which have suppressed development, makes it possible to withstand even severe usage conditions. It not only maintains high nitrogen oxide removal activity over a long period of time, but also has an extremely low oxidation rate of sulfur dioxide to sulfur trioxide, making it practical.
Excellent as an industrial nitrogen oxide removal catalyst. The present invention will be explained below with reference to Examples, but the present invention is not limited in any way by these Examples. The properties of the fired titanium oxide product according to the present invention are determined by the performance of the catalyst for removing nitrogen oxides, which is made of the fired product itself, and by using the fired product as a carrier and further adding a metal oxide having catalytic activity for removing nitrogen oxides. The performance of the supported catalyst for removing nitrogen oxides was evaluated. Example 1 Titanium sulfate obtained from the titanium oxide manufacturing process using the sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, 1 kg of this was taken out as titanium oxide, 80 g of barium chloride (dihydrate) was added, and the mixture was stirred. It was made into a sol. Next, 200 g of fine particle silicic acid "Fine Seal" (registered trademark, manufactured by Tokuyama Soda Co., Ltd.) was added,
After thorough stirring and mixing, the mixture was dried at 100°C for 12 hours and then baked at 500°C for 3 hours. This fired product is crushed using a sample mill, the particle size is adjusted, and
It was used as a carrier for the following catalyst for removing nitrogen oxides. The X-ray spectrum of the carrier thus obtained is shown in FIG. Since the peak is low and broad, it is clear that the anatase crystal remains ungrown. The X-ray spectrum was measured using an X-ray diffractometer RAD-A manufactured by Rigaku Denki Co., Ltd., and the measurement conditions were as follows. Scanning speed 1°/4 minutes Full scale 1000cps Time constant 1 second Chart speed 10mm/minute Target Copper Tube voltage 30KV Tube current 10mA For comparison, the X-ray spectrum of commercially available pigment anatase titanium oxide is shown in Figure 2. . The measurement conditions are the same as above except that the full scale is 4000 cps. Next, 110g of ammonium paratungstate
and 10g of ammonium metavanadate.
Add 250ml of 10% methylamine solution to the carrier obtained above, knead it, extrude it into a lattice-shaped molded product using an extruder, heat it from room temperature to 100°C and dry it.
Next, it was calcined at 500° C. for 3 hours to obtain a catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported. Example 2 As in Example 1, fine particle silicic acid "Fine Seal" was added to 1 kg of metatitanic acid in terms of titanium oxide.
(registered trademark, manufactured by Tokuyama Soda Co., Ltd.) was added and kneaded, and then 80 g of barium chloride (dihydrate) was added to form a sol and stirred. This was dried and fired, and tungsten oxide and vanadium oxide were supported on this fired product in the same manner as in Example 1 to obtain a catalyst for removing nitrogen oxides. Example 3 Completely the same as Example 1 except that "Aerosil" (registered trademark, manufactured by Nippon Aerosil Co., Ltd.), which is obtained by vapor phase hydrolysis of silicon tetrachloride, was used as the particulate silicic acid. A carrier was produced, and tungsten oxide and vanadium oxide were supported on the carrier in exactly the same manner as in Example 1 to obtain a catalyst for removing nitrogen oxides. Comparative Example 1 A fired titanium oxide product containing fine silicic acid particles was obtained in exactly the same manner as in Example 1 except that metatitanic acid was not solized, and this was treated in the same manner as in Example 1. A catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported was obtained. Comparative Example 2 In Example 1, after metatitanic acid was made into a sol, it was filtered, washed with water, dried at 100°C for 12 hours, and then calcined at a temperature of 500°C for 3 hours and pulverized without adding fine particle silicic acid. and used as a carrier. Using this carrier, a catalyst for removing nitrogen oxides having tungsten oxide and vanadium oxide supported thereon was obtained in exactly the same manner as in Example 1. Comparative Example 3 250 ml of a 10% methylamine solution containing 110 g of ammonium paratungstate and 10 g of ammonium metavanadate and fine particle silicic acid "Fine Seal" were added to the titanium oxide fired product carrier obtained in Comparative Example 2.
(registered trademark, manufactured by Tokuyama Soda Co., Ltd.) (200 g) was added and kneaded. Next, this was extruded into a grid shape and heated to 100°C.
dried for 12 hours, then baked at 500℃ for 3 hours,
A nitrogen oxide removal catalyst supporting tungsten oxide and vanadium oxide was obtained. Each of the nitrogen oxide removal catalysts obtained in the above Examples and Comparative Examples contained 200 ppm of nitrogen oxides and ammonia.
200ppm, 10% water vapor, 12% carbon dioxide, 800ppm sulfur dioxide, and the balance nitrogen are brought into contact at a temperature of 380℃ and a space velocity of 5000hr -1 .
The nitrogen oxide (NO x ) removal rate and sulfur dioxide (SO 2 ) oxidation rate were measured. The results are shown in Table 1.
Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas. Nitrogen oxide removal rate (%) = (catalyst layer inlet NO x concentration - catalyst layer outlet NO x concentration) / (catalyst layer inlet NO x concentration) × 100 Sulfur dioxide oxidation rate (%) = (catalyst layer inlet SO 2 concentration - SO 2 concentration at catalyst layer outlet) / (catalyst layer inlet (SO 2 + SO 3 ) concentration) x 100

【表】 以上の結果から明らかなように、メタチタン酸
をゾル化しないで微粒子ケイ酸を添加、焼成して
得た比較例としての焼成品を担体とし、これに酸
化バナジウム及び酸化タングステンを担持させた
触媒に比べて、本発明による焼成品を担体として
調製された触媒は、窒素酸化物除去率が高い一
方、二酸化イオウ酸化率は低く、ガス混合物中の
窒素酸化物を除去する際に三酸化イオウの生成に
基づく不利益を除くことができる。
[Table] As is clear from the above results, a fired product as a comparative example obtained by adding fine particles of silicic acid to metatitanic acid without solization and firing was used as a carrier, and vanadium oxide and tungsten oxide were supported on this. Compared to the catalyst prepared using the calcined product according to the present invention as a carrier, the catalyst has a high nitrogen oxide removal rate, but a low sulfur dioxide oxidation rate, and has a low sulfur dioxide oxidation rate when removing nitrogen oxides from a gas mixture. Disadvantages due to sulfur production can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法により得られる酸化チ
タン焼成品のX線スペクトルを示し、第2図は、
比較のための顔料酸化チタンのX線スペクトルを
示す。
Figure 1 shows the X-ray spectrum of the fired titanium oxide product obtained by the method of the present invention, and Figure 2 shows the
The X-ray spectrum of pigment titanium oxide is shown for comparison.

Claims (1)

【特許請求の範囲】[Claims] 1 微粒子ケイ酸をメタチタン酸ゾルに添加し、
撹拌混合した後、得られた混合物を焼成すること
を特徴とする酸化チタン焼成品の製造方法。
1. Adding fine particles of silicic acid to metatitanic acid sol,
A method for producing a fired titanium oxide product, which comprises stirring and mixing and then firing the resulting mixture.
JP63124134A 1988-05-21 1988-05-21 Production of titanium oxide burned product Granted JPS6445725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124134A JPS6445725A (en) 1988-05-21 1988-05-21 Production of titanium oxide burned product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124134A JPS6445725A (en) 1988-05-21 1988-05-21 Production of titanium oxide burned product

Publications (2)

Publication Number Publication Date
JPS6445725A JPS6445725A (en) 1989-02-20
JPH044251B2 true JPH044251B2 (en) 1992-01-27

Family

ID=14877764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124134A Granted JPS6445725A (en) 1988-05-21 1988-05-21 Production of titanium oxide burned product

Country Status (1)

Country Link
JP (1) JPS6445725A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897483B2 (en) * 1999-03-31 2007-03-22 トヨタ自動車株式会社 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP6352270B2 (en) 2013-09-05 2018-07-04 エヌ・イーケムキャット株式会社 Exhaust gas purification oxidation catalyst, exhaust gas purification catalyst structure, and exhaust gas purification method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS55154317A (en) * 1979-05-18 1980-12-01 Ishihara Sangyo Kaisha Ltd Manufacture of fine titanium dioxide composition powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS55154317A (en) * 1979-05-18 1980-12-01 Ishihara Sangyo Kaisha Ltd Manufacture of fine titanium dioxide composition powder

Also Published As

Publication number Publication date
JPS6445725A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
US4798813A (en) Catalyst for removing nitrogen oxide and process for producing the catalyst
US4061596A (en) Process for preparing titanium oxide shaped carrier
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
US6120747A (en) Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
JPH0581301B2 (en)
JPH0242536B2 (en)
US3948807A (en) Oxide catalysts and process for preparation thereof
JPH0114809B2 (en)
JPH0114808B2 (en)
JPH0114810B2 (en)
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JPH0114807B2 (en)
JPH044251B2 (en)
JPS5939345A (en) Desulfurizing agent and preparation thereof
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPH0442328B2 (en)
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH0559847B2 (en)
JPH0442327B2 (en)
JPS6268541A (en) Preparation of catalyst for removing nitrogen oxide
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
JPH0568401B2 (en)
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method