JPH0114808B2 - - Google Patents

Info

Publication number
JPH0114808B2
JPH0114808B2 JP57143665A JP14366582A JPH0114808B2 JP H0114808 B2 JPH0114808 B2 JP H0114808B2 JP 57143665 A JP57143665 A JP 57143665A JP 14366582 A JP14366582 A JP 14366582A JP H0114808 B2 JPH0114808 B2 JP H0114808B2
Authority
JP
Japan
Prior art keywords
catalyst
fired
metatitanic acid
nitrogen oxides
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57143665A
Other languages
Japanese (ja)
Other versions
JPS5935026A (en
Inventor
Toshikuni Sera
Shigeaki Mitsuoka
Takafuru Kobayashi
Tooru Seto
Junsuke Myake
Kazumitsu Abe
Tadao Nakatsuji
Toshikatsu Baba
Toshiaki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sakai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57143665A priority Critical patent/JPS5935026A/en
Publication of JPS5935026A publication Critical patent/JPS5935026A/en
Publication of JPH0114808B2 publication Critical patent/JPH0114808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、窒素酸化物除去用触媒の製造方法に
関し、詳しくは、厳しい使用条件の下においても
長期間にわたつて高い窒素酸化物除去活性を保持
するのみならず、二酸化イオウの三酸化イオウへ
の酸化率が極めて低い窒素酸化物除去用触媒の製
造方法に関する。 従来の技術 一般に、酸化チタン焼成品を触媒担体又は触媒
として用いることは既に知られているが、担体又
は触媒機能に重要な影響を与える表面積、結晶
形、耐熱性、成形後の機械的強度等はその製造方
法や添加物質の有無、種類、量等によつて異なる
ため、従来より種々の製造方法が提案されてい
る。 例えば、酸化チタンにシリカ等の添加剤を添加
して焼成すれば、一般的には、得られる焼成品は
表面積が大きくなり、耐熱性も改善されるが、し
かし、従来におけるように、四塩化チタンや硫酸
チタンのようなチタン塩類に添加剤を添加し、中
和加水分解して、かくして生成した水酸化チタン
を焼成して酸化チタンを形成させる方法によれ
ば、加水分解によつて生成する水酸化チタンがオ
ルソチタン酸となりやすく、従つて、これを焼成
すれば、担体又は触媒として不適当なルチル型酸
化チタンになりやすい問題がある。 一方、メタチタン酸を焼成すれば、他の要因も
あるが、一般に担体や触媒として好ましい結晶形
であるアナターゼ型酸化チタンを与えることも既
に知られている。しかしながら、メタチタン酸に
シリカ等の添加剤を添加して焼成する方法によれ
ば、組成の均一な混合物を得ることが困難であ
り、特に添加剤をメタチタン酸に添加する場合に
は、メタチタン酸がゲル状であるため、添加剤を
メタチタン酸に均一に分散させることができず、
従つて、高性能の担体や触媒を得ることができな
い。 発明が解決しようとする課題 本発明者らは上記した種々の問題を解決するた
めに鋭意研究した結果、添加剤としてタングステ
ン化合物及び/又はモリブデン化合物を用い、且
つ、これをゾル化したメタチタン酸に存在させて
焼成することにより、メタチタン酸の焼成時に酸
化チタンの結晶成長を抑えて、未成長のアナター
ゼ型結晶に留まらしめ、かくして、表面積が大き
く、耐熱性が改善されていると共に、成形後の機
械的強度にすぐれる焼成品を得ることができるこ
とを見出すと共に、かかる焼成品を担体としてあ
る種の金属酸化物を担持させることにより、担体
における各酸化物とこれら金属酸化物の相乗作用
により、従来にない改善された窒素酸化物除去用
触媒を得ることができることを見出して、本発明
に至つたものである。 課題を解決するための手段 本発明による窒素酸化物除去用触媒の製造方法
は、タングステン化合物及びモリブデン化合物か
ら選ばれる少なくとも1種の化合物を含有するゾ
ル化したメタチタン酸を焼成し、かくして得た焼
成品にバナジウム、タングステン、モリブデン、
銅、鉄、クロム、マンガン及びセリウムから選ば
れる少なくとも1種の元素の酸化物を担持させる
ことを特徴とする。 本発明において用いるタングステン化合物は、
酸化タングステン及び焼成によつて酸化タングス
テンを形成する前駆体であり、この前駆体とし
て、例えば、メタタングステン酸アンモニウム等
を挙げることができる。また、同様に、本発明に
おいて用いるモリブデン化合物は、酸化モリブデ
ン及び焼成によつて酸化モリブデンを与える前駆
体であつて、その前駆体として、例えば、モリブ
デン酸アンモニウム等を挙げることができる。 本発明においては、好ましくは、メタチタン酸
をゾル化し、これに上記タングステン化合物及び
モリブデンから選ばれる少なくとも1種の化合物
を添加し、混合し、これを焼成する。また、メタ
チタン酸に上記タングステン化合物及びモリブデ
ンから選ばれる少なくとも1種の化合物を添加し
た後、メタチタン酸をゾル化し、混合してもよ
い。いずれにしても、一部又は全部をゾル化した
メタチタン酸中に上記化合物を存在させることが
必要であり、これによつて、上記化合物をメタチ
タン酸と均一に混合することができる。 上記タングステン化合物及び/又はモリブデン
化合物の添加量は、酸化チタンに基づいて5〜50
重量%であり、添加量が5重量%よりも少ないと
きは、メタチタン酸の焼成時においてその結晶成
長を抑える効果が乏しく、一方、50重量%を越え
るときは、ゾル化したメタチタン酸との混合物が
ゲル化するため、均一な混合が困難となり、やは
り上記効果に劣るようになるので好ましくない。 ゾル化の方法は特に制限されず、例えば、メタ
チタン酸を水洗して、硫酸根を大部分除去した
後、塩酸又は硝酸を加えて一部又は全部をゾル化
する。又は、特に水洗により硫酸根を除かない場
合は、メタチタン酸に塩化バリウム、塩化ストロ
ンチウム、塩化カルシウム等のアルカリ土類金属
の塩化物、若しくは硫酸バリウム、硝酸ストロン
チウム、硝酸カルシウム等のアルカリ土類金属の
硝酸塩を添加し、硫酸根を水不溶性のバリウム塩
として固定しつつ、反応混合物を一部又は全部を
ゾル化する。これらのゲル化剤の添加量は反応混
合物をどの程度ゾル化するかによつて、適宜に選
ばれる。尚、メタチタン酸ゾルは、PH1〜2以上
でゲル化するため、これにタングステン及び/又
はモリブデン化合物を十分均一に混合した後であ
れば、必要に応じてゲル化しても差支えない。 このようにして得られたメタチタン酸と、上記
タングステン及び/又はモリブデン化合物との混
合物は、乾燥し、次いで、800℃以下、好ましく
は反応700〜200℃の温度で焼成し、粉砕すれば、
粉状の焼成品を得る。この場合、本発明によれ
ば、メタチタン酸を用いるため、焼成において担
体や触媒として好ましいアナターゼ型酸化チタン
になる。尚、焼成品をハニカム状等の所定の形状
として担体又は触媒に用いる場合、上記混合物を
乾燥して得られる乾燥品を従来より知られている
任意の方法、例えば、押出成形、転動造粒等の方
法により成形した後に焼成してもよい。また、上
記の粉末状焼成品を所要形状に成形した後、再び
焼成することもできる。この場合は、所要形状に
成形した後、再び800℃以下、好ましくは700〜
200℃の温度で焼成すればよい。このようにして、
本発明によれば、成形品としての酸化チタン焼成
品をも得ることができる。 尚、本発明においては、上記いずれの場合にお
いても、粉末状の乾燥品又は焼成品に新たにメタ
チタン酸ゾル又はゲルを存在させて所要形状に成
形し、これを焼成すれば、機械的強度、気孔率、
比表面積、細孔分布等の諸物性を向上させること
ができると共に、焼成時の収縮率を抑えることが
できる。かかる場合のメタチタン酸ゾル又はゲル
の添加量は酸化チタン換算で成形品重量の5〜50
重量%が適当である。また、成形に際して、従来
より知られている通常の成形助剤、例えば、メチ
ルセルロース等を使用してもよいのは勿論であ
る。 尚、本発明において焼成の雰囲気は何ら制限さ
れず、空気、燃焼ガス、不活性気体等のいずれで
あつてもよい。 以上のようにして得られる酸化チタン焼成品
は、理論により何ら限定されるものではないが、
タングステン化合物及び/又はモリブデン化合物
の存在により、メタチタン酸の焼成時に酸化チタ
ンの結晶成長が抑制され、未成長のアナターゼ型
結晶で留まつているため、得られる焼成品は表面
積が大きく、耐熱性にすぐれと共に、成形後の機
械的強度にすぐれ、触媒担体として好適に用いる
ことができる。 上記焼成品が未成長のアナターゼで留まつてい
ることは、第1図に示したように、そのX線スペ
クトルが低く、且つ、幅広いピークを示すことに
よつて確認され、一方、顔料用のアナターゼ型酸
化チタンの場合は、そのX線スペクトルを第2図
に示すように、結晶が極めてよく成長しているた
め、そのピークが高く、且つ、鋭い。 本発明の方法によれば、以上のようにして得ら
れる酸化チタン焼成品を担体として用い、この担
体に従来より窒素酸化物除去の触媒活性を有する
ことが知られている酸化物を担持させることによ
つて、焼成品を構成する酸化物との予期しない相
乗作用により、アンモニアを還元剤とする窒素酸
化物の選択的接触還元活性にすぐれた窒素酸化物
除去用触媒を得ることができる。 酸化チタン焼成品に上記酸化物を担持させる方
法は、従来より触媒の調製に用いられている任意
の方法によることができ、例えば、所定形状に成
形した焼成品に前記酸化物又はその前駆体を含有
する溶液又は分散液を含浸若しくはコーテイング
した後、必要に応じて所定温度に焼成すればよ
い。また、勿論、粉末状焼成品と前記溶液又は分
散液と混練し、所要形状に成形した後、必要に応
じて所定温度に焼成することによつても、本発明
の窒素酸化物除去用触媒を得ることができる。 本発明による触媒を用いて、窒素酸化物を含有
する混合ガスから窒素酸化物を除去するには、そ
の混合ガスが含有する窒素酸化物の0.5〜5倍モ
ル、好ましくは1〜2倍モルのアンモニアを加
え、これを触媒を充填した反応層を通過させる。
反応層は移動層、流動層、固定層等、いずれも使
用できる。本発明による窒素酸化物除去用触媒
は、タングステン化合物及びモリブデン化合物か
ら選ばれる少なくとも1種を含有して耐熱性にす
ぐれるため、反応温度は200〜600℃の範囲にわた
つてよいが、好ましくは、300〜500℃の範囲であ
る。また、ガスの空間速度は1000〜100000hr-1
好ましくは3000〜300000hr-1の範囲である。 本発明による触媒は、窒素酸化物を含有する任
意のガス処理に用いることができるが、特に、ボ
イラー排ガス、即ち、100〜1000ppmの窒素酸化
物、主として一酸化窒素の他に、200〜2000ppm
のイオウ酸化物、主として二酸化イオウ、1〜10
容量%の酸素、5〜20容量%の炭酸ガス、5〜20
容量%の水蒸気が含有されている排ガス中の窒素
酸化物を除去するのに好適に用いることができ
る。 発明の効果 本発明の方法によれば、以上のように、担体と
しての酸化チタン焼成品の製造において、ゾル化
したメタチタン酸にタングステン化合物及びモリ
ブデン化合物を存在させるので、得られる混合物
においてこれら化合物が均一に分散されており、
しかも、これを焼成するとき、酸化チタンが上記
化合物の作用により未成長のアナターゼ型結晶に
留まつているため、得られる焼成品は表面積が大
きく、耐熱性にすぐれると共に、成形後の機械的
強度もが顕著に改善されている。 本発明による窒素酸化物除去用触媒は、かかる
焼成品を担体として、これに窒素酸化物除去の触
媒活性を有する金属酸化物を担持させてなるの
で、これら金属酸化物と発達の抑制されたアナタ
ーゼ型酸化チタンとの相乗作用により、厳しい使
用条件の下においても長期間にわたつて高い窒素
酸化物除去活性を保持するのみならず、二酸化イ
オウの三酸化イオウへの酸化率が極めて低いの
で、実用的、工業的な窒素酸化物除去触媒として
すぐれている。 実施例 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら制限されるもので
はない。 参考例 1 (焼成品の製造) 硫酸法による酸化チタンの製造工程より得られ
る硫酸チタン溶液を熱加水分解してメタチタン酸
を得、これを酸化チタンとして1Kg取り出し、こ
れに塩化バリウム(二水和物)80gを加えてゾル
化し、十分に撹拌、混合した。次いで、パラタン
グステン酸アンモニウム110gを含有する10%メ
チルアミン溶液250mlを添加し、十分に撹拌、混
合した後、100℃で12時間乾燥し、更に500℃の温
度で3時間焼成した。この焼成品をサンプルミル
により粉砕し、粒度を調整した後、適量の水を加
え、混練した後、押出機により格子状成形物に押
出成形し、常温から100℃に加熱して乾燥し、次
いで、500℃で3時間焼成して、本発明による焼
成品を得た。 このようにして得られた焼成品のX線スペクト
ルを第1図に示す。ピークが低く、且つ、幅広い
ので、アナターゼ型結晶が未成長のままで留まつ
ていることが明らかである。 尚、X線スペクトルは、理学電機(株)製X線回折
装置RAD−Aを用いて測定し、その測定条件
は次のとおりである。 走査速度 1゜/4分 フルスケール 1000cps 時定数 1秒 チヤート速度 10mm/分 ターゲツト 銅 管電圧 30KV 管電流 10mA 尚、比較のために、市販の顔料アナターゼ酸化
チタンのX線スペクトルを第2図に示す。測定条
件は上記において、フルスケールが4000cpsであ
る以外は上記と同じである。 参考例 2 (焼成品の製造) 参考例1と同じメタチタン酸を酸化チタン換算
で1Kg取り出し、これに塩化バリウム(二水和
物)80gを添加してゾル化し、一分に撹拌、混合
した。次いで、モリブデン酸アンモニウム120g
を含有するメチルアミン溶液300mlを添加し、以
下、参考例1と全く同様にして焼成し、焼成品を
得た。 実施例 1 参考例1で得た焼成品に、メタバナジン酸アン
モニウム10gとシユウ酸25gとを含有する水溶液
を加え、十分に混練した後、押出機により格子状
成形物に押出成形し、常温から100℃に加熱して
乾燥し、次いで、500℃で3時間焼成し、窒素酸
化物除去用触媒を得た。 実施例 2 参考例2で得た焼成品を用いる以外は、実施例
2と全く同様にして窒素酸化物除去用触媒を得
た。 比較例 1 参考例1と同じメタチタン酸を酸化チタン換算
で1Kg取り出し、これに塩化バリウム(二水和
物)80gを添加してゾル化し、十分に撹拌、混合
した後、100℃で12時間乾燥し、更に500℃の温度
で3時間焼成した。この焼成品をサンプルミルに
より粉砕し、粒度を調整した。次いで、パラタン
グステン酸アンモニウム110gを含有するメチル
アミン溶液250mlを添加、混練し、更に、適量の
水を加えて混練した後、参考例1と全く同様に格
子状に押出成形し、焼成して窒素酸化物除去触媒
を得た。 比較例 2 比較例1において得た焼成品にメタバナジン酸
アンモニウム10gとシユウ酸25gを水に溶解した
水溶液を加え、更に適量の水を加えて混練した
後、格子状に押出成形し、100℃で12時間乾燥し、
更に500℃で3時間焼成して、窒素酸化物除去用
触媒を得た。 比較例 3 塩化バリウムによりメタチタン酸をゾル化しな
かつた以外は、参考例1と全く同様にして焼成品
を得た。 以上の実施例及び比較例で得た各窒素酸化物除
去用触媒に、窒素酸化物200ppm、アンモニア
200ppm、水蒸気10%、二酸化炭素12%、二酸化
イオウ800ppm、残部窒素からなる組成の混合ガ
スを温度380℃、空間速度5000hr-1にて接触させ、
窒素酸化物(NOx)除去率及び二酸化イオウ
(SO2)酸化率を測定した。更に、参考例1及び
2で得た焼成品自体も、窒素酸化物除去活性を有
するので、同様に窒素酸化物除去率及び二酸化イ
オウ酸化率を測定した。結果を第1表に示す。
尚、窒素酸化物除去率(%)及び二酸化イオウ酸
化率(%)はそれぞれ次式により求めた。 窒素酸化物除去率(%)=(触媒層入口NOx濃
度−触媒層出口NOx濃度)/(触媒層入口NOx
濃度)×100 二酸化イオウ酸化率(%)=(触媒層入口SO2
度−触媒層出口SO2濃度)/(触媒層入口(SO2
+SO3)濃度)×100
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a catalyst for removing nitrogen oxides, and more specifically, it not only maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, but also has a method for producing a catalyst for removing sulfur dioxide. The present invention relates to a method for producing a catalyst for removing nitrogen oxides, which has an extremely low rate of oxidation of sulfur trioxide to sulfur trioxide. Conventional technology Generally, it is already known that fired titanium oxide products are used as catalyst carriers or catalysts, but surface area, crystal shape, heat resistance, mechanical strength after molding, etc. have important effects on the carrier or catalyst function. Since it differs depending on the manufacturing method and the presence/absence, type, amount, etc. of additive substances, various manufacturing methods have been proposed in the past. For example, if additives such as silica are added to titanium oxide and fired, the resulting fired product will generally have a larger surface area and improved heat resistance. According to the method, titanium oxide is formed by adding additives to titanium or titanium salts such as titanium sulfate, neutralizing and hydrolyzing the titanium salts, and calcining the titanium hydroxide thus formed. There is a problem in that titanium hydroxide tends to become orthotitanic acid, and therefore, when it is calcined, it tends to become rutile-type titanium oxide, which is unsuitable as a carrier or catalyst. On the other hand, it is already known that if metatitanic acid is calcined, anatase-type titanium oxide, which is a crystal form that is generally preferred as a carrier or catalyst, can be obtained, although there are other factors as well. However, according to the method of adding additives such as silica to metatitanic acid and baking it, it is difficult to obtain a mixture with a uniform composition. Because it is gel-like, additives cannot be uniformly dispersed in metatitanic acid.
Therefore, it is not possible to obtain a high-performance support or catalyst. Problems to be Solved by the Invention As a result of intensive research in order to solve the various problems described above, the present inventors have found that a tungsten compound and/or a molybdenum compound is used as an additive, and this is added to metatitanic acid in the form of a sol. By sintering in the presence of titanium, the crystal growth of titanium oxide is suppressed during sintering of metatitanic acid, and the crystal growth of titanium oxide remains in ungrown anatase-type crystals, resulting in a large surface area and improved heat resistance. It was discovered that it is possible to obtain a fired product with excellent mechanical strength, and by using the fired product as a carrier to support certain metal oxides, the synergistic effect of each oxide on the carrier and these metal oxides, The present invention was developed based on the discovery that it is possible to obtain a catalyst for removing nitrogen oxides that is unprecedentedly improved. Means for Solving the Problems The method for producing a catalyst for removing nitrogen oxides according to the present invention involves calcining sol-formed metatitanic acid containing at least one compound selected from a tungsten compound and a molybdenum compound; Products include vanadium, tungsten, molybdenum,
It is characterized by supporting an oxide of at least one element selected from copper, iron, chromium, manganese, and cerium. The tungsten compound used in the present invention is
Tungsten oxide is a precursor that forms tungsten oxide by firing, and examples of this precursor include ammonium metatungstate. Similarly, the molybdenum compound used in the present invention is molybdenum oxide and a precursor that gives molybdenum oxide through calcination, and examples of the precursor include ammonium molybdate. In the present invention, preferably, metatitanic acid is made into a sol, and at least one compound selected from the above-mentioned tungsten compound and molybdenum is added thereto, mixed, and fired. Alternatively, after adding at least one compound selected from the above tungsten compound and molybdenum to metatitanic acid, the metatitanic acid may be sol-formed and mixed. In any case, it is necessary to make the above-mentioned compound exist in metatitanic acid which is partially or completely solized, thereby allowing the above-mentioned compound to be uniformly mixed with metatitanic acid. The amount of the tungsten compound and/or molybdenum compound added is 5 to 50% based on titanium oxide.
When the amount added is less than 5% by weight, the effect of suppressing the crystal growth of metatitanic acid during firing is poor, while when it exceeds 50% by weight, the mixture with sol-formed metatitanic acid gelatinizes, making it difficult to mix uniformly, which is also undesirable because the above-mentioned effects are inferior. The method of solization is not particularly limited, and for example, metatitanic acid is washed with water to remove most of the sulfuric acid groups, and then hydrochloric acid or nitric acid is added to partially or completely solize it. Alternatively, if the sulfate roots are not removed by washing with water, add alkaline earth metal chlorides such as barium chloride, strontium chloride, calcium chloride, etc., or alkaline earth metal chlorides such as barium sulfate, strontium nitrate, calcium nitrate to metatitanic acid. Nitrate is added to fix the sulfate radicals as water-insoluble barium salts while the reaction mixture is partially or completely solified. The amount of these gelling agents added is appropriately selected depending on the degree to which the reaction mixture is to be turned into a sol. Note that metatitanic acid sol gels at a pH of 1 to 2 or higher, so it may be gelled if necessary, as long as the tungsten and/or molybdenum compound is sufficiently uniformly mixed therein. The mixture of metatitanic acid and the tungsten and/or molybdenum compound thus obtained is dried, then calcined at a temperature of 800°C or lower, preferably at a reaction temperature of 700 to 200°C, and pulverized.
Obtain a powdered baked product. In this case, according to the present invention, metatitanic acid is used, resulting in anatase-type titanium oxide, which is preferable as a carrier or catalyst in calcination. In addition, when the fired product is used as a carrier or catalyst in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the above mixture can be processed by any conventionally known method, such as extrusion molding or rolling granulation. It may be baked after being molded by a method such as the above. Further, the powdered fired product described above can be molded into a desired shape and then fired again. In this case, after molding into the desired shape, the temperature is again below 800℃, preferably between 700℃ and 700℃.
It can be fired at a temperature of 200℃. In this way,
According to the present invention, a fired titanium oxide product as a molded product can also be obtained. In addition, in the present invention, in any of the above cases, if a metatitanic acid sol or gel is newly added to the powdered dried product or fired product, the product is molded into the desired shape, and then fired, the mechanical strength and porosity,
Various physical properties such as specific surface area and pore distribution can be improved, and the shrinkage rate during firing can be suppressed. In such cases, the amount of metatitanic acid sol or gel added is 5 to 50% of the weight of the molded product in terms of titanium oxide.
Weight % is appropriate. Furthermore, it is of course possible to use conventionally known general molding aids such as methyl cellulose during molding. In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like. The fired titanium oxide product obtained as described above is not limited in any way by theory, but
Due to the presence of tungsten compounds and/or molybdenum compounds, the crystal growth of titanium oxide is suppressed during firing of metatitanic acid, and the ungrown anatase crystals remain, resulting in fired products with a large surface area and good heat resistance. It also has excellent mechanical strength after molding, and can be suitably used as a catalyst carrier. As shown in Figure 1, it is confirmed that the fired product remains ungrown anatase by its X-ray spectrum showing low and broad peaks. In the case of anatase type titanium oxide, as shown in the X-ray spectrum of FIG. 2, the peak is high and sharp because the crystals have grown extremely well. According to the method of the present invention, the calcined titanium oxide product obtained as described above is used as a carrier, and an oxide conventionally known to have catalytic activity for removing nitrogen oxides is supported on this carrier. Due to the unexpected synergistic effect with the oxides constituting the fired product, it is possible to obtain a catalyst for removing nitrogen oxides having excellent selective catalytic reduction activity of nitrogen oxides using ammonia as a reducing agent. The method for supporting the above-mentioned oxide on the titanium oxide fired product can be any method conventionally used for preparing catalysts. For example, the above-mentioned oxide or its precursor is supported on the fired product formed into a predetermined shape. After impregnating or coating with the solution or dispersion contained therein, it may be fired to a predetermined temperature as necessary. Of course, the catalyst for removing nitrogen oxides of the present invention can also be produced by kneading the powdered calcined product with the solution or dispersion, molding it into a desired shape, and then calcining it to a predetermined temperature as necessary. Obtainable. In order to remove nitrogen oxides from a gas mixture containing nitrogen oxides using the catalyst according to the present invention, the amount of nitrogen oxides contained in the gas mixture is 0.5 to 5 times the mole, preferably 1 to 2 times the mole of nitrogen oxides contained in the gas mixture. Ammonia is added and passed through a reaction bed filled with catalyst.
Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed. Since the catalyst for removing nitrogen oxides according to the present invention contains at least one selected from tungsten compounds and molybdenum compounds and has excellent heat resistance, the reaction temperature may range from 200 to 600°C, but is preferably , in the range of 300-500℃. Also, the space velocity of gas is 1000 to 100000hr -1 ,
Preferably it is in the range of 3,000 to 300,000 hr -1 . The catalyst according to the invention can be used for the treatment of any gas containing nitrogen oxides, but in particular boiler exhaust gas, i.e. 100-1000 ppm nitrogen oxides, mainly nitrogen monoxide, as well as 200-2000 ppm nitrogen oxides.
sulfur oxides, mainly sulfur dioxide, 1-10
% oxygen by volume, 5-20% carbon dioxide by volume, 5-20
It can be suitably used to remove nitrogen oxides from exhaust gas containing % by volume of water vapor. Effects of the Invention According to the method of the present invention, as described above, in the production of a fired titanium oxide product as a carrier, a tungsten compound and a molybdenum compound are present in the sol-formed metatitanic acid, so that these compounds are present in the resulting mixture. evenly distributed,
Moreover, when this is fired, the titanium oxide remains in the ungrown anatase crystals due to the action of the above compounds, so the fired products obtained have a large surface area, excellent heat resistance, and mechanical resistance after molding. Strength is also significantly improved. The catalyst for removing nitrogen oxides according to the present invention uses such a calcined product as a carrier and supports metal oxides having catalytic activity for removing nitrogen oxides. Due to the synergistic effect with type titanium oxide, it not only maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, but also has an extremely low oxidation rate of sulfur dioxide to sulfur trioxide, making it suitable for practical use. It is excellent as an industrial nitrogen oxide removal catalyst. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. Reference Example 1 (Manufacture of fired products) Titanium sulfate solution obtained from the titanium oxide manufacturing process using the sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, 1 kg of this was taken as titanium oxide, and barium chloride (dihydrate) was added to it. 80g of the mixture was added to form a sol, and thoroughly stirred and mixed. Next, 250 ml of a 10% methylamine solution containing 110 g of ammonium paratungstate was added, thoroughly stirred and mixed, dried at 100°C for 12 hours, and further calcined at 500°C for 3 hours. This baked product is ground in a sample mill, the particle size is adjusted, an appropriate amount of water is added, kneaded, extruded into a lattice-shaped molded product using an extruder, heated from room temperature to 100°C to dry it, and then A fired product according to the present invention was obtained by firing at 500°C for 3 hours. The X-ray spectrum of the fired product thus obtained is shown in FIG. Since the peak is low and broad, it is clear that the anatase crystal remains ungrown. The X-ray spectrum was measured using an X-ray diffractometer RAD-A manufactured by Rigaku Denki Co., Ltd., and the measurement conditions were as follows. Scanning speed 1°/4 minutes full scale 1000cps Time constant 1 second Chart speed 10mm/min Target Copper tube voltage 30KV Tube current 10mA For comparison, the X-ray spectrum of commercially available pigment anatase titanium oxide is shown in Figure 2. . The measurement conditions are the same as above except that the full scale is 4000 cps. Reference Example 2 (Manufacture of baked product) 1 kg of the same metatitanic acid as in Reference Example 1 was taken out in terms of titanium oxide, 80 g of barium chloride (dihydrate) was added thereto to form a sol, and the mixture was stirred and mixed for 1 minute. Next, 120g of ammonium molybdate
300 ml of a methylamine solution containing was added thereto, and the mixture was then fired in exactly the same manner as in Reference Example 1 to obtain a fired product. Example 1 An aqueous solution containing 10 g of ammonium metavanadate and 25 g of oxalic acid was added to the fired product obtained in Reference Example 1, thoroughly kneaded, and extruded into a lattice-shaped product using an extruder. The mixture was dried by heating to .degree. C., and then calcined at 500.degree. C. for 3 hours to obtain a catalyst for removing nitrogen oxides. Example 2 A catalyst for removing nitrogen oxides was obtained in exactly the same manner as in Example 2, except that the fired product obtained in Reference Example 2 was used. Comparative Example 1 1 kg of the same metatitanic acid as in Reference Example 1 was taken out in terms of titanium oxide, and 80 g of barium chloride (dihydrate) was added to it to form a sol. After thorough stirring and mixing, it was dried at 100°C for 12 hours. Then, it was further baked at a temperature of 500°C for 3 hours. This fired product was pulverized using a sample mill to adjust the particle size. Next, 250 ml of a methylamine solution containing 110 g of ammonium paratungstate was added and kneaded, and an appropriate amount of water was added and kneaded, followed by extrusion molding into a lattice shape in exactly the same manner as in Reference Example 1, baking, and nitrogen gas. An oxide removal catalyst was obtained. Comparative Example 2 An aqueous solution of 10 g of ammonium metavanadate and 25 g of oxalic acid dissolved in water was added to the fired product obtained in Comparative Example 1, and an appropriate amount of water was added and kneaded, then extruded into a lattice shape and heated at 100°C. Dry for 12 hours,
The mixture was further calcined at 500°C for 3 hours to obtain a catalyst for removing nitrogen oxides. Comparative Example 3 A fired product was obtained in exactly the same manner as in Reference Example 1, except that metatitanic acid was not sol-formed with barium chloride. Each of the nitrogen oxide removal catalysts obtained in the above Examples and Comparative Examples contained 200 ppm of nitrogen oxides and ammonia.
200ppm, 10% water vapor, 12% carbon dioxide, 800ppm sulfur dioxide, and the balance nitrogen are brought into contact at a temperature of 380°C and a space velocity of 5000hr -1 .
The nitrogen oxide (NOx) removal rate and sulfur dioxide (SO 2 ) oxidation rate were measured. Furthermore, since the fired products obtained in Reference Examples 1 and 2 themselves also had nitrogen oxide removal activity, the nitrogen oxide removal rate and sulfur dioxide oxidation rate were similarly measured. The results are shown in Table 1.
Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas. Nitrogen oxide removal rate (%) = (catalyst layer inlet NOx concentration - catalyst layer outlet NOx concentration) / (catalyst layer inlet NOx
concentration) x 100 Sulfur dioxide oxidation rate (%) = (catalyst layer inlet SO 2 concentration - catalyst layer outlet SO 2 concentration) / (catalyst layer inlet (SO 2
+SO 3 ) concentration) x 100

【表】 以上の結果から明らかなように、本発明の触媒
によれば、窒素酸化物除去率が高い一方、二酸化
イオウ酸化率は低く、ガス混合物中の窒素酸化物
を除去する際に三酸化イオウの生成に基づく不利
益を除くことができる。
[Table] As is clear from the above results, according to the catalyst of the present invention, the nitrogen oxide removal rate is high, but the sulfur dioxide oxidation rate is low, and when removing nitrogen oxides from the gas mixture, trioxide Disadvantages due to sulfur production can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法において用いる酸化チ
タン焼成品のX線スペクトルを示し、第2図は、
比較のための顔料酸化チタンのX線スペクトルを
示す。
Figure 1 shows the X-ray spectrum of the fired titanium oxide product used in the method of the present invention, and Figure 2 shows the
The X-ray spectrum of pigment titanium oxide is shown for comparison.

Claims (1)

【特許請求の範囲】[Claims] 1 タングステン化合物及びモリブデン化合物か
ら選ばれる少なくとも1種の化合物を含有するゾ
ル化したメタチタン酸を焼成し、かくして得た焼
成品にバナジウム、タングステン、モリブデン、
銅、鉄、クロム、マンガン及びセリウムから選ば
れる少なくとも1種の元素の酸化物を担持させる
ことを特徴とする窒素酸化物除去用触媒の製造方
法。
1. A solized metatitanic acid containing at least one compound selected from a tungsten compound and a molybdenum compound is fired, and the fired product thus obtained contains vanadium, tungsten, molybdenum,
A method for producing a catalyst for removing nitrogen oxides, which comprises supporting an oxide of at least one element selected from copper, iron, chromium, manganese, and cerium.
JP57143665A 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst Granted JPS5935026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143665A JPS5935026A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143665A JPS5935026A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63124133A Division JPS63310767A (en) 1988-05-21 1988-05-21 Production of titanium oxide calcined product

Publications (2)

Publication Number Publication Date
JPS5935026A JPS5935026A (en) 1984-02-25
JPH0114808B2 true JPH0114808B2 (en) 1989-03-14

Family

ID=15344081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143665A Granted JPS5935026A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Country Status (1)

Country Link
JP (1) JPS5935026A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
DE3684739D1 (en) * 1985-08-19 1992-05-14 Mitsubishi Heavy Ind Ltd METHOD FOR TREATING A CATALYST FOR REMOVING NITROGEN OXIDES.
JP2991431B2 (en) * 1987-06-05 1999-12-20 バブコツク日立株式会社 Catalyst for catalytic reduction and denitration of ammonia and its production method
JP2583911B2 (en) * 1987-10-26 1997-02-19 バブコツク日立株式会社 Nitrogen oxide removal catalyst
JPH0256250A (en) * 1988-08-23 1990-02-26 Sakai Chem Ind Co Ltd Catalyst for removing nitrogen oxide in exhaust gas
JP4225735B2 (en) 2002-03-01 2009-02-18 バブコック日立株式会社 Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
US7491676B2 (en) * 2004-10-19 2009-02-17 Millennium Inorganic Chemicals High activity titania supported metal oxide DeNOx catalysts
JP5638746B2 (en) 2008-08-20 2014-12-10 堺化学工業株式会社 Catalyst and method for pyrolyzing organic matter and method for producing such a catalyst
CN104707593B (en) * 2013-12-16 2017-08-29 中国科学院大连化学物理研究所 The method that integral extruding type Faveolate denitration catalyst is prepared by raw material of metatitanic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089291A (en) * 1973-12-12 1975-07-17
JPS5089264A (en) * 1973-12-12 1975-07-17
JPS5213472A (en) * 1975-07-23 1977-02-01 Mitsui Petrochem Ind Ltd Process for removal of nitrogen oxides in exhaust gases
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089291A (en) * 1973-12-12 1975-07-17
JPS5089264A (en) * 1973-12-12 1975-07-17
JPS5213472A (en) * 1975-07-23 1977-02-01 Mitsui Petrochem Ind Ltd Process for removal of nitrogen oxides in exhaust gases
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst

Also Published As

Publication number Publication date
JPS5935026A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
EP0214085B1 (en) Process for preparing a catalyst for removing nitrogen oxides
JPH0653227B2 (en) Preparation of catalyst for selective reduction of nitrogen oxides with ammonia
WO2019006895A1 (en) Preparation method and use of trifolium-shaped catalyst for cooperatively controlling nox and cvocs
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JPH0114808B2 (en)
JPH0242536B2 (en)
US3948807A (en) Oxide catalysts and process for preparation thereof
JPH0114809B2 (en)
JPH0114810B2 (en)
JPH0114807B2 (en)
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JPH0442327B2 (en)
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPH044251B2 (en)
JPS6268541A (en) Preparation of catalyst for removing nitrogen oxide
JPS6242742A (en) Production of catalyst for removing nitrogen oxide
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JPH0442328B2 (en)
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP2000237588A (en) Production of catalyst carrier for purifying waste gas
JPH0810619A (en) Ozone decomposing catalyst and decomposing method