JPH0114807B2 - - Google Patents

Info

Publication number
JPH0114807B2
JPH0114807B2 JP57143664A JP14366482A JPH0114807B2 JP H0114807 B2 JPH0114807 B2 JP H0114807B2 JP 57143664 A JP57143664 A JP 57143664A JP 14366482 A JP14366482 A JP 14366482A JP H0114807 B2 JPH0114807 B2 JP H0114807B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
nitrogen oxides
silicic acid
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57143664A
Other languages
Japanese (ja)
Other versions
JPS5935025A (en
Inventor
Toshikuni Sera
Shigeaki Mitsuoka
Atsushi Morii
Kohei Suyama
Kazumitsu Abe
Tadao Nakatsuji
Toshikatsu Baba
Toshiaki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sakai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57143664A priority Critical patent/JPS5935025A/en
Publication of JPS5935025A publication Critical patent/JPS5935025A/en
Publication of JPH0114807B2 publication Critical patent/JPH0114807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、窒素酸化物除去用触媒の製造方法に
関し、詳しくは、厳しい使用条件の下においても
長期間にわたつて高い窒素酸化物除去活性を保持
するのみならず、二酸化イオウの三酸化イオウへ
の酸化率が極めて低い窒素酸化物除去用触媒の製
造方法に関する。 従来の技術 一般に、酸化チタン焼成品を触媒担体又は触媒
として用いることは既に知られているが、担体又
は触媒機能に重要な影響を与える表面積、結晶
形、耐熱性、成形後の機械的強度等はその製造方
法や添加物質の有無、種類、量等によつて異なる
ため、従来より種々の製造方法が提案されてい
る。 例えば、酸化チタンにシリカを添加して焼成す
れば、一般的には、得られる焼成品は表面積が大
きくなり、耐熱性も改善されるが、しかし、従来
におけるように、四塩化チタンや硫酸チタンのよ
うなチタン塩類にシリカを添加し、中和加水分解
して、かくして生成した水酸化チタンを焼成して
酸化チタンを形成させる方法によれば、加水分解
によつて生成する水酸化チタンがオルソチタン酸
となりやすく、従つて、これを焼成すれば、担体
又は触媒として不適当なルチル型酸化チタンにな
りやすい問題がある。 一方、チタン塩を熱加水分解すれば、メタチタ
ン酸になりやすく、これを焼成すれば、他の要因
もあるが、一般に担体や触媒として好ましい結晶
形であるアナターゼ型酸化チタンを与えることも
既に知られている。しかしながら、このようにし
て得られた水酸化チタン又は酸化チタンにシリカ
を添加して焼成する方法によれば、組成の均一な
混合物を得ることが困難であり、特にシリカを水
酸化チタンに添加する場合には、水酸化チタンが
ゲル状であるため、シリカを水酸化チタンに均一
に分散させることができず、従つて、高性能の担
体や触媒を得ることができない。 発明が解決しようとする課題 本発明は上記した種々の問題を解決するために
なされたものであつて、微粒子ケイ酸が均一に酸
化チタン中に分散され、従つて、表面積が大き
く、耐熱性にすぐれると共に、成形後の強度にす
ぐれる酸化チタン焼成品を担体とする高性能の窒
素酸化物除去用触媒を製造する方法を提供するこ
とを目的とする。 課題を解決するための手段 本発明による窒素酸化物除去用触媒の製造方法
は、硫酸チタンに微粒子ケイ酸を添加し、熱加水
分解した後、乾燥し、焼成し、かくして得た焼成
品にバナジウム、タングステン、モリブデン、
銅、鉄、クロム、マンガン及びセリウムから選ば
れる少なくとも1種の元素の酸化物を担持させる
ことを特徴とし、好ましくは、この方法におい
て、微粒子ケイ酸の存在下に硫酸チタンを熱加水
分解し、生成したメタチタン酸をゾル化した後、
濾過、乾燥し、焼成して酸化チタン焼成品を得、
これを担体として、上記の酸化物を担持させる。 本発明において用いる微粒子ケイ酸とは、ホワ
イトカーボンの別名でも知られており、比表面積
が非常に大きい点に一つの特徴を有する。これら
微粒子ケイ酸は湿式法、乾式法いずれの方法によ
つて製造されたものでもよく、本発明においては
通常の市販品を用いることができる。本発明にお
いて好適に用いることができる微粒子ケイ酸の市
販品としては、例えば、「フアインシール」(登録
商標、徳山曹達(株)製)や「アエロジル」(登録商
標、日本アエロジル(株)製)等を挙げることができ
るが、これらの中でも特に平均粒径が10〜50mμ、
比表面積が200〜300m2/gであるものが好ましく
用いられる。微粒子ケイ酸の添加量は、酸化チタ
ンに基づいて5〜50重量%であり、5重量%より
も少ないときは、焼成品における微粒子ケイ酸の
添加による担体又は触媒性能の改善の効果が小さ
く、一方、50重量%を越えるときは、相対的に酸
化チタンの含有量が少なくなつて、これを担体と
して用いるとき、酸化チタンに基づく担体及び触
媒の性能が低下するので好ましくない。 本発明の方法においては、上記のような微粒子
ケイ酸を硫酸チタン水溶液に添加し、この混合物
を熱加水分解することにより、メタチタン酸を生
成させ、これを微粒子ケイ酸と沈殿させる。 本発明において、硫酸チタンの熱加水分解は、
微粒子ケイ酸を含有するその水溶液を、通常、80
℃乃至その沸点に加熱することにより行なわれる
が、好ましくは、沸点にて行なわれる。更に好ま
しくは、硫酸チタンの熱加水分解に要する時間を
短縮するため、熱加水分解は種晶の存在下に行な
われる。例えば、種晶として、酸化チタン換算で
2重量%程度のコロイド状のメタチタン酸粒子が
添加される。 硫酸チタンを熱加水分解することによりメタチ
タン酸が生成することは既に知られているが、こ
のメタチタン酸はゲル状であるため、本発明にお
いては、好ましくは、硫酸チタンを微粒子ケイ酸
の存在下で熱加水分解した後、生成したメタチタ
ン酸の一部又は全部をゾル化させることにより、
一層微粒子ケイ酸をメタチタン酸中に均一に分散
させることができる。ゾル化の方法は特に制限さ
れず、例えば、熱加水分解して得た反応混合物を
水洗して、硫酸根を大部分除去した後、塩酸又は
硝酸を加えて一部又は全部をゾル化する。又は、
特に水洗により硫酸根を除かない場合は、反応混
合物に塩化バリウム、塩化ストロンチウム、塩化
カルシウム等のアルカリ土類金属の塩化物、若し
くは硝酸バリウム、硝酸ストロンチウム、硝酸カ
ルシウム等のアルカリ土類金属の硝酸塩を添加
し、硫酸根を水不溶性のバリウム塩として固定し
つつ、反応混合物を一部又は全部をゾル化する。
これらのゲル化剤の添加量は反応混合物をどの程
度ゾル化するかによつて、適宜に選ばれる。 このようにして得られたメタチタン酸と微粒子
ケイ酸との混合物は、水洗し、濾過、乾燥し、次
いで、800℃以下、好ましくは、700〜200℃の温
度で焼成し、粉砕すれば、粉状の焼成品を得る。
この場合、本発明によれば、硫酸チタンを熱加水
分解したメタチタン酸を用いるため、微量にせ
よ、硫酸根が含有されており、このことも焼成に
おいて担体や触媒として好ましいアナターゼ型酸
化チタンになる一つの原因となつている。尚、粉
末状焼成品をハニカム状等の所定の形状として担
体に用いる場合、上記混合物を乾燥して得られる
乾燥品を従来より知られている任意の方法、例え
ば、押出成形、転動造粒等の方法により成形した
後に焼成してもよい。また、上記の粉末状焼成品
に適量の水を加え、混練し、所要形状に成形した
後、再び焼成することもできる。この場合は、所
要形状に成形した後、再び800℃以下、好ましく
は700〜200℃の温度で焼成すればよい。このよう
にして、本発明によれば、成形品としての酸化チ
タン焼成品をも得ることができる。 尚、本発明においては、上記いずれの場合にお
いても、粉末状の乾燥品又は焼成品に新たにメタ
チタン酸ゾル又はゲルを存在させて所要形状に成
形し、これを焼成すれば、機械的強度、気孔率、
比表面積、細孔分布等の諸物性を向上させること
ができると共に、焼成時の収縮率を抑えることが
できる。かかる場合のメタチタン酸ゾル又はゲル
の添加量は酸化チタン換算で成形品重量の5〜50
重量%が適当である。また、成形に際して、従来
より知られている通常の成形助剤、例えば、メチ
ルセルロース等を使用してもよいのは勿論であ
る。 尚、本発明において焼成の雰囲気は何ら制限さ
れず、空気、燃焼ガス、不活性気体等のいずれで
あつてもよい。 以上のようにして得られる酸化チタン焼成品
は、理論により何ら限定されるものではないが、
微粒子ケイ酸の存在により、メタチタン酸の焼成
時に酸化チタンの結晶成長が抑制され、未成長の
アナターゼ型結晶で留まつているため、得られる
焼成品は表面積が大きく、耐熱性にすぐれると共
に、成形後の機械的強度にすぐれ、触媒担体とし
て好適に用いることができる。 上記焼成品が未成長のアナターゼで留まつてい
ることは、第1図に示したように、そのX線スペ
クトルが低く、且つ、幅広いピークを示すことに
よつて確認され、一方、顔料用のアナターゼ型酸
化チタンの場合は、そのX線スペクトルを第2図
に示すように、結晶が極めてよく成長しているた
め、そのピークが高く、且つ、鋭い。 本発明の方法によれば、以上のようにして得ら
れる酸化チタン焼成品を担体として用い、この担
体に従来より窒素酸化物除去の触媒活性を有する
ことが知られている酸化物を担持させることによ
つて、焼成品を構成する酸化物との予期しない相
乗作用により、アンモニアを還元剤とする窒素酸
化物の選択的接触還元活性にすぐれた窒素酸化物
除去用触媒を得ることができる。 酸化チタン焼成品に上記酸化物を担持させる方
法は、従来より触媒の調製に用いられている任意
の方法によることができ、例えば、所定形状に成
形した焼成品に前記酸化物又はその前駆体を含有
する溶液又は分散液を含浸若しくはコーテイング
した後、必要に応じて所定温度に焼成すればよ
い。また、勿論、粉末状焼成品と前記溶液又は分
散液と混練し、所要形状に成形した後、必要に応
じて所定温度に焼成することによつても、本発明
の窒素酸化物除去用触媒を得ることができる。 本発明による触媒を用いて、窒素酸化物を含有
する混合ガスから窒素酸化物を除去するには、そ
の混合ガスが含有する窒素酸化物の0.5〜5倍モ
ル、好ましくは1〜2倍モルのアンモニアを加
え、これを触媒を充填した反応層を通過させる。
反応層は移動層、流動層、固定層等、いずれも使
用できる。本発明の方法による窒素酸化物除去用
触媒は、微粒子ケイ酸を含有して耐熱性にすぐれ
るため、反応温度は200〜600℃の範囲にわたつて
よいが、好ましくは300〜500℃の範囲である。ま
た、ガスの空間速度は1000〜100000hr-1、好まし
くは3000〜300000hr-1の範囲である。 本発明による触媒は、窒素酸化物を含有する任
意のガス処理に用いることができるが、特に、ボ
イラー排ガス、即ち、100〜1000ppmの窒素酸化
物、主として一酸化炭素の他に、200〜2000ppm
のイオウ酸化物、主として二酸化イオウ、1〜10
容量%の酸素、5〜20容量%の炭酸ガス、5〜20
容量%の水蒸気が含有されている排ガス中の窒素
酸化物を除去するのに好適に用いることができ
る。 発明の効果 本発明の方法によれば、以上のように、担体と
しての酸化チタン焼成品の製造において、硫酸チ
タンに微粒子ケイ酸を加え、これを熱加水分解し
てメタチタン酸を微粒子ケイ酸と共沈させるの
で、得られる混合物において微粒子ケイ酸が均一
に分散されており、しかも、これを焼成すると
き、酸化チタンが微粒子ケイ酸の作用により未成
長のアナターゼ型結晶に留まつているため、得ら
れる焼成品は表面積が大きく、しかも、微粒子ケ
イ酸が酸化チタン中に一様に分散されているた
め、その耐熱性が顕著に改善されており、また、
成形後の機械的強度にもすぐれる。 本発明の方法による窒素酸化物除去用触媒は、
かかる焼成品を担体として、これに窒素酸化物除
去の触媒活性を有する金属酸化物を担持させてな
るので、これら金属酸化物と発達の抑制されたア
ナターゼ型酸化チタン及び微粒子ケイ酸との相乗
作用により、厳しい使用条件の下においても長期
間にわたつて高い窒素酸化物除去活性を保持する
のみならず、二酸化イオウの三酸化イオウへの酸
化率が極めて低いので、実用的、工業的な窒素酸
化物除去触媒としてすぐれている。 実施例 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら制限されるもので
はない。 実施例 1 硫酸法による酸化チタンの製造工程より得られ
る硫酸チタン溶液を酸化チタンとして1Kg取り出
し、これに微粒子ケイ酸「フアインシール」(登
録商標、徳山曹達(株)製)200gを添加し、十分に
撹拌混合した後、その沸点まで加熱して、硫酸チ
タンを熱加水分解し、微粒子ケイ酸と共沈させ
た。この沈殿物を濾過、水洗し、100℃で12時間
乾燥した後、500℃の温度で3時間焼成した。こ
の焼成品をサンプルミルにより粉砕し、粒度を調
整して、以下の窒素酸化物除去用触媒の担体に用
いた。 上記の粉末担体にパラタングステン酸アンモニ
ウム110gを含有する10%メチルアミン溶液250ml
を添加し、混練した後、押出機により格子状成形
物に押出成形し、常温から100℃に加熱して乾燥
し、次いで、500℃で3時間焼成し、酸化タング
ステンを担持させた窒素酸化物除去用触媒を得
た。 実施例 2 実施例1において、微粒子ケイ酸として「アエ
ロジル」(登録商標、日本アエロジル(株)製)を用
いた以外は、実施例1と全く同様にして担体を製
造し、これに実施例1と全く同様に酸化タングス
テンを担持させて、窒素酸化物除去用触媒を得
た。 実施例 3 実施例1で得たメタチタン酸と微粒子ケイ酸と
の共沈物を濾過、水洗した後、再び水に分散さ
せ、これに塩化バリウム(二水和物)80gを添加
し、メタチタン酸をゾル化して、十分に撹拌混合
した。この後、実施例1と同様にして、沈殿物を
濾過、水洗し、100℃で12時間乾燥した後、500℃
の温度で3時間焼成し、これをサンプルミルによ
り粉砕して担体を得た。このようにして得られた
担体のX線スペクトルを第1図に示す。ピークが
低く、且つ、幅広く、アナターゼ型結晶が未成長
のままで留まつていることが明らかである。 尚、X線スペクトルは、理学電機(株)製X線回折
装置RAD−Aを用いて測定し、その測定条件
は次のとおりである。 走査速度 1゜/4分 フルスケール 1000cps 時定数 1秒 チヤート速度 10mm/分 ターゲツト 銅 管電圧 30KV 管電流 10mA 尚、比較のために、市販の顔料アナターゼ酸化
チタンのX線スペクトルを第2図に示す。測定条
件は上記において、フルスケールが4000cpsであ
る以外は上記と同じである。 次に、この担体を用いて、実施例1と全く同様
にして、酸化タングステンを担持させた窒素酸化
物除去用触媒を得た。 実施例 4 実施例1で得た酸化タングステン担持触媒に、
メタバナジン酸アンモニウム10gとシユウ酸25g
を水に溶解した水溶液を含浸させた後、100℃で
12時間乾燥し、更に500℃で3時間焼成して、酸
化タングステンと酸化バナジウムとを担持させた
窒素酸化物除去用触媒を得た。 実施例 5 実施例2において得た酸化タングステン担持触
媒に、実施例4と同様にして、酸化バナジウムを
担持させて、窒素酸化物除去用触媒を得た。 実施例 6 実施例3において得た酸化タングステン担持触
媒に、実施例4と同様にして更に酸化バナジウム
を担持させて、窒素酸化物除去用触媒を得た。 比較例 1 実施例1において、微粒子ケイ酸を用いなかつ
た以外は、実施例1と全く同様にして、酸化タン
グステンを担持させた窒素酸化物除去用触媒を得
た。 比較例 2 実施例1において、微粒子ケイ酸を用いること
なく、硫酸チタンを熱加水分解してメタチタン酸
を生成させ、濾過、水洗し、再び水に分散させ
て、塩化バリウムによりゾル化した後、濾過、乾
燥し、100℃で12時間乾燥した後、500℃の温度で
3時間焼成した。この焼成品をサンプルミルによ
り粉砕し、粒度を調整して、粉末担体を得た。こ
の担体を用いて、実施例1と全く同様にして、酸
化タングステンを担持させた窒素酸化物除去用触
媒を得た。 比較例 3 比較例1で得た酸化タングステン担持窒素酸化
物除去用触媒に、メタバナジン酸アンモニウム10
gとシユウ酸25gを水に溶解した水溶液を含浸さ
せた後、100℃で12時間乾燥し、更に500℃で3時
間焼成して、酸化タングステンと酸化バナジウム
とを担持させた窒素酸化物除去用触媒を得た。 比較例 4 比較例2で得た酸化タングステン担持窒素酸化
物除去用触媒に、比較例3と全く同様にして酸化
バナジウムを担持させて窒素酸化物除去用触媒を
得た。 以上の実施例及び比較例で得た各窒素酸化物除
去用触媒に、窒素酸化物200ppm、アンモニア
200ppm、水蒸気10%、二酸化炭素12%、二酸化
イオウ800ppm、残部窒素からなる組成の混合ガ
スを温度380℃、空間速度5000hr-1にて接触させ、
窒素酸化物(NOx)除去率及び二酸化イオウ
(SO2)酸化率を測定した。結果を第1表に示す。
尚、窒素酸化物除去率(%)及び二酸化イオウ酸
化率(%)はそれぞれ次式により求めた。 窒素酸化物除去率(%)=(触媒層入口NOx濃
度−触媒層出口NOx濃度)/(触媒層入口NOx
濃度)×100 二酸化イオウ酸化率(%)=(触媒層入口SO2
度−触媒層出口SO2濃度)/(触媒層入口(SO2
+SO3)濃度)×100
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a catalyst for removing nitrogen oxides, and more specifically, it not only maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, but also has a method for producing a catalyst for removing sulfur dioxide. The present invention relates to a method for producing a catalyst for removing nitrogen oxides, which has an extremely low rate of oxidation of sulfur trioxide to sulfur trioxide. Conventional technology Generally, it is already known that fired titanium oxide products are used as catalyst carriers or catalysts, but surface area, crystal shape, heat resistance, mechanical strength after molding, etc. have important effects on the carrier or catalyst function. Since it differs depending on the manufacturing method and the presence/absence, type, amount, etc. of additive substances, various manufacturing methods have been proposed in the past. For example, if silica is added to titanium oxide and fired, the resulting fired product will generally have a larger surface area and improved heat resistance. According to a method in which silica is added to titanium salts such as, neutralized and hydrolyzed, and the titanium hydroxide thus produced is calcined to form titanium oxide, the titanium hydroxide produced by hydrolysis is There is a problem that it tends to become titanic acid, and therefore, when it is calcined, it tends to become rutile-type titanium oxide, which is unsuitable as a carrier or a catalyst. On the other hand, it is already known that if titanium salt is thermally hydrolyzed, it will easily become metatitanic acid, and if this is calcined, it will give anatase titanium oxide, which is generally the preferred crystalline form for carriers and catalysts, although there are other factors as well. It is being However, according to the method of adding silica to titanium hydroxide or titanium oxide obtained in this way and firing it, it is difficult to obtain a mixture with a uniform composition, and especially when silica is added to titanium hydroxide. In some cases, since titanium hydroxide is in the form of a gel, silica cannot be uniformly dispersed in titanium hydroxide, making it impossible to obtain a high-performance support or catalyst. Problems to be Solved by the Invention The present invention has been made in order to solve the various problems described above. It is an object of the present invention to provide a method for producing a high-performance catalyst for removing nitrogen oxides using a fired titanium oxide product as a carrier, which has excellent strength after molding. Means for Solving the Problems The method for producing a catalyst for removing nitrogen oxides according to the present invention involves adding fine particles of silicic acid to titanium sulfate, thermally hydrolyzing it, drying and firing, and adding vanadium to the thus obtained fired product. , tungsten, molybdenum,
It is characterized by supporting an oxide of at least one element selected from copper, iron, chromium, manganese and cerium. Preferably, in this method, titanium sulfate is thermally hydrolyzed in the presence of particulate silicic acid, After converting the generated metatitanic acid into a sol,
Filtration, drying, and firing to obtain a titanium oxide fired product.
Using this as a carrier, the above oxide is supported. The fine particle silicic acid used in the present invention is also known as white carbon, and one of its characteristics is that it has a very large specific surface area. These fine particles of silicic acid may be produced by either a wet method or a dry method, and in the present invention, ordinary commercially available products can be used. Commercial products of fine particle silicic acid that can be suitably used in the present invention include, for example, "Fine Seal" (registered trademark, manufactured by Tokuyama Soda Co., Ltd.) and "Aerosil" (registered trademark, manufactured by Nippon Aerosil Co., Ltd.). Among these, those with an average particle size of 10 to 50 mμ,
Those having a specific surface area of 200 to 300 m 2 /g are preferably used. The amount of particulate silicic acid added is 5 to 50% by weight based on titanium oxide, and when it is less than 5% by weight, the effect of improving the carrier or catalyst performance by adding particulate silicic acid in the fired product is small; On the other hand, when it exceeds 50% by weight, the content of titanium oxide becomes relatively low, and when this is used as a carrier, the performance of the carrier and catalyst based on titanium oxide deteriorates, which is not preferable. In the method of the present invention, the above-mentioned fine particles of silicic acid are added to an aqueous titanium sulfate solution, and this mixture is thermally hydrolyzed to produce metatitanic acid, which is precipitated with fine particles of silicic acid. In the present invention, thermal hydrolysis of titanium sulfate is
The aqueous solution containing finely divided silicic acid is usually heated to 80%
C. to its boiling point, preferably at the boiling point. More preferably, the thermal hydrolysis is carried out in the presence of seed crystals in order to reduce the time required for thermal hydrolysis of titanium sulfate. For example, colloidal metatitanic acid particles of about 2% by weight in terms of titanium oxide are added as seed crystals. It is already known that metatitanic acid is produced by thermally hydrolyzing titanium sulfate, but since this metatitanic acid is in the form of a gel, in the present invention, titanium sulfate is preferably produced in the presence of fine particles of silicic acid. After thermal hydrolysis with
Even finer particles of silicic acid can be uniformly dispersed in metatitanic acid. The method of solization is not particularly limited, and for example, the reaction mixture obtained by thermal hydrolysis is washed with water to remove most of the sulfuric acid groups, and then hydrochloric acid or nitric acid is added to partially or completely solize the mixture. Or
In particular, if sulfate radicals are not removed by washing with water, add alkaline earth metal chlorides such as barium chloride, strontium chloride, and calcium chloride, or alkaline earth metal nitrates such as barium nitrate, strontium nitrate, and calcium nitrate to the reaction mixture. and fixing the sulfate radical as a water-insoluble barium salt while partially or completely solizing the reaction mixture.
The amount of these gelling agents added is appropriately selected depending on the degree to which the reaction mixture is to be turned into a sol. The mixture of metatitanic acid and particulate silicic acid obtained in this way is washed with water, filtered, dried, then calcined at a temperature of 800°C or less, preferably 700 to 200°C, and pulverized to form a powder. Obtain a baked product with a shape.
In this case, according to the present invention, metatitanic acid obtained by thermally hydrolyzing titanium sulfate is used, so it contains a sulfate group, even if only in a small amount, and this also results in anatase-type titanium oxide, which is preferable as a carrier or catalyst in calcination. This is one of the causes. In addition, when using the powdered fired product as a carrier in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the above mixture may be processed by any conventionally known method, such as extrusion molding or rolling granulation. It may be baked after being molded by a method such as the above. It is also possible to add an appropriate amount of water to the above powdered fired product, knead it, mold it into a desired shape, and then fire it again. In this case, after forming into the desired shape, it may be fired again at a temperature of 800°C or lower, preferably 700 to 200°C. In this manner, according to the present invention, a fired titanium oxide product as a molded product can also be obtained. In addition, in the present invention, in any of the above cases, if a metatitanic acid sol or gel is newly added to the powdered dried product or fired product, the product is molded into the desired shape, and then fired, the mechanical strength and porosity,
Various physical properties such as specific surface area and pore distribution can be improved, and the shrinkage rate during firing can be suppressed. In such cases, the amount of metatitanic acid sol or gel added is 5 to 50% of the weight of the molded product in terms of titanium oxide.
Weight % is appropriate. Furthermore, it is of course possible to use conventionally known general molding aids such as methyl cellulose during molding. In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like. The fired titanium oxide product obtained as described above is not limited in any way by theory, but
Due to the presence of fine particles of silicic acid, the crystal growth of titanium oxide is suppressed during firing of metatitanic acid, and the ungrown anatase-type crystals remain, resulting in a fired product with a large surface area and excellent heat resistance. It has excellent mechanical strength after molding and can be suitably used as a catalyst carrier. As shown in Figure 1, it is confirmed that the fired product remains ungrown anatase by its X-ray spectrum showing low and broad peaks. In the case of anatase type titanium oxide, as shown in the X-ray spectrum of FIG. 2, the peak is high and sharp because the crystals have grown extremely well. According to the method of the present invention, the calcined titanium oxide product obtained as described above is used as a carrier, and an oxide conventionally known to have catalytic activity for removing nitrogen oxides is supported on this carrier. Due to the unexpected synergistic effect with the oxides constituting the fired product, it is possible to obtain a catalyst for removing nitrogen oxides having excellent selective catalytic reduction activity of nitrogen oxides using ammonia as a reducing agent. The method for supporting the above-mentioned oxide on the titanium oxide fired product can be any method conventionally used for preparing catalysts. For example, the above-mentioned oxide or its precursor is supported on the fired product formed into a predetermined shape. After impregnating or coating with the solution or dispersion contained therein, it may be fired to a predetermined temperature as necessary. Of course, the catalyst for removing nitrogen oxides of the present invention can also be produced by kneading the powdered calcined product with the solution or dispersion, molding it into a desired shape, and then calcining it to a predetermined temperature as necessary. Obtainable. In order to remove nitrogen oxides from a gas mixture containing nitrogen oxides using the catalyst according to the present invention, the amount of nitrogen oxides contained in the gas mixture is 0.5 to 5 times the mole, preferably 1 to 2 times the mole of nitrogen oxides contained in the gas mixture. Ammonia is added and passed through a reaction bed filled with catalyst.
Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed. Since the catalyst for removing nitrogen oxides according to the method of the present invention contains fine silicic acid particles and has excellent heat resistance, the reaction temperature may range from 200 to 600°C, but preferably from 300 to 500°C. It is. Further, the space velocity of the gas is in the range of 1000 to 100000 hr -1 , preferably 3000 to 300000 hr -1 . The catalyst according to the invention can be used for the treatment of any gas containing nitrogen oxides, but in particular boiler exhaust gas, i.e. 100-1000 ppm nitrogen oxides, mainly carbon monoxide, as well as 200-2000 ppm
sulfur oxides, mainly sulfur dioxide, 1-10
% oxygen by volume, 5-20% carbon dioxide by volume, 5-20
It can be suitably used to remove nitrogen oxides from exhaust gas containing % by volume of water vapor. Effects of the Invention According to the method of the present invention, as described above, in the production of a fired titanium oxide product as a carrier, fine particles of silicic acid are added to titanium sulfate, and this is thermally hydrolyzed to convert metatitanic acid into fine particles of silicic acid. Because of coprecipitation, the fine particles of silicic acid are uniformly dispersed in the resulting mixture, and when this is fired, the titanium oxide remains in ungrown anatase crystals due to the action of the fine particles of silicic acid. The resulting fired product has a large surface area, and because the fine particles of silicic acid are uniformly dispersed in the titanium oxide, its heat resistance is significantly improved.
It also has excellent mechanical strength after molding. The catalyst for removing nitrogen oxides according to the method of the present invention is
Since the fired product is used as a carrier and metal oxides having catalytic activity for removing nitrogen oxides are supported, a synergistic effect between these metal oxides and anatase-type titanium oxide and fine particle silicic acid whose growth has been suppressed is achieved. This not only maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, but also has an extremely low oxidation rate of sulfur dioxide to sulfur trioxide, making it suitable for practical and industrial nitrogen oxidation. Excellent as a catalyst for removing substances. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 1 kg of titanium sulfate solution obtained from the titanium oxide manufacturing process using the sulfuric acid method was taken out as titanium oxide, and 200 g of fine particle silicic acid "Fine Seal" (registered trademark, manufactured by Tokuyama Soda Co., Ltd.) was added thereto and sufficiently After stirring and mixing, the mixture was heated to its boiling point to thermally hydrolyze titanium sulfate and co-precipitate it with fine particles of silicic acid. This precipitate was filtered, washed with water, dried at 100°C for 12 hours, and then calcined at a temperature of 500°C for 3 hours. This calcined product was pulverized using a sample mill, the particle size was adjusted, and the product was used as a support for the following catalyst for removing nitrogen oxides. 250 ml of a 10% methylamine solution containing 110 g of ammonium paratungstate in the above powder carrier
was added and kneaded, and then extruded into a lattice-shaped molded product using an extruder, heated from room temperature to 100°C to dry, and then fired at 500°C for 3 hours to form a nitrogen oxide supporting tungsten oxide. A catalyst for removal was obtained. Example 2 A carrier was produced in exactly the same manner as in Example 1, except that "Aerosil" (registered trademark, manufactured by Nippon Aerosil Co., Ltd.) was used as the fine particle silicic acid, and Example 1 was added to the carrier. A catalyst for removing nitrogen oxides was obtained by supporting tungsten oxide in exactly the same manner as above. Example 3 The coprecipitate of metatitanic acid and fine-particle silicic acid obtained in Example 1 was filtered, washed with water, and then dispersed in water again. 80 g of barium chloride (dihydrate) was added thereto, and metatitanic acid The mixture was made into a sol and thoroughly stirred and mixed. Thereafter, in the same manner as in Example 1, the precipitate was filtered, washed with water, dried at 100°C for 12 hours, and then heated to 500°C.
The mixture was calcined at a temperature of 3 hours, and then pulverized using a sample mill to obtain a carrier. The X-ray spectrum of the carrier thus obtained is shown in FIG. It is clear that the peak is low and broad, and the anatase crystal remains ungrown. The X-ray spectrum was measured using an X-ray diffractometer RAD-A manufactured by Rigaku Denki Co., Ltd., and the measurement conditions were as follows. Scanning speed 1°/4 minutes full scale 1000cps Time constant 1 second Chart speed 10mm/min Target Copper tube voltage 30KV Tube current 10mA For comparison, the X-ray spectrum of commercially available pigment anatase titanium oxide is shown in Figure 2. . The measurement conditions are the same as above except that the full scale is 4000 cps. Next, using this carrier, a catalyst for removing nitrogen oxides having tungsten oxide supported thereon was obtained in exactly the same manner as in Example 1. Example 4 The tungsten oxide supported catalyst obtained in Example 1 was
10g ammonium metavanadate and 25g oxalic acid
After impregnating with an aqueous solution of
It was dried for 12 hours and further calcined at 500°C for 3 hours to obtain a nitrogen oxide removal catalyst on which tungsten oxide and vanadium oxide were supported. Example 5 Vanadium oxide was supported on the tungsten oxide supported catalyst obtained in Example 2 in the same manner as in Example 4 to obtain a catalyst for removing nitrogen oxides. Example 6 Vanadium oxide was further supported on the tungsten oxide supported catalyst obtained in Example 3 in the same manner as in Example 4 to obtain a catalyst for removing nitrogen oxides. Comparative Example 1 A catalyst for removing nitrogen oxides on which tungsten oxide was supported was obtained in exactly the same manner as in Example 1, except that particulate silicic acid was not used. Comparative Example 2 In Example 1, titanium sulfate was thermally hydrolyzed to generate metatitanic acid without using particulate silicic acid, filtered, washed with water, dispersed in water again, and solized with barium chloride. The mixture was filtered and dried at 100°C for 12 hours, and then calcined at 500°C for 3 hours. This fired product was pulverized using a sample mill and the particle size was adjusted to obtain a powder carrier. Using this carrier, a catalyst for removing nitrogen oxides having tungsten oxide supported thereon was obtained in exactly the same manner as in Example 1. Comparative Example 3 Ammonium metavanadate 10 was added to the catalyst for nitrogen oxide removal supported on tungsten oxide obtained in Comparative Example 1.
After impregnating with an aqueous solution of g and 25 g of oxalic acid dissolved in water, it was dried at 100°C for 12 hours and further calcined at 500°C for 3 hours to support tungsten oxide and vanadium oxide for nitrogen oxide removal. I got a catalyst. Comparative Example 4 Vanadium oxide was supported on the tungsten oxide supported catalyst for removing nitrogen oxides obtained in Comparative Example 2 in exactly the same manner as in Comparative Example 3 to obtain a catalyst for removing nitrogen oxides. Each of the nitrogen oxide removal catalysts obtained in the above Examples and Comparative Examples contained 200 ppm of nitrogen oxides and ammonia.
200ppm, 10% water vapor, 12% carbon dioxide, 800ppm sulfur dioxide, and the balance nitrogen are brought into contact at a temperature of 380℃ and a space velocity of 5000hr -1 .
The nitrogen oxide (NOx) removal rate and sulfur dioxide (SO 2 ) oxidation rate were measured. The results are shown in Table 1.
Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas. Nitrogen oxide removal rate (%) = (catalyst layer inlet NOx concentration - catalyst layer outlet NOx concentration) / (catalyst layer inlet NOx
concentration) x 100 Sulfur dioxide oxidation rate (%) = (catalyst layer inlet SO 2 concentration - catalyst layer outlet SO 2 concentration) / (catalyst layer inlet (SO 2
+SO 3 ) concentration) x 100

【表】 以上の結果から明らかなように、本発明の触媒
によれば、微粒子ケイ酸を用いないで調製した酸
化チタン焼成品を担体とする比較例の触媒に比べ
て、窒素酸化物除去率が高い一方、二酸化イオウ
酸化率は低く、ガス混合物中の窒素酸化物を除去
する際に三酸化イオウの生成に基づく不利益を除
くことができる。
[Table] As is clear from the above results, the catalyst of the present invention has a higher nitrogen oxide removal rate than the catalyst of the comparative example, which uses a fired titanium oxide product prepared without using fine silicic acid as a carrier. is high, while the sulfur dioxide oxidation rate is low, which makes it possible to eliminate the disadvantages due to the formation of sulfur trioxide when removing nitrogen oxides in the gas mixture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法において、担体として
用いる酸化チタン焼成品のX線スペクトルを示
し、第2図は、比較のための顔料酸化チタンのX
線スペクトルを示す。
Figure 1 shows the X-ray spectrum of the fired titanium oxide product used as a carrier in the method of the present invention, and Figure 2 shows the X-ray spectrum of titanium oxide as a pigment for comparison.
Shows the line spectrum.

Claims (1)

【特許請求の範囲】 1 硫酸チタンに微粒子ケイ酸を添加し、熱加水
分解した後、乾燥し、焼成し、かくして得た焼成
品にバナジウム、タングステン、モリブデン、
銅、鉄、クロム、マンガン及びセリウムから選ば
れる少なくとも1種の元素の酸化物を担持させる
ことを特徴とする窒素酸化物除去用触媒の製造方
法。 2 硫酸チタンに微粒子ケイ酸を添加し、熱加水
分解し、ゾル化した後、乾燥し、焼成し、かくし
て得た焼成品にバナジウム、タングステン、モリ
ブデン、銅、鉄、クロム、マンガン及びセリウム
から選ばれる少なくとも1種の元素の酸化物を担
持させることを特徴とする特許請求の範囲第1項
記載の窒素酸化物除去用触媒の製造方法。
[Claims] 1. Fine particle silicic acid is added to titanium sulfate, thermally hydrolyzed, dried and fired, and the fired product thus obtained contains vanadium, tungsten, molybdenum,
A method for producing a catalyst for removing nitrogen oxides, which comprises supporting an oxide of at least one element selected from copper, iron, chromium, manganese, and cerium. 2. Adding fine particles of silicic acid to titanium sulfate, thermally hydrolyzing it, turning it into a sol, drying it, and firing it.The fired product thus obtained contains a mixture of vanadium, tungsten, molybdenum, copper, iron, chromium, manganese, and cerium. 2. The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein the catalyst supports an oxide of at least one element.
JP57143664A 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst Granted JPS5935025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143664A JPS5935025A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143664A JPS5935025A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Publications (2)

Publication Number Publication Date
JPS5935025A JPS5935025A (en) 1984-02-25
JPH0114807B2 true JPH0114807B2 (en) 1989-03-14

Family

ID=15344056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143664A Granted JPS5935025A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Country Status (1)

Country Link
JP (1) JPS5935025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019366A1 (en) * 1991-04-30 1992-11-12 Nippon Shokubai Co., Ltd. Method of oxidative decomposition of organic halogen compound
JP2012144399A (en) * 2011-01-13 2012-08-02 Sakai Chem Ind Co Ltd Method for producing silica-containing hydrous titanium oxide and silica-containing anatase type titanium oxide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
WO2008059607A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Process for producing honeycomb structure and honeycomb structure
WO2008059606A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method of producing honeycomb structural body and honeycomb structural body
US20160214095A1 (en) 2013-09-05 2016-07-28 N.E. Chemcat Corporation Oxidation catalyst for exhaust gas purification, catalyst structure for exhaust gas purification, and method for purifying exhaust gas using catalyst structure
CN104353452A (en) * 2014-11-05 2015-02-18 王丽娜 Metatitanic acid SCR (selective catalytic reduction) denitration catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019366A1 (en) * 1991-04-30 1992-11-12 Nippon Shokubai Co., Ltd. Method of oxidative decomposition of organic halogen compound
JP2012144399A (en) * 2011-01-13 2012-08-02 Sakai Chem Ind Co Ltd Method for producing silica-containing hydrous titanium oxide and silica-containing anatase type titanium oxide

Also Published As

Publication number Publication date
JPS5935025A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
US4061596A (en) Process for preparing titanium oxide shaped carrier
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
JP3694537B2 (en) Method for producing mixed oxide powder used as catalyst for removing nitrogen oxides
US6120747A (en) Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JPH0524866B2 (en)
JP2012517896A (en) Mobil DeNOx catalyst
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JPH0242536B2 (en)
US3948807A (en) Oxide catalysts and process for preparation thereof
JPH0114809B2 (en)
JPH0114807B2 (en)
JPH0114808B2 (en)
JPH0114810B2 (en)
CN115155560B (en) Rare earth modified vanadate catalyst and preparation method and application thereof
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPH0413283B2 (en)
JPH10235206A (en) Denitration catalyst, preparation thereof and denitration method
JPH044251B2 (en)
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH0559847B2 (en)
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method