JPS5935027A - Preparation of calcined titanium oxide and catalyst - Google Patents

Preparation of calcined titanium oxide and catalyst

Info

Publication number
JPS5935027A
JPS5935027A JP57143666A JP14366682A JPS5935027A JP S5935027 A JPS5935027 A JP S5935027A JP 57143666 A JP57143666 A JP 57143666A JP 14366682 A JP14366682 A JP 14366682A JP S5935027 A JPS5935027 A JP S5935027A
Authority
JP
Japan
Prior art keywords
catalyst
titanium oxide
silicic acid
calcined
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57143666A
Other languages
Japanese (ja)
Other versions
JPH0114809B2 (en
Inventor
Toshikuni Sera
世良 俊邦
Shigeaki Mitsuoka
光岡 薫明
Takafuru Kobayashi
敬古 小林
Toru Seto
徹 瀬戸
Junsuke Miyake
三宅 淳介
Kazumitsu Abe
阿倍 一允
Tadao Nakatsuji
忠夫 仲辻
Toshikatsu Baba
敏勝 馬場
Toshiaki Matsuda
松田 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sakai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57143666A priority Critical patent/JPS5935027A/en
Publication of JPS5935027A publication Critical patent/JPS5935027A/en
Publication of JPH0114809B2 publication Critical patent/JPH0114809B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the titled calcined material, having a large surface area and improved strength and heat resistance, and suitable for a catalyst or catalytic carrier, by calcining metatitanic acid in the form of a sol containing a fine particulate silicic acid. CONSTITUTION:Metatitanic acid in the form of a sol containing fine particulate silicic acid, preferably having 10-50mmu average particle diameter and 200- 300m<2>/g specific surface area, is calcined to give the aimed calcined titanium oxide. The fine particulate silicic acid is present in the metatitanic acid in the form of the sol, and the resultant mixture is calcined to disperse the fine particulate silicic acid uniformly in the resultant calcined material. The titanium oxide remains as the ungrown anatase type crystal by the action of the fine particulate silicic acid, and the surface area is large with the remarkably improved mechanical strength and heat resistance. The resultant calcined titanium oxide is used as a carrier for supporting the metallic oxide having the catalytic activity of removing the nitrogen oxide to give the improved catalyst having the activity of removing the nitrogen oxide for a long term by the synergistic action of the anatase type titanium oxide and the fine particulate silicic acid and a low oxidation ratio of SO2 into SO3.

Description

【発明の詳細な説明】 本発明は酸化チタン焼成品及び触媒の製造方法に関し、
詳しくは、酸化チタンを主成分とし、表面積が大きく、
且つ、強度及び耐熱性にすぐれ、従って、触媒担体やそ
のままで触媒として好適に用いることができる酸化チタ
ン焼成品の製造方法、及びこの酸化チタン焼成品を担体
とする窒素酸化物除去用触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fired titanium oxide product and a catalyst.
In detail, the main component is titanium oxide, which has a large surface area.
A method for producing a fired titanium oxide product that has excellent strength and heat resistance and can therefore be suitably used as a catalyst carrier or as a catalyst as it is, and a catalyst for removing nitrogen oxides using the fired titanium oxide product as a carrier. Regarding the method.

酸化チタン焼成品を担体又は触媒として用いることは既
に知られているが、担体又は触媒機能に重要な影響を与
える表面積、結晶形、機械的強度、耐熱性等はその製造
方法や添加物質の有無、種類、量等によって異なるため
、従来より種々の製造方法が提案されている。
It is already known that fired titanium oxide products are used as carriers or catalysts, but surface area, crystal form, mechanical strength, heat resistance, etc., which have important effects on carrier or catalyst functions, depend on the manufacturing method and the presence or absence of additives. , differs depending on the type, amount, etc., and various manufacturing methods have been proposed in the past.

例えば、酸化チタンにシリカを添加して焼成すれば、一
般的には、得られる焼成品は表面積が大きくなり、耐熱
性も改善されるが、しかし、従来におけるように、四塩
化チタンや硫酸チタンのようなチタン塩類にシリカを添
加し、中和加水分解して、かくして生成した水酸化チタ
ンを焼成して酸化チタンを形成させる方法によれば、加
水分解によって生成する水酸化チタンがオルソチタン酸
となりやすく、従って、これを焼成すれば、担体又は触
媒として不適当なルヂル型酸化チタンになりやすい問題
がある。
For example, if silica is added to titanium oxide and fired, the resulting fired product will generally have a larger surface area and improved heat resistance. According to the method of adding silica to titanium salts, neutralizing and hydrolyzing them, and calcining the titanium hydroxide thus produced to form titanium oxide, the titanium hydroxide produced by the hydrolysis is orthotitanic acid. Therefore, if this is fired, there is a problem that it tends to become Rudil-type titanium oxide, which is unsuitable as a carrier or a catalyst.

一方、チタン塩を熱加水分解すれば、メタチタン酸にな
りやすく、これを焼成すれば、他の要因もあるが、一般
に担体や触媒として好ましむ)結晶形であるアナターゼ
型酸化チタンを与えることも既に知られている。しかし
ながら、このようにして得られた水酸化チタン又は酸化
チタンにシリカを添加して焼成する方法によれば、組成
の均一な混合物を(qることが困難であり、特にシリカ
を水酸化チタンに添加する場合には、水酸化チタンがゲ
ル状であるため、シリカを水酸化チタンに均一に分散さ
せることができず、従って、高性能の担体や触媒を得る
ことができない。
On the other hand, if titanium salt is thermally hydrolyzed, it will easily become metatitanic acid, and if this is calcined, it will give anatase titanium oxide, which is a crystalline form (generally preferred as a carrier or catalyst, although there are other factors involved). is already known. However, according to the method of adding silica to the titanium hydroxide or titanium oxide obtained in this way and firing it, it is difficult to prepare a mixture with a uniform composition. When added, since titanium hydroxide is in a gel state, silica cannot be uniformly dispersed in titanium hydroxide, and therefore a high-performance support or catalyst cannot be obtained.

本発明は上記した種々の問題を解決するためGこなされ
たものであって、微粒子ケイ酸が均一に酸化チタン中に
分散され、従って、表面積が大きいと共に強度及びif
熱性にすぐれ、従って、触媒担体やそのま謁で触媒とし
て好適に用いることができる酸化チタン焼成品、及びか
かる焼成品を担体として用いることにより、従来にない
性能の改善された窒素酸化物除去用触媒を製造する方法
を提供することを目的とする。
The present invention has been developed in order to solve the various problems described above, and it has a structure in which fine particles of silicic acid are uniformly dispersed in titanium oxide.
A calcined titanium oxide product that has excellent thermal properties and can therefore be suitably used as a catalyst as a catalyst carrier or as a catalyst, and a nitrogen oxide removal product with unprecedented performance improved by using such a calcined product as a carrier. An object of the present invention is to provide a method for producing a catalyst.

本発明による焼成品の製造方法は、微粒子ケイ酸を含有
するゾル化したメタチタン酸を焼成することを特徴とす
る。
The method for producing a fired product according to the present invention is characterized by firing a sol-formed metatitanic acid containing fine particles of silicic acid.

本発明において用いる微粒子ケイ酸とは、ホワイトカー
ボンの別名でも知られており、比表面積が非常に大きい
点に一つの特徴を有する。これら微粒子ケイ酸は湿式法
、乾式法いずれの方法によって製造されたものでもよく
、本発明においては通常の市販品を用いることができる
。本発明において好適に用いることができる微粒子ケイ
酸の市販品としζは、例えば、ファインシール、ハイシ
ル、バルカシル、カープレックス、ニップシール、トク
シール、ビタシール、シロイド、アエロジル等を挙げる
ことができるが、これらの中でも特に平均粒径が10〜
50mμ、比表面積が200〜b 微粒子ケイ酸の添加量は、酸化チタンに基づいて5〜5
0重量%であり、5重量%よりも少ないときは、焼成品
における微粒子−ケイ酸の添加による担体又は触媒性能
の改善の効果が小さく、一方、50重量%を越えるとき
は、相対的に酸化チタンの含有量が少なくなって、これ
を担体や、また、そのままで触媒として用いるとき、酸
化チタンに基づく担体及び触媒の性能が低下するので好
ましくない。   ゛ 本発明の方法においては、好ましくは、上記のような微
粒子ケイ酸をメタチタン酸ゾルに添加して攪拌混合後に
焼成するが、また、必要に応じて、メタチタン酸に微粒
子ケイ酸を添加した後、メタチタン酸をゾル化してもよ
い。メタチタン酸はゲル状であるため、ゾル化させるこ
とにより、一層微粒子ケイ酸をメタチタン酸中に均一に
分散させることができる。
The fine particle silicic acid used in the present invention is also known as white carbon, and one of its characteristics is that it has a very large specific surface area. These fine particles of silicic acid may be produced by either a wet method or a dry method, and in the present invention, ordinary commercially available products can be used. Commercially available fine particle silicic acid products that can be suitably used in the present invention include, for example, Fine Seal, Hi-Sil, Valka Sil, Carplex, Nip Seal, Toxil, Vita Seal, Siloid, Aerosil, etc. Especially those with an average particle size of 10~
50 mμ, specific surface area 200~b The amount of fine particle silicic acid added is 5~5 based on titanium oxide.
When the amount is 0% by weight and less than 5% by weight, the effect of improving the carrier or catalyst performance by adding fine particles of silicic acid in the fired product is small; on the other hand, when it exceeds 50% by weight, the oxidation is relatively When the content of titanium is reduced and it is used as a carrier or as a catalyst as it is, the performance of the carrier and catalyst based on titanium oxide deteriorates, which is not preferable.゛In the method of the present invention, preferably, the above-mentioned fine particles of silicic acid are added to the metatitanic acid sol and fired after stirring and mixing, but if necessary, after adding the fine particles of silicic acid to metatitanic acid, , metatitanic acid may be made into a sol. Since metatitanic acid is in the form of a gel, by making it into a sol, fine particles of silicic acid can be more uniformly dispersed in metatitanic acid.

ゾル化の方法は特に制限されず、例えば、メタチタン酸
を水洗して、硫酸根を大部分除去した後、塩酸又は硝酸
を加え°ζ一部又は全部をゾル化する。
The method of solization is not particularly limited, and for example, metatitanic acid is washed with water to remove most of the sulfuric acid groups, and then hydrochloric acid or nitric acid is added to partially or completely solize the metatitanic acid.

又は、特に水洗により硫酸根を除かない場合は、メタチ
タン酸に塩化バリウム、塩化ストロンチウム、塩化カル
シウム等のアルカリ土類金属の塩化物、若しくは硝酸バ
リウム、硝酸ストロンチウム、硝酸カルシウム等のアル
カリ土類金属の硝酸塩を添加し、硫酸根を水不溶性のバ
リウム塩として固定しつつ、一部又は全部をゾル化する
。これらのゲル化剤の添加量はメタチタン酸をどの程度
ゾル化するかによって、適宜に選ばれる。
Alternatively, if sulfate roots are not removed by washing with water, add alkaline earth metal chlorides such as barium chloride, strontium chloride, and calcium chloride to metatitanic acid, or alkaline earth metal chlorides such as barium nitrate, strontium nitrate, and calcium nitrate. A nitrate is added to fix the sulfate radical as a water-insoluble barium salt, and a part or all of it is made into a sol. The amount of these gelling agents added is appropriately selected depending on the degree to which metatitanic acid is to be sol-formed.

尚、メタチタン酸はpHが1〜2以上でゲル化するため
、必要に応じて、微粒子ケイ酸を均一に分散させた後で
あれば、ゲル化しても差支えない。
In addition, since metatitanic acid gels at a pH of 1 to 2 or higher, it may be gelled as long as the fine particles of silicic acid are uniformly dispersed, if necessary.

このようにして得られたメタチタン酸と微粒子ケイ酸と
の混合物は、水洗し、次いで、800°C以下、好まし
くは、700〜200℃の温度で焼成し、粉砕すれば、
粉状の焼成品を得る。この場合、本発明によれば、メタ
チタン酸を用いるため、焼成において担体や触媒として
好ましいアナターゼ型酸化チタンになる。尚、焼成品を
ハニカム状等の所定の形状として担体又は触媒に用いる
場合、上記混合物を乾燥して得られる乾燥品を従来より
知られている任意の方法、例えば、押出成形、転勤造粒
等の方法により成形した後に焼成してもよい。また、上
記の粉末状焼成品を所要形状に成形した後、再び焼成す
ることもできる。この場合は、所要形状に成形した後、
再び800℃以下、好ましくは700〜200℃の温度
で焼成すればよい。
The mixture of metatitanic acid and particulate silicic acid thus obtained is washed with water, then calcined at a temperature of 800°C or less, preferably 700 to 200°C, and pulverized.
Obtain a powdered baked product. In this case, according to the present invention, metatitanic acid is used, resulting in anatase-type titanium oxide, which is preferable as a carrier or catalyst in calcination. In addition, when the fired product is used as a carrier or a catalyst in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the above mixture may be processed by any conventionally known method such as extrusion molding, transfer granulation, etc. It may be baked after being molded by the method described above. Further, the powdered fired product described above can be molded into a desired shape and then fired again. In this case, after forming into the desired shape,
It may be fired again at a temperature of 800°C or lower, preferably 700 to 200°C.

このようにして、本発明によれば、粉末状又は成形品と
して酸化チタン焼成品を得ることができる。
In this way, according to the present invention, a fired titanium oxide product can be obtained in the form of a powder or a molded product.

尚、本発明においては、上記いずれの場合においても、
粉末状の乾燥品又は焼成品に新たにメタチタン酸ゾル又
はゲルを存在させて所要形状に成形し、これを焼成すれ
ば、機械的強度、気孔率、比表面積、細孔分布等の諸物
性を向上させることができると共に、焼成時の収縮率を
抑えることができる。かかる場合のメタチタン酸ゾル又
はゲルの添加量は酸化チタン換算で成形品重量の5〜5
0重量%が適当である。また、成形に際して、従来より
知られている通常の成形助剤、例えば、アビセル、メチ
ルセルロース等を使用してもよいのは勿論である。
In addition, in the present invention, in any of the above cases,
By adding metatitanic acid sol or gel to a powdered dried or fired product, molding it into the desired shape, and firing it, various physical properties such as mechanical strength, porosity, specific surface area, and pore distribution can be improved. The shrinkage rate during firing can be suppressed. In such cases, the amount of metatitanic acid sol or gel added is 5 to 5% of the weight of the molded product in terms of titanium oxide.
0% by weight is suitable. In addition, it goes without saying that conventionally known molding aids, such as Avicel and methyl cellulose, may also be used during molding.

尚、本発明において焼成の雰囲気は何ら制限されず、空
気、燃焼ガス、不活性気体等のいずれであってもよい。
In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like.

以上のようにして、本発明により11られる酸化チタン
焼成品は、理論により何ら限定されるものではないが、
微粒子ケイ酸の存在により、メタチタン酸の焼成時に酸
化チタンの結晶成長が抑制され、未成長のアナターゼ型
結晶で留まっているため、得られる焼成品は表面積が大
きく、且つ、機械的強度及び耐熱性にもすぐれており、
触媒担体やそのまま触媒として好適に用いることができ
る。
As described above, the titanium oxide fired product made by the present invention is not limited in any way by theory, but
Due to the presence of fine particles of silicic acid, the crystal growth of titanium oxide is suppressed during firing of metatitanic acid, and the crystals remain as ungrown anatase-type crystals, so the fired product obtained has a large surface area, and has high mechanical strength and heat resistance. It is also excellent in
It can be suitably used as a catalyst carrier or as a catalyst as it is.

本発明により得られる焼成品が未成長のアナターゼで留
まっていることは、第り図に示したように、そのX線ス
ペクトルが低く、且つ、幅広いピークを示すことによっ
て確認され、一方、顔料用のアナターゼ型酸化チタンの
場合は、そのX線スペクトルを第2図に示すように、結
晶が極めてよく成長しているため、そのピークが高く、
且つ、鋭い。
It is confirmed that the fired product obtained by the present invention contains ungrown anatase, as shown in the figure, as its X-ray spectrum shows a low and broad peak. As shown in Figure 2, the X-ray spectrum of anatase-type titanium oxide has a high peak due to extremely well-grown crystals.
And sharp.

本発明による酸化チタン焼成品は担体として用いるに好
適であり、また、反応の種類によってはそのままでも触
媒として用いることができるが、本発明に従って、以上
のようにして得られる酸化チタン焼成品を担体として用
い、この担体に従来より窒素酸化物除去の触媒活性を有
することが知られている酸化物を担持させれば、焼成品
を構成する酸化物との予期しない相乗作用により、アン
モニアを還元剤とする窒素酸化物の選択的接触還元活性
にすぐれた窒素酸化物除去触媒を得ることができる。
The fired titanium oxide product according to the present invention is suitable for use as a carrier, and depending on the type of reaction, it can be used as a catalyst as it is. If this carrier is loaded with an oxide known to have catalytic activity for removing nitrogen oxides, an unexpected synergistic effect with the oxides constituting the fired product will cause ammonia to become a reducing agent. A nitrogen oxide removal catalyst having excellent selective catalytic reduction activity for nitrogen oxides can be obtained.

即ち、本発明による窒素酸化物除去触媒は、微粒子ケイ
酸を含有するゾル化したメタチタン酸を焼成し、かくし
て得た焼成品にバナジウム、タングステン、モリブデン
、銅、鉄、クロム、マンガン及びセリウムから選ばれる
少なくとも1種の元素の酸化物を担持さ・Uることを特
徴とする。この方法において、焼成品の製造は前記した
とおりである。
That is, the nitrogen oxide removal catalyst according to the present invention is produced by calcining solized metatitanic acid containing fine particles of silicic acid, and adding a mixture of vanadium, tungsten, molybdenum, copper, iron, chromium, manganese, and cerium to the thus obtained calcined product. It is characterized by supporting an oxide of at least one element. In this method, the fired product is manufactured as described above.

本発明による酸化チタン焼成品に上記酸化物を相持させ
る方法は、従来より触媒の閂製に用いられている任意の
方法によることができ、例えば、所定形状に成形した焼
成品に前記酸化物又はその前駆体を含有する溶液又は分
散液を含浸若しくはコーティングした後、必要に応じて
所定温度に焼成すればよい。また、勿論、粉末状焼成品
と前記溶液又は分+1&液と混練し、所要形状に成形し
た後、必要に応じて所定温度に焼成することによっても
、本発明の窒素酸化物除去触媒を得ることができる。
The method for making the titanium oxide fired product according to the present invention contain the above oxide can be any method conventionally used for making catalysts. For example, the above-mentioned oxide or After impregnating or coating with a solution or dispersion containing the precursor, it may be fired to a predetermined temperature as necessary. Of course, it is also possible to obtain the nitrogen oxide removal catalyst of the present invention by kneading the powdered calcined product with the solution or the above solution, molding it into a desired shape, and then calcining it to a predetermined temperature as necessary. I can do it.

本発明の触媒により窒素酸化物を含有する混合ガスから
窒素酸化物を除去するには、その混合ガスが含有する窒
素酸化物の0.5〜5倍モル、好ましくは1〜2倍モル
のアンモニアを加え、これを触媒を充填した反応層を通
過させる。反応層は移動層、流動層、固定層等、いずれ
も使用できる。
In order to remove nitrogen oxides from a mixed gas containing nitrogen oxides using the catalyst of the present invention, ammonia is added in an amount of 0.5 to 5 times the mole of nitrogen oxides contained in the mixed gas, preferably 1 to 2 times the mole of nitrogen oxides contained in the mixed gas. is added and passed through a reaction bed filled with a catalyst. Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed.

本発明の触媒は微粒子ケイ酸を含有して耐熱性にすぐれ
るため、反応温度は200〜600 ’cの範囲にわた
ってよいが、好ましくは300〜500℃の範囲である
。また、ガスの空間速度は1ooo〜100000hr
  、好ましくは3000〜300000hr  の範
囲である。
Since the catalyst of the present invention contains particulate silicic acid and has excellent heat resistance, the reaction temperature may range from 200 to 600'C, but preferably from 300 to 500'C. Also, the space velocity of gas is 1ooo~100000hr
, preferably in the range of 3,000 to 300,000 hr.

本発明による触媒は窒・集散化物を含有する任意のガス
処理に用いることができるが、特に、ボイラー排ガス、
即ら、100〜1000 ppmの窒素酸化物、主とし
て一酸化窒素の他に、200〜2000 ppmのイオ
ウ酸化物、主として二酸化イオウ、1〜10容票%の酸
素、5〜20容量%の炭酸ガス、5〜2()容晴%の水
蒸気が含有されている排ガス中の窒素酸化物を除去する
のに好適に用いることができる。
The catalyst according to the invention can be used in the treatment of any gas containing nitrogen/encrushes, but in particular boiler exhaust gas,
That is, in addition to 100 to 1000 ppm of nitrogen oxides, mainly nitrogen monoxide, 200 to 2000 ppm of sulfur oxides, mainly sulfur dioxide, 1 to 10% by volume of oxygen, and 5 to 20% by volume of carbon dioxide. It can be suitably used to remove nitrogen oxides from exhaust gas containing water vapor of 5 to 2% by volume.

本発明の方法は、以上のように、一部又は全部をゾル化
したメタチタン酸中に微粒子ケイ酸を存在させ、これを
焼成するので、得られる焼成品においては微粒子ケイ酸
が均一に分散されており、しかも、酸化チタンが微粒子
ケイ酸の作用により未成長のアナターゼ型結晶に留まり
でいるため、表面積が大きく、且つ、その機械的強度及
び耐熱性が顕著に改善されている。従って、か力鴫焼成
品を担体とし乙これに窒素酸化物除去の触媒活性を有す
る金属酸化物を担持させて得られる本発明による窒素酸
化物除去触媒においては、これら金属酸化物と発達の抑
制されたアナターゼ型酸化チタン及び微粒子ケイ酸との
相乗作用により、厳しい使用条件の下においても長期間
にわたつζ高い窒素酸化物除去活性を保持するのみなら
ず、二酸化イオウの三酸化イオウへの酸化率が極めて低
いので、実用的、工業的な窒素酸化物除去触媒としてす
ぐれている。
As described above, in the method of the present invention, fine particles of silicic acid are made to exist in metatitanic acid partially or completely solified, and this is fired, so that the fine particles of silicic acid are uniformly dispersed in the resulting fired product. Moreover, since the titanium oxide remains in the ungrown anatase type crystal due to the action of the fine silicic acid particles, the surface area is large and the mechanical strength and heat resistance are significantly improved. Therefore, in the nitrogen oxide removal catalyst of the present invention obtained by using a calcined product as a carrier and supporting metal oxides having catalytic activity for removing nitrogen oxides, it is necessary to suppress the growth of these metal oxides. The synergistic effect with anatase-type titanium oxide and fine-grained silicic acid not only maintains high nitrogen oxide removal activity over a long period of time even under severe usage conditions, but also improves the conversion of sulfur dioxide to sulfur trioxide. Since the oxidation rate is extremely low, it is excellent as a practical and industrial catalyst for removing nitrogen oxides.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら制限されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited in any way by these Examples.

実施例1 硫酸法による酸化チタンの製造工程より得られる硫酸チ
タンを熱加水分解してメタチタン酸を得、これを酸化チ
タンとして1kg取り出し、塩化バリウム(二水和物)
80gを添加し、攪拌してゾル化した。次いで、微粒子
ケイ酸ファインシール(徳山曹達■製)200gを添加
し、十分に攪拌混合した後、100℃で12時間乾燥し
た後、500℃の温度で3時間焼成した。この焼成品を
゛す゛ンプルミルにより粉砕し、粒度を調整して、以下
の窒素酸化物除去用触媒の担体に用いた。
Example 1 Titanium sulfate obtained from the titanium oxide production process using the sulfuric acid method was thermally hydrolyzed to obtain metatitanic acid, and 1 kg of this was taken out as titanium oxide, and barium chloride (dihydrate) was extracted.
80 g was added and stirred to form a sol. Next, 200 g of fine particle silicic acid Fine Seal (manufactured by Tokuyama Soda ■) was added, thoroughly stirred and mixed, dried at 100° C. for 12 hours, and then baked at a temperature of 500° C. for 3 hours. This calcined product was pulverized using a sample mill, the particle size was adjusted, and the product was used as a support for the following catalyst for removing nitrogen oxides.

このようにして得られた担体のX線スペクトルを第1図
に示す。ピークが低く、且つ、幅広いので、アナターゼ
型結晶が未成長のままで留まっていることが明らかであ
る。
The X-ray spectrum of the carrier thus obtained is shown in FIG. Since the peak is low and broad, it is clear that the anatase crystal remains ungrown.

尚、X線スペクトルは、理学電機−aX線回折装fiR
AD−1rAを用いて測定し、その測定条件は次のとお
りである。
In addition, the X-ray spectra were obtained using Rigaku-a X-ray diffraction system fiR.
The measurement was performed using AD-1rA, and the measurement conditions were as follows.

走査速度       1°/4分 フルスケール     1000 cps時定数   
     1秒 チャート速度     10m/分 ターゲット      鋼 管電圧        30KV 管電流        10mA 尚、比較のために、市販の顔料アナターゼ酸化チタンの
X線スペクトルを第2図に示す。測定条件は上記におい
て、フルスケールが4000 cpsである以外は」二
記と同じである。
Scanning speed 1°/4 minutes full scale 1000 cps time constant
1 second chart speed 10 m/min Target Steel tube voltage 30 KV Tube current 10 mA For comparison, the X-ray spectrum of commercially available pigment anatase titanium oxide is shown in FIG. The measurement conditions were the same as in Section 2 above, except that the full scale was 4000 cps.

次に、パラタングステン酸アンモニウム110g及びメ
タバナジン酸アンモニウム10gを含有するlO%メヂ
メチミン溶液250m1を上で得た担体に添加し、混練
した後、押出機により格子状成形物に押出成形し、常温
がら100 ”Cに加熱して乾燥し、次いで、500℃
で3時間焼成し、酸化タングステン及び酸化バナジウム
を担持させた窒素酸化物除去用触媒を得た。
Next, 250 ml of a lO% medimethimine solution containing 110 g of ammonium paratungstate and 10 g of ammonium metavanadate was added to the carrier obtained above, kneaded, and then extruded into a lattice-shaped molded product using an extruder. ”C to dry, then 500℃
The mixture was fired for 3 hours to obtain a catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported.

実施例2 実施例1と同じく、酸化チタン換算で1kgのメタチタ
ン酸に微粒子ケイ酸ファインシール200gを添加し、
混練した後、塩化バリウム(二水和物)80gを添加し
てゾル化し、攪拌した。これを乾燥、焼成し、以下、こ
の焼成品に実施例1と同権にし°ζ、酸化タングステン
及び酸化バナジウムを担持させて窒素酸化物除去用触媒
を得た。
Example 2 As in Example 1, 200 g of fine silicic acid fine seal was added to 1 kg of metatitanic acid in terms of titanium oxide,
After kneading, 80 g of barium chloride (dihydrate) was added to form a sol and stirred. This was dried and calcined, and tungsten oxide and vanadium oxide were supported on this calcined product in the same manner as in Example 1 to obtain a catalyst for removing nitrogen oxides.

実施例3 実施例1において、微粒子ケイ酸として四塩化ケイ素を
気相加水分解法により得られるアエロジル(日本アエロ
ジル■製)を用いた以外は、実施例1と全く同様にして
担体を製造し、これに実施INIと全く同様に酸化タン
グステンと酸化バナジウムを担持させて、窒素酸化物除
去用触媒を得た。
Example 3 A carrier was produced in exactly the same manner as in Example 1, except that Aerosil (manufactured by Nippon Aerosil ■), which is obtained by vapor phase hydrolysis of silicon tetrachloride, was used as the fine particle silicic acid. This was loaded with tungsten oxide and vanadium oxide in the same manner as in Example INI to obtain a catalyst for removing nitrogen oxides.

比較例1 実施例1において、メタチタン酸をゾル化しなかった以
外は実施例1と全く同様にして、微粒子ケイ酸を含有す
る酸化チタン焼成品を得、これを実施例1と同様に処理
して、酸化タングステン及び酸化バナジウムを担持させ
た窒素酸化物除去用触媒を得た。
Comparative Example 1 A fired titanium oxide product containing fine silicic acid particles was obtained in exactly the same manner as in Example 1 except that metatitanic acid was not solized, and this was treated in the same manner as in Example 1. A catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported was obtained.

比較例2 実施例Iにおいて、メタチタン酸をゾル化した後、微粒
子ケイ酸を添加することなく、濾過、水洗し、1 (1
0’cで12時間乾燥した後、500℃の温度で3時間
焼成し、粉砕し、担体とした。
Comparative Example 2 In Example I, after turning metatitanic acid into a sol, it was filtered and washed with water without adding fine particle silicic acid, and 1 (1
After drying at 0'C for 12 hours, it was calcined at a temperature of 500C for 3 hours and pulverized to obtain a carrier.

この担体を用いて、実施例1と全く同様にして、酸化タ
ングステンと酸化バナジウムを担持さ−Uた窒素酸化物
除去用触媒を得た。
Using this carrier, in exactly the same manner as in Example 1, a catalyst for removing nitrogen oxides having -U supported on tungsten oxide and vanadium oxide was obtained.

比較例3 比較例2で得た酸化チタン焼成品担体に、パラタングス
テン酸アンモニウム110g及びメタバナジン酸アンモ
ニウム10gを含有する10%メチルアミン溶液250
m1と微粒子ケイ酸ファインシール200gを添加し、
混練した。次に、これを格子状に押出成形し、100℃
で12時間乾燥し、更に500℃で3時間焼成して、酸
化タングステンと酸化バナジウムとを担持させた窒素酸
化物除去用触媒を得た。
Comparative Example 3 250 g of a 10% methylamine solution containing 110 g of ammonium paratungstate and 10 g of ammonium metavanadate was added to the titanium oxide fired product carrier obtained in Comparative Example 2.
Add m1 and 200g of fine silicic acid fine seal,
Kneaded. Next, this was extruded into a grid shape and heated to 100°C.
The catalyst was dried for 12 hours at 500° C. and further calcined for 3 hours at 500° C. to obtain a catalyst for removing nitrogen oxides on which tungsten oxide and vanadium oxide were supported.

以上の実施例及び比較例で得た各窒素酸化物除去用触媒
に、窒素酸化物200ppm、アンモニア200ppm
、水蒸気10%、二酸化炭素12%、二酸化イオウ80
0ppm、残部窒素からなる組成の混合ガスを温度38
0℃、空間速度5000 hr−’にて接触させ、窒素
酸化物(NOx )除去率及び二酸化イオウ(So□)
酸化率を測定した。結果を第2表に示す。尚、窒素酸化
物除去率(%)及び二酸化イオウ酸化率(%)はそれぞ
れ次式により求めた。
Each of the nitrogen oxide removal catalysts obtained in the above examples and comparative examples contained 200 ppm of nitrogen oxides and 200 ppm of ammonia.
, water vapor 10%, carbon dioxide 12%, sulfur dioxide 80%
A mixed gas with a composition of 0 ppm and the balance nitrogen was heated to a temperature of 38
Nitrogen oxide (NOx) removal rate and sulfur dioxide (So□) were contacted at 0°C and a space velocity of 5000 hr-'.
The oxidation rate was measured. The results are shown in Table 2. Note that the nitrogen oxide removal rate (%) and the sulfur dioxide oxidation rate (%) were determined by the following formulas.

窒素酸化物除去率(%)=(触媒層入口NOx・濃度−
触媒層出口NOx濃度)/(触媒層入口NOx濃度> 
xio。
Nitrogen oxide removal rate (%) = (catalyst layer inlet NOx concentration -
NOx concentration at catalyst layer outlet)/(NOx concentration at catalyst layer inlet>
xio.

二酸化イオウ酸化率(%)−(触媒調入ロSO□濃度−
触媒層出口SO濃度)/(触媒層入口(So□+5O3
)濃度)X100 以」二の結果から明らかなように、メタチタン酸をゾル
化しないで微粒子ケイ酸を添加、焼成して得た担体に酸
化バナジウム及び酸化タングステンを担持させた触媒に
比べて、本発明の触媒は、窒素酸化物除去率が高い一方
、二酸化イオウ酸化率は低く、ガス混合物中の窒素酸化
物を除去する際に二酸化イオウの生成に基づく不利益を
除くことができる。
Sulfur dioxide oxidation rate (%) - (catalyst preparation SO□ concentration -
SO concentration at catalyst layer outlet)/(catalyst layer inlet (So□+5O3
) Concentration) The catalyst of the invention has a high nitrogen oxide removal rate while a low sulfur dioxide oxidation rate, and can eliminate the disadvantages due to the formation of sulfur dioxide when removing nitrogen oxides in a gas mixture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により得られる酸化チタン焼成品
のX線スペクトルを示し、第2図は比較の丸めの顔料酸
化チタンのX線スペクトルを示す。 特許出願人  三菱重工業株式会社 $1図 第2図 と3        24         ど5” 
       z6          z7広島市重
置観音新町4丁目6番 22号三菱重工業株式会社広島研 究所内 0発 明 者 小林敬古 長崎重砲の浦町1番1号三菱重 工業株式会社長崎造船所内 0発 明 者 瀬戸徹 広島車面区観音新町4丁目6番 22号三菱重工業株式会社広島研 究所内 0発 明 者 三宅淳介 東京都千代田区丸の内2丁目5 番1号三菱重工業株式会社原動 機事業本部内 0発 明 者 阿倍−光 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 0発 明 者 仲辻忠夫 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 0発 明 者 馬場敏勝 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 0発 明 者 松田敏明 堺市戎島町5丁1番地堺化学工 業株式会社中央研究所内 0出 願 入 堺化学工業株式会社 堺市戎島町5丁1番地
FIG. 1 shows an X-ray spectrum of a fired titanium oxide product obtained by the method of the present invention, and FIG. 2 shows an X-ray spectrum of a comparative rounded pigment titanium oxide. Patent Applicant: Mitsubishi Heavy Industries, Ltd. $1 Figure 2 and 3 24 Do5”
z6 z7 4-6-22 Juuki Kannon Shinmachi, Hiroshima City, Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center 0 authors Takafuru Kobayashi Nagasaki Heavy Artillery No. 1-1 Uramachi, Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard & Machinery Works 0 authors Toru Seto Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center, 4-6-22 Kannon Shinmachi, Kuruma-ku, Hiroshima Author Junsuke Miyake 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 0 accidents Mitsubishi Heavy Industries, Ltd. Power Systems Business Headquarters Author: Abe- 0 in the Sakai Chemical Industry Co., Ltd. Central Research Laboratory, 5-1 Ebisujima-cho, Sakai City Author: Tadao Nakatsuji 0 in the Sakai Chemical Industry Co., Ltd. Central Research Laboratory, 5-1 Ebisujima-cho, Sakai City Author: Toshikatsu Baba Ebisujima-cho, Sakai City 5-1, Sakai Chemical Industries, Ltd. Central Research Laboratory Inventor: Toshiaki Matsuda, 5-1 Ebisujima-cho, Sakai City, Sakai Chemical Industries, Ltd. Central Research Laboratory, 5-1 Application entered: Sakai Chemical Industries, Ltd. 5-1 Ebisujima-cho, Sakai City street address

Claims (1)

【特許請求の範囲】 (11@粒子ケイ酸を含有するゾル化したメタチタン酸
を焼成することを特徴とする酸化チタン焼成品の製造方
法。 (21111S[粒子ケイ酸を含有するゾル化したメタ
チタン酸を焼成し、かくして得た焼成品にバナジウム、
タングステン、モリブデン、銅、鉄、クロム、マンガン
及びセリウムから選ばれる少なくとも1種の元素の酸化
物を担持させることを特徴とする窒素酸化物除去用触媒
の製造方法。
[Claims] (11@ A method for producing a fired titanium oxide product characterized by firing a sol-formed metatitanic acid containing particulate silicic acid. The fired product thus obtained contains vanadium,
A method for producing a catalyst for removing nitrogen oxides, which comprises supporting an oxide of at least one element selected from tungsten, molybdenum, copper, iron, chromium, manganese, and cerium.
JP57143666A 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst Granted JPS5935027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143666A JPS5935027A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143666A JPS5935027A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Publications (2)

Publication Number Publication Date
JPS5935027A true JPS5935027A (en) 1984-02-25
JPH0114809B2 JPH0114809B2 (en) 1989-03-14

Family

ID=15344105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143666A Granted JPS5935027A (en) 1982-08-19 1982-08-19 Preparation of calcined titanium oxide and catalyst

Country Status (1)

Country Link
JP (1) JPS5935027A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
US6380128B1 (en) 1999-10-19 2002-04-30 Korea Hydro & Nuclear Power Co., Ltd. V2O5-based catalyst for removing NOx from flue gas and preparing method therefor
JP2003093881A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
JP2003093880A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
CN104353452A (en) * 2014-11-05 2015-02-18 王丽娜 Metatitanic acid SCR (selective catalytic reduction) denitration catalyst and preparation method thereof
CN106076316A (en) * 2016-06-20 2016-11-09 中国科学院兰州化学物理研究所 A kind of with method that metatitanic acid is the raw material wide operating temperature denitrating catalyst of preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS5314188A (en) * 1976-07-26 1978-02-08 Sakai Chem Ind Co Ltd Production of catalyst
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS53137091A (en) * 1977-05-07 1978-11-30 Mitsui Petrochem Ind Ltd Nitrogen oxides reduction catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
USRE34804E (en) * 1985-03-18 1994-12-06 Corning Incorporated Method of producing high-strength high surface area catalyst supports
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
US6380128B1 (en) 1999-10-19 2002-04-30 Korea Hydro & Nuclear Power Co., Ltd. V2O5-based catalyst for removing NOx from flue gas and preparing method therefor
JP2003093881A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
JP2003093880A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US9421519B2 (en) 2009-07-31 2016-08-23 Cristal USA, Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
US9108185B2 (en) 2012-08-24 2015-08-18 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
CN104353452A (en) * 2014-11-05 2015-02-18 王丽娜 Metatitanic acid SCR (selective catalytic reduction) denitration catalyst and preparation method thereof
CN106076316A (en) * 2016-06-20 2016-11-09 中国科学院兰州化学物理研究所 A kind of with method that metatitanic acid is the raw material wide operating temperature denitrating catalyst of preparation

Also Published As

Publication number Publication date
JPH0114809B2 (en) 1989-03-14

Similar Documents

Publication Publication Date Title
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
EP0214085B1 (en) Process for preparing a catalyst for removing nitrogen oxides
JPS63240945A (en) Catalyst based on cerium oxide and treatment of industrial gas containing sulfur compound
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JPS6323739A (en) Catalyst based on zirconium for treating industrial waste gas containing sulfur compound and method
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
JPH0242536B2 (en)
JP2005144299A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
JPS5935028A (en) Preparation of calcined titanium oxide and catalyst
JPS5935025A (en) Preparation of calcined titanium oxide and catalyst
WO2020119763A1 (en) A method for production of vanadium catalysts
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP2583912B2 (en) Nitrogen oxide removal catalyst
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPH044251B2 (en)
JPS6268541A (en) Preparation of catalyst for removing nitrogen oxide
JPH0442328B2 (en)
JPH0442327B2 (en)
JPH038820B2 (en)
JPH0559847B2 (en)
JP7183081B2 (en) Denitrification catalyst and method for producing the same
JPS6242742A (en) Production of catalyst for removing nitrogen oxide
JPS61230748A (en) Catalyst for purifying nitrogen oxide