JP2003093880A - Catalyst for removing nitrogen oxide and manufacturing method therefor - Google Patents

Catalyst for removing nitrogen oxide and manufacturing method therefor

Info

Publication number
JP2003093880A
JP2003093880A JP2001296580A JP2001296580A JP2003093880A JP 2003093880 A JP2003093880 A JP 2003093880A JP 2001296580 A JP2001296580 A JP 2001296580A JP 2001296580 A JP2001296580 A JP 2001296580A JP 2003093880 A JP2003093880 A JP 2003093880A
Authority
JP
Japan
Prior art keywords
component
oxide
aqueous solution
slurry
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001296580A
Other languages
Japanese (ja)
Other versions
JP4798909B2 (en
Inventor
Takao Hirakawa
孝男 平川
Koji Masuda
浩司 増田
Masaaki Uchida
雅昭 内田
Kazuhiro Nishii
一博 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Mitsubishi Chemical Engineering Corp filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001296580A priority Critical patent/JP4798909B2/en
Publication of JP2003093880A publication Critical patent/JP2003093880A/en
Application granted granted Critical
Publication of JP4798909B2 publication Critical patent/JP4798909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for removing nitrogen oxides with a low conversion rate to SO3 and excellent durability when ammonia is added to exhaust gas simultaneously containing NOX and SOX and a catalytic reaction is carried out. SOLUTION: The catalyst for removing nitrogen oxides and the manufacturing method therefor are provided. The catalyst contains a composite oxide (A component) obtained using a slurry obtained by neutralizing a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and/or silica sol or a mixed aqueous solution obtained by further adding a soluble tungsten compound thereto and a slurry obtained by neutralizing a mixed aqueous solution of a meta-titanic acid slurry, a soluble silicon compound and/or silica sol or a mixed aqueous solution obtained by further adding a soluble tungsten compound thereto; and an oxide (component B) of at least one kind of metal selected from the group consisting of vanadium, molybdenum and tungsten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒素酸化物除去用
触媒およびその製造方法に関し、更に詳しくは、重油や
石炭焚きボイラ、火力発電所、製鉄所などをはじめ各種
工場の燃焼炉などから排出される排ガス中に含有される
窒素酸化物(以下、NOと略記する)の除去用触媒お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides and a method for producing the same, and more specifically, it discharges from heavy oil, coal-fired boilers, thermal power plants, iron mills, and other combustion furnaces of various factories. The present invention relates to a catalyst for removing nitrogen oxides (hereinafter abbreviated as NO X ) contained in exhaust gas and a method for producing the same.

【0002】[0002]

【従来技術】排ガス中のNOを、アンモニアなどの還
元剤を使用して除去する脱硝触媒としては、一般に酸化
チタン担体に酸化タングステン、酸化バナジウムなどの
活性成分を担持した、ハニカム形状の触媒が工業的に使
用されている。工業的に使用される脱硝触媒は、排ガス
中に含まれるダスト、硫黄化合物(以下、SOと略記
する)などにも対処することが必要であるため、ただ単
に脱硝活性が高いだけでなく、SOへの酸化能(SO
転化率)が低いこと等の種々の性能が要求される。
2. Description of the Related Art As a denitration catalyst for removing NO X in exhaust gas by using a reducing agent such as ammonia, a honeycomb-shaped catalyst in which an active component such as tungsten oxide or vanadium oxide is supported on a titanium oxide carrier is generally used. It is used industrially. Since a denitration catalyst used industrially needs to deal with dust, sulfur compounds (hereinafter abbreviated as SO X ) and the like contained in exhaust gas, not only is the denitration activity high, Ability to oxidize to SO 3 (SO
3 various performances such as conversion) is low is required.

【0003】一般に、排ガス中に含まれるSOの大部
分はSOであるが、このSOの一部は脱硝触媒上で
酸化されてSOとなり、このSOは還元剤として使
用するNHの未反応分と結合して酸性硫安を生成し、
後流の熱交換器などの装置の閉塞を起こすため、またS
そのものが装置などの腐蝕を起こすなどの問題があ
った。そこでSOへの転化率の低い脱硝触媒が望まれ
ていた。
In general, most of SO X contained in exhaust gas is SO 2 , but a part of this SO 2 is oxidized on the denitration catalyst to become SO 3 , and this SO 3 is used as a reducing agent. Combines with the unreacted component of 3 to produce acidic ammonium sulfate,
In order to cause blockage of devices such as heat exchangers in the wake, S
There is a problem that O 3 itself causes corrosion of the device. Therefore, a denitration catalyst with a low conversion rate to SO 3 has been desired.

【0004】前述のSOへの転化率を抑制した触媒に
関して、特公平4−17091号公報には、予めチタン
とタングステン及びケイ素の三元系酸化物を形成せしめ
た後該酸化物にバナジウム化合物を添加することを特徴
とする脱硝触媒の調製方法が提案されている。
Regarding the above-mentioned catalyst in which the conversion rate to SO 3 is suppressed, Japanese Patent Publication No. 4-17091 discloses a ternary oxide of titanium, tungsten, and silicon, which is then formed, and then the vanadium compound is added to the oxide. There has been proposed a method for preparing a denitration catalyst, which is characterized by adding

【0005】また、特許第2825343号公報には、
窒素酸化物をアンモニアと共に接触的に反応せしめて選
択還元する触媒を製造する方法において、可溶性チタン
化合物と可溶性ケイ素化合物および/またはシリカゾル
とを出発原料として用い、水性媒体中で該原料をアンモ
ニアによって中和せしめて共沈物を得、該共沈物スラリ
ーをpHが8.5以上の範囲で20時間以上熟成せしめ
た後、これを洗浄し、乾燥し、次いで焼成して得られる
チタンおよびケイ素からなる二元系複合酸化物を触媒
(イ)成分とし、バナジウム酸化物を触媒(ロ)成分と
し、タングステン酸化物を触媒(ハ)成分として用いて
なり、その組成がそれぞれ(イ)成分は82〜97重量
%、(ロ)成分は0.3〜3重量%および(ハ)成分は
3〜15重量%の範囲、さらに(イ)成分の組成が原子
百分率でチタン70〜90%、ケイ素30〜10%の範
囲に調整されてなることを特徴とする窒素酸化物除去用
触媒の製造方法が提案されている。しかし、該発明の製
造方法では、ハニカム形状など複雑な形状の触媒に成形
する場合には、二元系複合酸化物が単純な粒度分布であ
るため、可塑性が低く、粒子間結合力が弱く、成形性が
悪いという問題があった。また、成形性を向上させ、成
形体強度を向上させるために大量の成形助剤や粘土を使
用する必要があり、そのため、触媒性能が低下する問題
もあった。
Further, Japanese Patent No. 2825343 discloses that
In a method for producing a catalyst for catalytically reducing nitrogen oxides by catalytically reacting with nitrogen, a soluble titanium compound and a soluble silicon compound and / or silica sol are used as starting materials, and the materials are neutralized with ammonia in an aqueous medium. A coprecipitate was obtained by agitation, and the coprecipitate slurry was aged in a pH range of 8.5 or more for 20 hours or more, washed, dried, and then calcined to obtain titanium and silicon. The binary composite oxide is used as a catalyst (a) component, vanadium oxide as a catalyst (b) component, and tungsten oxide as a catalyst (c) component. .About.97% by weight, component (B) in the range of 0.3 to 3% by weight and component (C) in the range of 3 to 15% by weight, and the composition of component (A) is titanium 70 in atomic percentage. 90%, the production method of the nitrogen oxide removing catalyst, characterized by comprising been adjusted to a range of 30 to 10% silicon has been proposed. However, in the production method of the present invention, when a catalyst having a complicated shape such as a honeycomb shape is formed, since the binary composite oxide has a simple particle size distribution, the plasticity is low and the interparticle bonding force is weak, There was a problem of poor moldability. Further, it is necessary to use a large amount of a molding aid or clay in order to improve the moldability and the strength of the molded body, which causes a problem that the catalytic performance is lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、NO
、特にNOおよびSOを同時に含有する排ガスに
アンモニアを加え、接触的に反応させるに際して、従来
より提案されている窒素酸化物除去用触媒よりも更にN
除去率が高くて、しかもSOへの転化率が低く、
耐久性に優れた工業触媒として有用な窒素酸化物除去用
触媒およびハニカム形状など複雑な形状の触媒でも成形
性が良好な該触媒の製造方法を提供することにある。
The object of the present invention is NO.
When adding ammonia to the exhaust gas containing X 2 , especially NO X and SO X at the same time and reacting them catalytically, N is more than the conventionally proposed catalyst for removing nitrogen oxides.
Higher O X removal rate, yet low conversion to SO 3,
It is an object of the present invention to provide a catalyst for removing nitrogen oxides, which is useful as an industrial catalyst having excellent durability, and a method for producing the catalyst, which has good formability even for a catalyst having a complicated shape such as a honeycomb shape.

【0007】[0007]

【課題を解決するための手段】本発明の第1は、可溶性
チタン化合物、可溶性ケイ素化合物および/またはシリ
カゾルの混合水溶液、もしくは、可溶性チタン化合物、
可溶性タングステン化合物、可溶性ケイ素化合物および
/またはシリカゾルの混合水溶液に、塩基性水溶液を添
加・中和して得られる複合水酸化物(x成分)スラリー
と、メタチタン酸スラリーと可溶性ケイ素化合物および
/またはシリカゾルの混合水溶液、もしくはメタチタン
酸スラリー、可溶性タングステン化合物、可溶性ケイ素
化合物および/またはシリカゾルの混合水溶液に塩基性
水溶液を添加・中和して得られる複合水酸化物(y成
分)スラリーとを用い、得られた複合酸化物(A成分)
ならびにバナジウム、モリブデンおよびタングステンか
らなる群から選ばれた少なくとも一種の金属の酸化物
(B成分)を含有する窒素酸化物除去用触媒に関する。
The first aspect of the present invention is to provide a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a soluble titanium compound,
Composite hydroxide (x component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of a soluble tungsten compound, a soluble silicon compound and / or a silica sol, a metatitanic acid slurry and a soluble silicon compound and / or silica sol Or a complex hydroxide (y component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of metatitanic acid, a mixed aqueous solution of a soluble tungsten compound, a soluble silicon compound and / or silica sol. Composite oxide (component A)
And a catalyst for removing nitrogen oxides, which contains an oxide (component B) of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten.

【0008】該窒素酸化物除去用触媒では、前記複合酸
化物(A成分)中に含まれるx成分由来の複合酸化物の
量が5〜30重量%の範囲にあることが好ましい。
In the catalyst for removing nitrogen oxides, the amount of the composite oxide derived from the component x contained in the composite oxide (component A) is preferably in the range of 5 to 30% by weight.

【0009】また、前記複合酸化物(A成分)の組成
が、酸化チタンとして75〜90重量%、酸化ケイ素と
して10〜20重量%、酸化タングステンとして0〜5
重量%の範囲にあることが好ましい。
The composition of the composite oxide (component A) is such that titanium oxide is 75 to 90% by weight, silicon oxide is 10 to 20% by weight, and tungsten oxide is 0 to 5% by weight.
It is preferably in the range of% by weight.

【0010】前記複合酸化物(A成分)が酸化物基準で
硫酸根をSOとして1〜10重量%含有することが好
ましい。
It is preferable that the complex oxide (component A) contains 1 to 10% by weight of sulfate as SO 4 based on the oxide.

【0011】さらに、前記複合酸化物(A成分)を85
〜99.9重量%、金属酸化物(B成分)を0.1〜1
5重量%の割合で含有することが好ましい。
Further, the complex oxide (component A) is added to 85
~ 99.9 wt%, metal oxide (B component) 0.1 to 1
It is preferably contained in a proportion of 5% by weight.

【0012】本発明の第2は、(1)可溶性チタン化合
物、可溶性ケイ素化合物および/またはシリカゾルの混
合水溶液、もしくは可溶性チタン化合物、可溶性タング
ステン化合物、可溶性ケイ素化合物および/またはシリ
カゾルの混合水溶液に、塩基性水溶液を添加・中和して
複合水酸化物(x成分)のスラリーを得、(2)別途、
メタチタン酸スラリーと可溶性ケイ素化合物および/ま
たはシリカゾルの混合水溶液、もしくはメタチタン酸ス
ラリー、可溶性タングステン化合物、可溶性ケイ素化合
物および/またはシリカゾルの混合水溶液に、塩基性水
溶液を添加・中和して複合水酸化物(y成分)スラリー
を得、(3)前述のx成分である複合水酸化物のスラリ
ーとy成分である複合水酸化物のスラリーとを混合した
後、洗浄、乾燥して得られた複合水酸化物(a成分)ま
たは複合酸化物(A成分)に、バナジウム、モリブデン
およびタングステンからなる群から選ばれた少なくとも
一種の金属の酸化物の前駆物質(b成分)を担持し、乾
燥、焼成することを特徴とする窒素酸化物除去用触媒の
製造方法に関する。
The second aspect of the present invention is to add (1) a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a mixed aqueous solution of a soluble titanium compound, a soluble tungsten compound, a soluble silicon compound and / or a silica sol to a base. Aqueous aqueous solution is added and neutralized to obtain slurry of complex hydroxide (component x), (2) Separately,
A mixed aqueous solution of a metatitanic acid slurry and a soluble silicon compound and / or a silica sol, or a mixed aqueous solution of a metatitanic acid slurry, a soluble tungsten compound, a soluble silicon compound and / or a silica sol, to which a basic aqueous solution is added and neutralized to form a composite hydroxide. (Y component) A slurry is obtained, and (3) the composite water obtained by mixing the slurry of the composite hydroxide of the x component and the slurry of the composite hydroxide of the y component, followed by washing and drying. A precursor (component b) of an oxide of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten is supported on an oxide (component a) or a complex oxide (component A), and dried and calcined. The present invention also relates to a method for producing a nitrogen oxide removing catalyst.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below.

【0014】本発明の窒素酸化物除去用触媒では、可溶
性チタン化合物、可溶性ケイ素化合物および/またはシ
リカゾルの混合水溶液、もしくは可溶性チタン化合物、
可溶性タングステン化合物、可溶性ケイ素化合物および
/またはシリカゾルの混合水溶液に塩基性水溶液を添加
・中和して得られた複合水酸化物(x成分)スラリーを
使用する。該複合水酸化物(x成分)は、別の複合水酸
化物(y成分)との混合状態で熱履歴を受けて複合酸化
物(A成分)に転化する前駆物質である。該複合酸化物
(A成分)は、酸化チタンおよび酸化ケイ素、または酸
化チタン、酸化タングステンおよび酸化ケイ素の単なる
混合物ではなく、いわゆる二元系複合酸化物(TiO
−SiO)または三元系複合酸化物(TiO−WO
−SiO)を形成する。
In the catalyst for removing nitrogen oxides of the present invention, a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or silica sol, or a soluble titanium compound,
A composite hydroxide (component x) obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of a soluble tungsten compound, a soluble silicon compound and / or silica sol is used. The complex hydroxide (component x) is a precursor that is converted into a complex oxide (component A) by undergoing heat history in a mixed state with another complex hydroxide (component y). The complex oxide (component A) is not a mere mixture of titanium oxide and silicon oxide, or titanium oxide, tungsten oxide and silicon oxide, but a so-called binary complex oxide (TiO 2
-SiO 2) or ternary composite oxide (TiO 2 -WO
3 to form a -SiO 2).

【0015】本発明でのメタチタン酸スラリーと可溶性
ケイ素化合物および/またはシリカゾルの混合水溶液、
もしくはメタチタン酸スラリー、可溶性タングステン化
合物、可溶性ケイ素化合物および/またはシリカゾルの
混合水溶液に塩基性水溶液を添加・中和して得られる複
合水酸化物(y成分)スラリーは、前記の複合水酸化物
(x成分)との混合状態で熱履歴を受けて複合酸化物
(A成分)に転化する前駆物質である。該複合酸化物
(A成分)が、酸化チタンおよび酸化ケイ素、または酸
化チタン、酸化タングステンおよび酸化ケイ素の単なる
混合物ではなく、いわゆる二元系複合酸化物(TiO
−SiO)または三元系複合酸化物(TiO−WO
−SiO)を形成することは前記と同じである。
A mixed aqueous solution of the metatitanic acid slurry of the present invention and a soluble silicon compound and / or silica sol,
Alternatively, a composite hydroxide (y component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of a metatitanic acid slurry, a soluble tungsten compound, a soluble silicon compound and / or silica sol is the above-mentioned composite hydroxide ( It is a precursor that undergoes a thermal history in the mixed state with the x component) and is converted into a composite oxide (A component). The complex oxide (component A) is not a simple mixture of titanium oxide and silicon oxide, or titanium oxide, tungsten oxide and silicon oxide, but a so-called binary complex oxide (TiO 2
-SiO 2) or ternary composite oxide (TiO 2 -WO
3 to form a -SiO 2) are the same as defined above.

【0016】本発明でのA成分である複合酸化物は、前
述のx成分である複合水酸化物のスラリーとy成分であ
る複合水酸化物のスラリーとの混合物を熱処理して得ら
れた触媒成分であるため、得られる触媒は、脱窒素活性
が高くて、しかも SO酸化活性が低く、耐久性に優
れている。
The composite oxide which is the A component in the present invention is a catalyst obtained by heat-treating a mixture of the slurry of the composite hydroxide which is the x component and the slurry of the composite hydroxide which is the y component. Since it is a component, the resulting catalyst has high denitrification activity and low SO 2 oxidation activity, and is excellent in durability.

【0017】本発明の窒素酸化物除去用触媒では、前記
複合酸化物(A成分)中に含まれるx成分由来の複合酸
化物の量(x/A)が5〜30重量%の範囲にあること
が好ましい。x/Aの値が5重量%よりも小さい場合
は、脱窒素活性は高くなるがSO酸化活性も高くなる
傾向にあり、また、x/Aの値が30重量%よりも大き
い場合は、触媒の成形性が悪くなる傾向にあり、また、
SO酸化活性は低くなるが脱窒素活性も低くなる傾向
にある。好ましいx/Aの範囲は10〜20重量%であ
る。
In the nitrogen oxide removing catalyst of the present invention, the amount (x / A) of the composite oxide derived from the x component contained in the composite oxide (A component) is in the range of 5 to 30% by weight. It is preferable. When the value of x / A is less than 5% by weight, the denitrification activity tends to be high, but the SO 2 oxidation activity tends to be high, and when the value of x / A is greater than 30% by weight, The moldability of the catalyst tends to deteriorate, and
The SO 2 oxidation activity is low, but the denitrification activity also tends to be low. The preferable range of x / A is 10 to 20% by weight.

【0018】また、前記複合酸化物(A成分)の組成
は、酸化チタンとして75〜90重量%、酸化ケイ素と
して10〜20重量%、酸化タングステンとして0〜5
重量%の範囲にあることが好ましい。酸化ケイ素の量が
10重量%より少ない場合には低いSO酸化活性が得
られないことがあり、また、20重量%より多い場合に
は脱窒素活性が低くなり、また、成型性が悪くなること
がある。また、酸化タングステンの量が5重量%より多
くなると、タングステンは複合水酸化物を形成しない状
態で存在することがあるので効果的でない。
The composition of the composite oxide (component A) is 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5 as tungsten oxide.
It is preferably in the range of% by weight. When the amount of silicon oxide is less than 10% by weight, low SO 2 oxidation activity may not be obtained, and when it is more than 20% by weight, denitrification activity becomes low and moldability deteriorates. Sometimes. On the other hand, if the amount of tungsten oxide is more than 5% by weight, tungsten may exist in a state where complex hydroxide is not formed, which is not effective.

【0019】また、前記複合酸化物(A成分)は、酸化
物基準で硫酸根をSOとして1〜10重量%含有する
ことが好ましい。A成分中に硫酸根を含有させることに
より脱硝活性が高くなる傾向を示し、1重量%より少な
い場合にはその効果が少なく、10重量%より多く含有
させてもその効果は変わらない。好ましい硫酸根の量は
2〜8重量%の範囲である。
The complex oxide (component A) preferably contains 1 to 10% by weight of sulfate as SO 4 based on the oxide. The inclusion of sulfate in component A tends to increase the denitration activity, and when it is less than 1% by weight, its effect is small, and when it is contained in more than 10% by weight, its effect is not changed. The preferred amount of sulfate is in the range of 2 to 8% by weight.

【0020】本発明の窒素酸化物除去用触媒では、バナ
ジウム、モリブデンおよびタングステンからなる群から
選ばれた少なくとも一種の金属の酸化物(B成分)を含
有するが、その他の金属酸化物を含有していてもよい。
特に、酸化バナジウムおよび酸化タングステンは好適な
金属酸化物である。本発明の窒素酸化物除去用触媒は、
前記複合酸化物(A成分)を85〜99.9重量%、前
記金属酸化物(B成分)を0.1〜15重量%の割合で
含有することが好ましい。B成分の割合が0.1重量%
より少ない場合には、所望の脱窒素活性が得られないこ
とがあり、また、15重量%より多い場合にはSO
化活性が高くなることがある。好ましくは、A成分が9
0〜99.5重量%、B成分が0.5〜10重量%の範
囲割合である。
The catalyst for removing nitrogen oxides of the present invention contains an oxide (component B) of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten, but does not contain other metal oxides. May be.
In particular, vanadium oxide and tungsten oxide are suitable metal oxides. The catalyst for removing nitrogen oxides of the present invention,
It is preferable that the composite oxide (component A) is contained in a proportion of 85 to 99.9% by weight and the metal oxide (component B) is contained in a proportion of 0.1 to 15% by weight. B component is 0.1% by weight
If the amount is less than the above, the desired denitrification activity may not be obtained, and if it exceeds 15% by weight, the SO 2 oxidation activity may be increased. Preferably, the A component is 9
0 to 99.5% by weight, and B component is 0.5 to 10% by weight.

【0021】次に、本発明の窒素酸化物除去用触媒の製
造方法について述べる。本発明の方法で使用される可溶
性チタン化合物としては、塩化チタン、硫酸チタンなど
の無機チタン化合物およびシュウ酸チタン、テトライソ
プロピルチタネートなどの有機チタン化合物が例示さ
れ、またケイ素源としては、シリカゾルのほか、可溶性
ケイ素化合物として、四塩化ケイ素など無機ケイ素化合
物およびエチルシリケイト、メチルシリケイトなどの有
機ケイ素化合物が例示される。可溶性タングステン化合
物としては、パラタングステン酸アンモン、メタタング
ステン酸アンモンなどが例示される。
Next, a method for producing the nitrogen oxide removing catalyst of the present invention will be described. Examples of the soluble titanium compound used in the method of the present invention include inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. Examples of soluble silicon compounds include inorganic silicon compounds such as silicon tetrachloride and organic silicon compounds such as ethyl silicate and methyl silicate. Examples of soluble tungsten compounds include ammonium paratungstate and ammonium metatungstate.

【0022】本発明の方法では、前述の可溶性チタン化
合物と前述の可溶性ケイ素化合物および/またはシリカ
ゾルとの混合水溶液、もしくは前述の可溶性チタン化合
物と前述の可溶性タングステン化合物と前述の可溶性ケ
イ素化合物および/またはシリカゾルとの混合水溶液に
塩基性水溶液を添加・中和して複合水酸化物(x成分)
スラリーを調製するが、中和はpH9〜10.5の範囲
で行うのが望ましく、さらに、pH9〜10.5の範囲
で熟成することがとくに望ましい。本発明で使用される
塩基性水溶液としては、アンモニア水、尿素水溶液、ア
ミン水溶液など周知の塩基性水溶液が使用可能である
が、特にアンモニア水は好適である。
In the method of the present invention, a mixed aqueous solution of the aforementioned soluble titanium compound and the aforementioned soluble silicon compound and / or silica sol, or the aforementioned soluble titanium compound, the aforementioned soluble tungsten compound and the aforementioned soluble silicon compound and / or Complex hydroxide (x component) by adding and neutralizing basic aqueous solution to mixed aqueous solution with silica sol
Although a slurry is prepared, neutralization is preferably carried out within a pH range of 9 to 10.5, and more preferably aged within a pH range of 9 to 10.5. As the basic aqueous solution used in the present invention, known basic aqueous solutions such as ammonia water, urea aqueous solution and amine aqueous solution can be used, but ammonia aqueous solution is particularly preferable.

【0023】本発明の方法では、前述のx成分である複
合水酸化物のスラリーとは別に、メタチタン酸スラリー
と可溶性ケイ素化合物および/またはシリカゾルの混合
水溶液、もしくはメタチタン酸スラリー、可溶性タング
ステン化合物、可溶性ケイ素化合物および/またはシリ
カゾルの混合水溶液に塩基性水溶液を添加・中和して複
合水酸化物(y成分)スラリーを調製するが、中和はp
H9〜10.5の範囲で行うのが望ましく、さらに、p
H9〜10.5の範囲で熟成することがとくに望まし
い。この場合にも前述の塩基性水溶液が使用可能であ
る。
In the method of the present invention, in addition to the slurry of the composite hydroxide as the component x, a mixed aqueous solution of the metatitanic acid slurry and the soluble silicon compound and / or silica sol, or the metatitanic acid slurry, the soluble tungsten compound, the soluble A basic aqueous solution is added to and neutralized with a mixed aqueous solution of a silicon compound and / or silica sol to prepare a composite hydroxide (y component) slurry.
It is desirable to carry out in the range of H9 to 10.5.
Aging in the range of H9 to 10.5 is particularly desirable. Also in this case, the above-mentioned basic aqueous solution can be used.

【0024】前述のx成分である複合水酸化物のスラリ
ーとy成分である複合水酸化物のスラリーとを混合した
後、洗浄、乾燥して得られた複合水酸化物(a成分)ま
たは複合酸化物(A成分)に、バナジウム、モリブデン
およびタングステンからなる群から選ばれた少なくとも
一種の金属の酸化物の前駆物質(b成分)および粘土、
可塑剤などを添加して混練捏和し、所望の形状に成型
し、乾燥、300〜800℃で焼成することが好まし
い。
The composite hydroxide (a component) or the composite obtained by mixing the slurry of the composite hydroxide as the x component and the slurry of the composite hydroxide as the y component, and then washing and drying the mixture. As the oxide (component A), a precursor (b component) of an oxide of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten, and clay,
It is preferable to add a plasticizer and the like, knead and knead, form into a desired shape, dry and calcination at 300 to 800 ° C.

【0025】b成分である前駆物質には、バナジウム源
としてはメタバナジン酸アンモン、硫酸バナジル、シュ
ウ酸バナジル、五酸化バナジウムなど、モリブデン源と
してはパラモリブデン酸アンモン、三酸化モリブデンな
ど、タングステン源としてはパラタングステン酸アンモ
ン、酸化タングステンなどが例示される。また、b成分
の担持は、周知の担持方法が採用でき、例えば、前述の
複合水酸化物(a成分)を所望の形状に成型し、乾燥、
焼成して得た複合酸化物(A成分)に、B成分の前駆物
質(b成分)あるいはB成分を含浸して調製することも
できる。
The precursor of the component b includes ammonium vanadium as a vanadium source, vanadyl sulfate, vanadyl oxalate, vanadium pentoxide, etc., ammonium as a molybdenum source, ammonium paramolybdate, molybdenum trioxide, etc. Examples include ammonium paratungstate and tungsten oxide. A well-known supporting method can be adopted for supporting the component b. For example, the composite hydroxide (component a) described above is molded into a desired shape and dried,
It can also be prepared by impregnating the composite oxide (component A) obtained by firing with the precursor of component B (component b) or component B.

【0026】本発明の製造方法の概略を下記フローシー
トに示す。
An outline of the manufacturing method of the present invention is shown in the following flow sheet.

【表1】 [Table 1]

【0027】本発明の窒素酸化物除去用触媒は、NO
を含有する排ガス、特にボイラ排ガスなどのようにNO
、SOを含有するほか、重金属、ダストを含有する
排ガスに、アンモニアなどの還元剤を添加して接触還元
するNO除去法に好適に使用される。また該触媒の使
用条件は、通常の脱硝処理条件が採用され、具体的に
は、反応温度150〜600℃、空間速度1,000〜
100,000hr−1の範囲などが例示される。
The catalyst for removing nitrogen oxides of the present invention is NO x.
Exhaust gas containing NO, especially NO such as boiler exhaust gas
It is suitable for use in a NO X removal method in which a reducing agent such as ammonia is added to an exhaust gas containing not only X 2 and SO X but also heavy metals and dusts to carry out catalytic reduction. The conditions for using the catalyst are normal denitration treatment conditions, specifically, a reaction temperature of 150 to 600 ° C. and a space velocity of 1,000 to
For example, the range of 100,000 hr −1 is exemplified.

【0028】[0028]

【実施例】以下に実施例を示し本発明を具体的に説明す
るが、本発明はこれらにより何ら限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0029】実施例1 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕4.22kgを取り、水16.
88kgに溶解希釈した硫酸チタニル水溶液にシリカゾ
ル〔SiO濃度20重量%、商品名“カタロイドS−
20L”触媒化成工業(株)製〕0.75kgを15分
間かけて添加混合し、これに、温度60℃以下を維持し
ながら3規定アンモニア水9.11kgを15分間かけ
て添加・中和してTiO−SiO複合水酸化物(x
成分)スラリーを生成し、更にpH9.5〜10を維持
し、温度60℃で1時間加温熟成した。別途、メタチタ
ン酸スラリー〔TiO濃度30重量%、石原産業
(株)製〕40.5kgに、シリカゾル〔SiO濃度
20重量%、商品名“カタロイドS−20L”触媒化成
工業(株)製〕6.75kgを10分間かけて添加混合
した後、3規定アンモニア水2.43kgを添加・中和
し、更にpH9.5〜10を維持し、温度60℃で5時
間加温熟成してy成分である複合水酸化物のスラリーを
調製した。このy成分である複合水酸化物のスラリーに
前述のx成分である複合水酸化物のスラリーを混合、攪
拌した後、この混合物スラリーを脱水洗浄し、400℃
以下の温度で5時間乾燥してTiO−SiOからな
る2元系複合酸化物(A成分)を得た。なお、該2元系
複合酸化物中のSO含有量は4.7重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kg
を混合し、これにメタバナジン酸アンモニウム0.20
5kgを添加、加熱溶解した。この溶解液と前述の二元
系複合酸化物(A成分)12.64kgをニーダーによ
り混練し、更に、粘土、ガラス繊維などの成形助剤を加
えて混練捏和後、ハニカム状に押出成型したが、成形性
は良好であった。ついで、成型物を110℃で乾燥した
後、マッフル炉中において600℃で焼成し触媒Iを調
製した。
Example 1 As a titanium source, 4.22 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 16.
Silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-
20 L "catalyst manufactured by Kasei Kogyo Co., Ltd.] 0.75 kg was added and mixed over 15 minutes, and thereto, 9.11 kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C or lower. TiO 2 —SiO 2 composite hydroxide (x
Ingredients) A slurry was produced, and the pH was maintained at 9.5 to 10 and aged by heating at 60 ° C for 1 hour. Separately, to 40.5 kg of metatitanic acid slurry [TiO 2 concentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.], silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalysts & Chemicals Industry Co., Ltd.] After 6.75 kg was added and mixed for 10 minutes, 2.43 kg of 3N ammonia water was added and neutralized, pH was maintained at 9.5 to 10, and the mixture was aged by heating at 60 ° C. for 5 hours to prepare the y component. A composite hydroxide slurry was prepared. After mixing and stirring the slurry of the composite hydroxide of the above-mentioned x component with the slurry of the composite hydroxide of this y component, this mixture slurry is dehydrated and washed at 400 ° C.
It was dried at the following temperature for 5 hours to obtain a binary composite oxide (component A) composed of TiO 2 —SiO 2 . The SO 4 content in the binary composite oxide was 4.7% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water
And mixed with ammonium metavanadate 0.20
5 kg was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned binary complex oxide (component A) were kneaded by a kneader, further kneaded and kneaded with a molding aid such as clay or glass fiber, and extruded into a honeycomb shape. However, the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare a catalyst I.

【0030】実施例2 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕12.7kgを取り、水50.
8kgに溶解希釈した硫酸チタニル水溶液にシリカゾル
〔SiO濃度20重量%、商品名“カタロイドS−2
0L”触媒化成(株)製〕2.25kgを15分間かけ
て添加混合し、これに、温度60℃以下を維持しながら
3規定アンモニア水27.34kgを15分間かけて添
加・中和してTiO−SiO複合水酸化物(x成
分)スラリーを生成し、更にpH9.5〜10を維持し
温度60℃で1時間加温熟成した。別途、メタチタン酸
スラリー〔TiO濃度30重量%、石原産業(株)
製〕31.5kgに、シリカゾル〔SiO濃度20重
量%、商品名“カタロイドS−20L”触媒化成工業
(株)製〕5.25kgを10分間かけて添加混合した
後、3規定アンモニア水1.89kgを添加・中和し、
更にpH9.5〜10を維持し、温度60℃で5時間加
温熟成してy成分に相当する複合水酸化物のスラリーを
調製した。このy成分である複合水酸化物のスラリーに
前述のx成分である複合水酸化物のスラリーを混合攪拌
した後、この混合物スラリーを脱水洗浄し、400℃以
下の温度で5時間乾燥してTiO−SiOからなる
二元系複合酸化物(A成分)を得た。なお、該2元系複
合酸化物中のSO含有量は4.9重量%であった。次
に、モノエタノールアミン0.3kgと水3.0kgを
混合し、これにメタバナジン酸アンモニウム0.205
kgを添加、加熱溶解した。この溶解液と前述の二元系
複合酸化物(A成分)12.64kgをニーダーにより
混練し、更に、粘土、ガラス繊維などの成形助剤を加え
て混練捏和後、ハニカム状に押出成型したが、成形性は
良好であった。ついで、成型物を110℃で乾燥した
後、マッフル炉中において600℃で焼成し触媒IIを調
製した。
Example 2 As a titanium source, 12.7 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 50.
Silica sol [SiO 2 concentration 20% by weight, trade name "Cataloid S-2" was added to an aqueous solution of titanyl sulfate dissolved and diluted in 8 kg.
0L "catalyst manufactured by Kasei Kabushiki Kaisha] 2.25 kg was added and mixed over 15 minutes, and 27.34 kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C or lower. A TiO 2 —SiO 2 composite hydroxide (x component) slurry was generated, and further maintained at pH 9.5 to 10 and aged by heating for 1 hour at a temperature of 60 ° C. Separately, metatitanic acid slurry [TiO 2 concentration 30 wt%. , Ishihara Sangyo Co., Ltd.
31.5 kg, silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalysts & Chemicals Industries Ltd.] 5.25 kg was added and mixed for 10 minutes, and then 3N ammonia water 1 was added. .89 kg was added and neutralized,
The pH was maintained at 9.5 to 10 and the mixture was aged at 60 ° C. for 5 hours to prepare a slurry of a composite hydroxide corresponding to the y component. After the slurry of the composite hydroxide of the y component described above is mixed and stirred with the slurry of the composite hydroxide of the y component, the mixture slurry is dehydrated and washed, and dried at a temperature of 400 ° C. or lower for 5 hours to form TiO 2. binary composite oxide consisting of 2 -SiO 2 the (a component) was obtained. The SO 4 content in the binary composite oxide was 4.9% by weight. Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and to this was added ammonium metavanadate 0.205.
kg was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned binary complex oxide (component A) were kneaded by a kneader, further kneaded and kneaded with a molding aid such as clay or glass fiber, and extruded into a honeycomb shape. However, the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare a catalyst II.

【0031】実施例3 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕1.88kgを取り、水7.5
2kgに溶解希釈した硫酸チタニル水溶液にシリカゾル
〔SiO濃度20重量%、商品名“カタロイドS−2
0L”触媒化成工業(株)製〕0.75kgを15分間
かけて添加混合し、これに、温度60℃以下を維持しな
がら3規定アンモニア水4.05kgを15分間かけて
添加・中和してTiO−SiO複合水酸化物(x成
分)スラリーを生成し、更にpH9.5〜10を維持
し、温度60℃で1時間加温熟成した。別途、メタチタ
ン酸スラリー〔TiO濃度30重量%、石原産業
(株)〕38.0kgに、シリカゾル〔SiO濃度2
0重量%、商品名“カタロイドS−20L”触媒化成工
業(株)製〕14.2kgを10分間かけて添加混合し
た後、3規定アンモニア水2.28kgを添加・中和
し、更にpH9.5〜10を維持し、温度60℃で5時
間加温熟成してy成分である複合水酸化物のスラリーを
調製した。このy成分に相当する複合水酸化物のスラリ
ーに前述のx成分である複合水酸化物のスラリーを混合
攪拌した後、この混合物スラリーを脱水洗浄し、400
℃以下の温度で5時間乾燥してTiO−SiOから
なる二元系複合酸化物(A成分)を得た。なお、該2元
系複合酸化物中のSO含有量は4.9重量%であっ
た。次に、モノエタノールアミン0.3kgと水3.0
kgを混合し、これにメタバナジン酸アンモニウム0.
205kgを添加、加熱溶解した。この溶解液と前述の
二元系複合酸化物(A成分)12.64kgをニーダー
により混練し、更に、粘土、ガラス繊維などの成形助剤
を加えて混練捏和後、ハニカム状に押出成型したが、成
形性は良好であった。ついで、成型物を110℃で乾燥
した後、マッフル炉中において600℃で焼成し触媒II
Iを調製した。
Example 3 As a titanium source, 1.88 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 7.5 was used.
Silica sol [SiO 2 concentration 20% by weight, trade name "Cataloid S-2" was added to an aqueous solution of titanyl sulfate dissolved and diluted in 2 kg.
0L "catalyst manufactured by Kasei Kogyo Co., Ltd.] 0.75 kg was added and mixed for 15 minutes, and 4.05 kg of 3N ammonia water was added and neutralized for 15 minutes while maintaining the temperature at 60 ° C or lower. To produce a TiO 2 —SiO 2 composite hydroxide (component x) slurry, which was further maintained at pH 9.5 to 10 and aged for 1 hour at a temperature of 60 ° C. Separately, metatitanic acid slurry [TiO 2 concentration 30 % By weight, Ishihara Sangyo Co., Ltd.] 38.0 kg, silica sol [SiO 2 concentration 2
0% by weight, trade name “Cataloid S-20L” manufactured by Catalysts & Chemicals Industry Co., Ltd.] 14.2 kg was added and mixed over 10 minutes, then 2.28 kg of 3N ammonia water was added and neutralized, and the pH was adjusted to 9. The temperature was maintained at 5 to 10 and aged by heating at a temperature of 60 ° C. for 5 hours to prepare a slurry of the composite hydroxide as the y component. After the slurry of the composite hydroxide corresponding to the y component is mixed with the slurry of the composite hydroxide corresponding to the x component, the mixture slurry is dehydrated and washed to obtain 400
It was dried at a temperature of ℃ or less for 5 hours to obtain a binary composite oxide (Component A) composed of TiO 2 —SiO 2 . The SO 4 content in the binary composite oxide was 4.9% by weight. Next, 0.3 kg of monoethanolamine and 3.0 of water
kg, and ammonium metavanadate of 0.
205 kg was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned binary complex oxide (component A) were kneaded by a kneader, further kneaded and kneaded with a molding aid such as clay or glass fiber, and extruded into a honeycomb shape. However, the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst II.
I was prepared.

【0032】実施例4 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕7.5kgをとり、水30.0
kgに溶解希釈した硫酸チタニル水溶液にシリカゾル
〔SiO濃度20重量%、商品名“カタロイドS−2
0L”触媒化成工業(株)〕3.0kgを15分間かけ
て添加混合し、これに、温度60℃以下を維持しながら
3規定アンモニア水16.2kgを15分間かけて添加
・中和してTiO−SiO複合水酸化物(x成分)
スラリーを生成し、更にpH9.5〜10を維持し、温
度60℃で1時間加温熟成した。別途、メタチタン酸ス
ラリー〔TiO濃度30重量%、石原産業(株)製〕
32.0kgに、シリカゾル〔SiO濃度20重量
%、商品名“カタロイドS−20L”触媒化成工業
(株)製〕12.0kgを10分間かけて添加混合した
後、3規定アンモニア水1.92kgを添加・中和し、
更にpH9.5〜10を維持し、温度60℃で5時間加
温熟成してy成分である複合水酸化物のスラリーを調製
した。このy成分である複合水酸化物のスラリーに前述
のx成分である複合水酸化物のスラリーを混合、攪拌し
た後、この混合物スラリーを脱水洗浄し、400℃以下
の温度で5時間乾燥してTiO−SiOからなる二
元系複合酸化物(A成分)を得た。該2元系複合酸化物
中のSO含有量は4.9重量%であった。次に、モノ
エタノールアミン0.3kgと水3.0kgを混合し、
これにメタバナジン酸アンモニウム0.205kgを添
加、加熱溶解した。この溶解液と前述の二元系複合酸化
物(A成分)12.64kgをニーダーにより混練し、
更に、粘土、ガラス繊維などの成形助剤を加えて混練捏
和後、ハニカム状に押出成型したが、成形性は良好であ
った。ついで、成型物を110℃で乾燥した後、マッフ
ル炉中において600℃で焼成し触媒IVを調製した。
Example 4 As a titanium source, 7.5 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 30.0 was used.
Silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-2
0L "Catalyst Kasei Kogyo Co., Ltd.] 3.0 kg was added and mixed over 15 minutes, and 16.2 kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C or lower. TiO 2 —SiO 2 composite hydroxide (x component)
A slurry was produced, the pH was maintained at 9.5 to 10, and the mixture was aged by heating at a temperature of 60 ° C. for 1 hour. Separately, metatitanic acid slurry [TiO 2 concentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.]
To 32.0 kg, 12.0 kg of silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalysts & Chemicals Industry Co., Ltd.] was added and mixed for 10 minutes, and then 3N ammonia water 1.92 kg was added and mixed. Add / neutralize
Furthermore, the pH was maintained at 9.5 to 10 and the mixture was heated and aged at a temperature of 60 ° C. for 5 hours to prepare a slurry of the composite hydroxide as the y component. The slurry of the composite hydroxide which is the y component is mixed with the slurry of the composite hydroxide which is the x component and stirred, and then the mixture slurry is dehydrated and washed and dried at a temperature of 400 ° C. or lower for 5 hours. A binary complex oxide (component A) composed of TiO 2 —SiO 2 was obtained. The SO 4 content in the binary complex oxide was 4.9% by weight. Next, 0.3 kg of monoethanolamine and 3.0 kg of water are mixed,
To this, 0.205 kg of ammonium metavanadate was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned binary complex oxide (component A) were kneaded with a kneader,
Further, a molding aid such as clay or glass fiber was added, and the mixture was kneaded and kneaded, and then extruded into a honeycomb shape, but the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare a catalyst IV.

【0033】実施例5 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕7.5kgをとり、水30.0
kgに溶解希釈した硫酸チタニル水溶液にシリカゾル
〔SiO濃度20重量%、商品名“カタロイドS−2
0L”触媒化成工業(株)製〕2.1kgを15分間か
けて添加混合し、更に、0.17kgパラタングステン
酸アンモニウム結晶を添加し、これに、温度60℃以下
を維持しながら3規定アンモニア水16.2kgを15
分間かけて添加・中和してTiO−SiO−WO
複合水酸化物(x成分)スラリーを生成し、更にpH
9.5〜10を維持し、温度60℃で1時間加温熟成し
た。別途、メタチタン酸スラリー〔TiO濃度30重
量%、石原産業(株)製〕32.0kgに、シリカゾル
〔SiO濃度20重量%、商品名“カタロイドS−2
0L”触媒化成工業(株)〕12.0kgを10分間か
けて添加混合した後、3規定アンモニア水1.92kg
を添加・中和し、更にpH9.5〜10を維持し、温度
60℃で5時間加温熟成してy成分である複合水酸化物
のスラリーを調製した。このy成分である複合水酸化物
のスラリーに前述のx成分である複合水酸化物のスラリ
ーを混合攪拌した後、この混合物スラリーを脱水洗浄
し、400℃以下の温度で5時間乾燥してTiO−S
iO−WOからなる三元系複合酸化物(A成分)を
得た。該2元系複合酸化物中のSO含有量は4.9重
量%であった。次いで、モノエタノールアミン0.3k
gと水3.0kgを混合し、これにメタバナジン酸アン
モニウム0.205kgを添加、加熱溶解した。この溶
解液と前述の三元系複合酸化物(A成分)12.64k
gをニーダーにより混練し、更に、粘土、ガラス繊維な
どの成形助剤を加えて混練捏和後、ハニカム状に押出成
型したが、成形性は良好であった。ついで、成型物を1
10℃で乾燥した後、マッフル炉中において600℃で
焼成し触媒Vを調製した。
Example 5 As a titanium source, 7.5 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 30.0 was used.
Silica sol [SiO 2 concentration 20% by weight, trade name “Cataloid S-2
2.1 kg of 0L "catalyst Kasei Kogyo Co., Ltd.] was added and mixed over 15 minutes, 0.17 kg of ammonium paratungstate crystal was further added, and 3N ammonia was added thereto while maintaining the temperature at 60 ° C or lower. 15.2 kg of water 15
TiO 2 —SiO 2 —WO 3 by adding and neutralizing over a period of minutes
Produces complex hydroxide (x component) slurry and further pH
The temperature was maintained at 9.5 to 10 and aged by heating at a temperature of 60 ° C. for 1 hour. Separately, to 32.0 kg of metatitanic acid slurry [TiO 2 concentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.], silica sol [SiO 2 concentration 20% by weight, trade name "Cataloid S-2"
0L "Catalyst Kasei Kogyo Co., Ltd.] 12.0 kg was added and mixed for 10 minutes, and then 3N ammonia water 1.92 kg
Was added and neutralized, the pH was maintained at 9.5 to 10, and the mixture was aged for 5 hours at a temperature of 60 ° C. to prepare a slurry of the composite hydroxide as the y component. After the slurry of the composite hydroxide of the y component described above is mixed and stirred with the slurry of the composite hydroxide of the y component, the mixture slurry is dehydrated and washed, and dried at a temperature of 400 ° C. or lower for 5 hours to form TiO 2. 2- S
A ternary complex oxide (component A) composed of iO 2 -WO 3 was obtained. The SO 4 content in the binary complex oxide was 4.9% by weight. Next, 0.3 k of monoethanolamine
g and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and the above-mentioned ternary compound oxide (A component) 12.64k
g was kneaded with a kneader, kneading was further performed by adding a molding aid such as clay or glass fiber, and the mixture was kneaded and extruded into a honeycomb shape. The moldability was good. Then, the molded product 1
After drying at 10 ° C., it was calcined at 600 ° C. in a muffle furnace to prepare catalyst V.

【0034】実施例6 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)〕7.5kgをとり、水30.0k
gに溶解希釈した硫酸チタニル水溶液にシリカゾル〔S
iO濃度20重量%、商品名“カタロイドS−20
L”触媒化成工業(株)製)〕3.0kgを15分間か
けて添加混合し、温度60℃以下を維持しながら3規定
アンモニア水16.2kgを15分間かけて添加・中和
してTiO −SiO複合水酸化物(x成分)スラリ
ーを生成し、更にpH9.5〜10を維持し、温度60
℃で1時間加温熟成した。別途、メタチタン酸スラリー
〔TiO濃度30重量%、石原産業(株)製〕32.
0kgに、シリカゾル〔SiO濃度20重量%、商品
名“カタロイドS−20L”触媒化成工業(株)製〕1
1.25kgを10分間かけて添加混合し、更に、パラ
タングステン酸アンモニウム結晶0.17kgを添加し
た後、3規定アンモニア水1.92kgを添加・中和
し、更にpH9.5〜10を維持し、温度60℃で5時
間加温熟成してy成分である複合水酸化物のスラリーを
調製した。このy成分である複合水酸化物のスラリーに
前述のx成分である複合水酸化物のスラリーを混合攪拌
した後、この混合物スラリーを脱水洗浄し、400℃以
下の温度で5時間乾燥してTiO−SiO−WO
からなる三元系複合酸化物(A成分)を得た。該2元系
複合酸化物中のSO含有量は4.9重量%であった。
次いで、モノエタノールアミン0.3kgと水3.0k
gを混合し、これにメタバナジン酸アンモニウム0.2
05kgを添加、加熱溶解した。この溶解液と前述の三
元系複合酸化物(A成分)12.64kgをニーダーに
より混練し、更に、粘土、ガラス繊維などの成形助剤を
加えて混練捏和後、ハニカム状に押出成型したが、成形
性は良好であった。ついで、成型物を110℃で乾燥し
た後、マッフル炉中において600℃で焼成し触媒VIを
調製した。
Example 6 Titanyl sulfate crystal [TiO] as a titanium sourceTwo32 layers
%, Teika Co., Ltd.] 7.5 kg, water 30.0 k
silica sol [S
iOTwoConcentration 20% by weight, trade name "Cataloid S-20"
L "Catalyst Kasei Kogyo Co., Ltd.]] 3.0 kg for 15 minutes
Add and mix for 3 days while maintaining the temperature below 60 ° C.
Addition and neutralization of 16.2 kg of ammonia water over 15 minutes
Then TiO Two-SiOTwoComplex hydroxide (x component) slurry
Temperature is maintained at a temperature of 60
It was heated and aged for 1 hour at ℃. Separately, metatitanic acid slurry
[TiOTwoConcentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.] 32.
0 kg of silica sol [SiOTwoProduct with a concentration of 20% by weight
Name "Cataloid S-20L" manufactured by Catalysts & Chemicals Industry Co., Ltd.] 1
Add and mix 1.25 kg over 10 minutes, and then add
Add 0.17 kg of ammonium tungstate crystals
After that, add 1.92 kg of 3N ammonia water and neutralize
And maintain the pH at 9.5 to 10 at 5 ° C at 60 ° C.
Agitate for a while to form a slurry of composite hydroxide, which is the y component.
Prepared. In the slurry of the composite hydroxide which is this y component
Mix and stir the slurry of composite hydroxide which is the above-mentioned x component
After that, the mixture slurry is dehydrated and washed, and the temperature is 400 ° C or higher.
TiO is dried at the lower temperature for 5 hours.Two-SiOTwo-WOThree
To obtain a ternary complex oxide (component A). The binary system
SO in complex oxidesFourThe content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 k of water
g, and mixed with ammonium metavanadate 0.2
05 kg was added and dissolved by heating. This lysate and the three
12.64 kg of original compound oxide (A component) in a kneader
Knead more and further add molding aids such as clay and glass fiber
In addition, after kneading and kneading, it was extruded into a honeycomb shape.
The sex was good. Then, the molded product is dried at 110 ° C.
After that, the catalyst VI is calcined in a muffle furnace at 600 ° C.
Prepared.

【0035】比較例1 チタン源として硫酸チタニル結晶〔TiO濃度32重
量%、テイカ(株)製〕43.6kgをとり、水17
4.4kgに溶解希釈した硫酸チタニル水溶液にシリカ
ゾル(SiO濃度20重量%、商品名“カタロイドS
−20L”触媒化成工業(株)製)5.25kgを15
分間かけて添加混合し、これに、温度60℃以下を維持
しながら3規定アンモニア水94.16kgを15分間
かけて添加・中和してTiO−SiO複合水酸化物
(x成分)スラリーを生成し、更にpH9.5〜10を
維持し、温度60℃で1時間加温熟成した。この得られ
たTiO−SiO複合水酸化物スラリーを脱水洗浄
後、400℃以下の温度で5時間乾燥してTiO−S
iOからなる二元系複合酸化物(x成分)を得た。該
2元系複合酸化物中のSO含有量は6.9重量%であ
った。次に、モノエタノールアミン0.3kgと水3.
0kgを混合し、これにメタバナジン酸アンモニウム
0.205kgを添加、加熱溶解した。この溶解液と前
述の二元系複合酸化物(X成分)12.64kgをニー
ダーによりて混練し、更に、粘土、ガラス繊維などの成
形助剤を加えて混練捏和後、ハニカム状に押出成型した
が、成形性が悪く、ハニカム状に押し出し成型するのが
困難であった。しかしながら活性測定用試料分を何とか
成型し、得られた成型物を110℃で乾燥した後、マッ
フル炉中において600℃で焼成し触媒VIIを調製し
た。
Comparative Example 1 As a titanium source, 43.6 kg of titanyl sulfate crystal [TiO 2 concentration 32% by weight, manufactured by Teika Co., Ltd.] was taken, and water 17
Silica sol (SiO 2 concentration 20% by weight, trade name “Cataloid S” in an aqueous solution of titanyl sulfate dissolved and diluted in 4.4 kg.
-20 L "catalyst manufactured by Kasei Kogyo Co., Ltd.)
The mixture was added and mixed over a period of time, and 94.16 kg of 3N ammonia water was added and neutralized over a period of 15 minutes while maintaining the temperature at 60 ° C. or lower, and a TiO 2 —SiO 2 composite hydroxide (x component) slurry was added. Was further generated, the pH was maintained at 9.5 to 10, and the mixture was aged by heating at a temperature of 60 ° C. for 1 hour. The obtained TiO 2 —SiO 2 composite hydroxide slurry was dehydrated and washed, and then dried at a temperature of 400 ° C. or lower for 5 hours to form TiO 2 —S.
A binary complex oxide (x component) composed of iO 2 was obtained. The SO 4 content in the binary composite oxide was 6.9% by weight. Next, 0.3 kg of monoethanolamine and water 3.
0 kg was mixed, 0.205 kg of ammonium metavanadate was added thereto, and the mixture was heated and dissolved. This solution and 12.64 kg of the above-mentioned binary complex oxide (X component) are kneaded by a kneader, and a molding aid such as clay or glass fiber is further added, and the mixture is kneaded and kneaded, and then extruded into a honeycomb shape. However, the moldability was poor and it was difficult to extrude and mold it into a honeycomb shape. However, a sample for activity measurement was somehow molded, the resulting molded product was dried at 110 ° C., and then calcined at 600 ° C. in a muffle furnace to prepare catalyst VII.

【0036】比較例2 メタチタン酸スラリー〔TiO濃度30重量%、石原
産業(株)製〕40.0kgとシリカゾル〔SiO
度20重量%、商品名“カタロイドS−20L”触媒化
成工業(株)製〕15.0kgを混合した後、3規定ア
ンモニア水10.8kgを添加して該スラリーのpH
9.5に調製して複合水酸化物(y成分)スラリーを得
た。該複合水酸化物スラリーを温度60℃でpH9.5
〜10を維持しながら1時間加温熟成後、この複合水酸
化物スラリーを脱水洗浄し、400℃以下の温度で5時
間乾燥してTiO−SiOからなる二元系複合酸化
物(Y成分)を得た。該2元系複合酸化物中のSO
有量は4.2重量%であった。次に、モノエタノールア
ミン0.3kgと水3.0kgを混合し、これにメタバ
ナジン酸アンモニウム0.205kgを添加、加熱溶解
した。この溶解液と前述の二元系複合酸化物(Y成分)
12.64kgをニーダーにより混練し、更に、粘土、
ガラス繊維などの成形助剤を加えて混練捏和後、ハニカ
ム状に押出成型した。ついで、成型物を110℃で乾燥
した後、マッフル炉中において600℃で焼成し触媒VI
IIを調製した。
Comparative Example 2 Metatitanic acid slurry [TiO 2 concentration: 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.] 40.0 kg and silica sol [SiO 2 concentration: 20% by weight, trade name "Cataloid S-20L" Catalysis Co., Ltd. )] 15.0 kg, and then 30.8 ammonia water 10.8 kg was added to add pH of the slurry.
It was adjusted to 9.5 to obtain a composite hydroxide (y component) slurry. The composite hydroxide slurry had a pH of 9.5 at a temperature of 60 ° C.
After heating and aging for 1 hour while maintaining 10 to 10, this composite hydroxide slurry was dehydrated and washed, and dried at a temperature of 400 ° C. or lower for 5 hours to form a binary composite oxide composed of TiO 2 —SiO 2 (Y Component) was obtained. The SO 4 content in the binary composite oxide was 4.2% by weight. Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, to which 0.205 kg of ammonium metavanadate was added and dissolved by heating. This solution and the above-mentioned binary complex oxide (Y component)
12.64 kg was kneaded with a kneader, and further, clay,
A molding aid such as glass fiber was added, and the mixture was kneaded and kneaded, and then extruded into a honeycomb shape. Then, the molded product is dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to obtain catalyst VI.
II was prepared.

【0037】触媒使用例 実施例1〜6および比較例1〜3の触媒I〜VIIIについ
て脱硝性能を評価した。脱硝性能試験は、各ハニカム触
媒(セルピッチ7.4mm、壁厚1.0mm)から長さ
300mmで3×3目に切り出したものを流通式反応器
に充填し、下記条件で脱硝率を測定した。脱硝率は触媒
接触前後のガス中の窒素酸化物NOの濃度をケミルミ
式窒素酸化物分析計により測定し、次式により求めたも
のである。
Example of Use of Catalyst The denitration performance of the catalysts I to VIII of Examples 1 to 6 and Comparative Examples 1 to 3 was evaluated. In the denitration performance test, each honeycomb catalyst (cell pitch 7.4 mm, wall thickness 1.0 mm) cut into 3 × 3 pieces with a length of 300 mm was filled in a flow reactor, and the denitration rate was measured under the following conditions. . Denitrification efficiency measures the concentration of nitrogen oxides NO X in the gas before and after the catalyst contacted by Kemirumi nitrogen oxide analyzer are those obtained from the following equation.

【数1】脱硝率(容量%)={〔未接触ガス中のNO
(容量ppm)−接触ガス中のNO(容量ppm)〕
/未接触ガス中のNO (容量ppm)}×100 <試験条件> ・触媒形状:3×3目、 長さ:300mm、 反応温
度:380℃、SV=10,000hr−1 ・ガス組成:NO=180容量ppm、NH=21
6容量ppm、O=2容量%、SO=500容量p
pm、HO=10容量%、N=バランス また、SO酸化能試験は、ハニカム触媒から300m
mの長さ3×3目に切り出したものを流通式反応器に充
填し、下記条件でSO転化率を測定した。SO転化
率は触媒接触前後のガス中のSO濃度を赤外線式SO
ガス濃度測定計により測定し、次式により求めた。
[Equation 1] Denitration rate (volume%) = {[NO in non-contact gasX
(Volume ppm) -NO in contact gasX(Capacity ppm)]
/ NO in non-contact gasX (Capacity ppm)} × 100 <Test conditions> ・ Catalyst shape: 3 × 3, length: 300 mm, reaction temperature
Degree: 380 ° C., SV = 10,000 hr-1 ・ Gas composition: NOX= 180 ppm by volume, NHThree= 21
6 ppm by volume, OTwo= 2% by volume, SOTwo= 500 capacity p
pm, HTwoO = 10% by volume, NTwo= Balance Also, SOXOxidation capacity test is 300m from honeycomb catalyst
The flow-type reactor was filled with the m-thick 3 x 3 pieces.
And SO under the following conditionsThreeThe conversion rate was measured. SOThreeConversion
The rate is SO in the gas before and after contact with the catalystTwoInfrared SO concentration
TwoIt was measured by a gas concentration meter and determined by the following formula.

【数2】SO転化率(容量%)={〔未接触ガス中の
SO(容量ppm)−接触ガス中のSO(容量pp
m)〕/未接触ガス中のSO (容量ppm)}×10
0 <試験条件> ・触媒形状:3×3目、 長さ:300mm、 反応温
度:380℃、SV=10,000hr−1 ・ガス組成:O=2容量%、SO=500容量pp
m、N=バランス 評価結果を表2に示す。
[Equation 2] SOThreeConversion rate (volume%) = {[in non-contact gas
SOTwo(Volume ppm) -SO in contact gasTwo(Capacity pp
m)] / SO in non-contact gasTwo (Capacity ppm)} × 10
0 <Test conditions> ・ Catalyst shape: 3 × 3, length: 300 mm, reaction temperature
Degree: 380 ° C., SV = 10,000 hr-1 ・ Gas composition: OTwo= 2% by volume, SOTwo= 500 capacity pp
m, NTwo= Balance The evaluation results are shown in Table 2.

【0038】[0038]

【表2】 (注)Vは外割で1.0重量%とした。[Table 2] (Note) V 2 O 5 was 1.0% by weight as an outer percentage.

【0039】[0039]

【発明の効果】表から明らかなように、本発明の触媒は
高い脱硝率を維持しつつ極めて低いSO転化率を示す
優れた触媒であることが判る。なお、SO転化率が
0.20%以下の所では±0.01%の差はかなり大き
い優位差である。この様な性能を持つ触媒は硫黄成分を
多く含む燃料を使用するボイラー排ガスの処理用触媒と
して極めて有効である。また、本発明の触媒はハニカム
状に成型した場合にも成形性が良好であるため、工業触
媒としての生産性も高い。
As is apparent from the table, the catalyst of the present invention is an excellent catalyst showing an extremely low SO 3 conversion rate while maintaining a high denitration rate. The difference of ± 0.01% is a significant difference when the SO 3 conversion rate is 0.20% or less. A catalyst having such performance is extremely effective as a catalyst for treating boiler exhaust gas that uses a fuel containing a large amount of sulfur components. Further, since the catalyst of the present invention has good moldability even when formed into a honeycomb shape, it has high productivity as an industrial catalyst.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 37/06 B01D 53/36 102C 37/08 ZAB (72)発明者 増田 浩司 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 内田 雅昭 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 西井 一博 神奈川県横浜市戸塚区川上町645−4−301 Fターム(参考) 4D048 AA06 AB02 AC04 BA06X BA07X BA23X BA26X BA27X BA41X BA42X BA46X BB02 BC01 4G069 AA02 AA03 AA08 BA21C BA37 BB04A BB04B BB06A BB06B BB08C BB10A BB10B BB10C BC50A BC50B BC50C BC54A BC54B BC54C BC59A BC60A BC60B BC60C BD01C BD05A BD05B BD05C BD06C BD12C BE06C BE08C CA02 CA08 CA13 DA06 EA19 FA01 FA02 FB05 FB09 FB14 FB27 FB30 FB57 FB67 FC02 FC08Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) B01J 37/06 B01D 53/36 102C 37/08 ZAB (72) Inventor Koji Masuda 13- Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 2 Catalyst Kasei Kogyo Co., Ltd. in Wakamatsu Factory (72) Inventor Masaaki Uchida 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka Prefecture Catalysis Kasei Kogyo Co., Ltd. in Wakamatsu Factory (72) Inventor Kazuhiro Nishii Kawakami town 645-4-301 F-term (reference) 4D048 AA06 AB02 AC04 BA06X BA07X BA23X BA26X BA27X BA41X BA42X BA46X BB02 BC01 4G069 AA02 AA03 AA08 BA21C BA37 BB04A BB04B BB06A BB06B BB08C BB10A BB10B BB10C BC50A BC50B BC50C BC54A BC54B BC54C BC59A BC60A BC60B BC60C BD01C BD05A BD05B BD05C BD06C BD12C BE06C BE08C CA02 CA08 CA13 DA06 EA19 FA01 FA02 FB05 FB09 FB14 FB27 FB30 FB57 FB67 FC02 FC08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可溶性チタン化合物、可溶性ケイ素化合
物および/またはシリカゾルの混合水溶液、もしくは、
可溶性チタン化合物、可溶性タングステン化合物、可溶
性ケイ素化合物および/またはシリカゾルの混合水溶液
に、塩基性水溶液を添加・中和して得られる複合水酸化
物(x成分)スラリーと、メタチタン酸スラリーと可溶
性ケイ素化合物および/またはシリカゾルの混合水溶
液、もしくはメタチタン酸スラリー、可溶性タングステ
ン化合物、可溶性ケイ素化合物および/またはシリカゾ
ルの混合水溶液に塩基性水溶液を添加・中和して得られ
る複合水酸化物(y成分)スラリーとを用い、得られた
複合酸化物(A成分)ならびにバナジウム、モリブデン
およびタングステンからなる群から選ばれた少なくとも
一種の金属の酸化物(B成分)を含有する窒素酸化物除
去用触媒。
1. A mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or
Complex hydroxide (x component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of soluble titanium compound, soluble tungsten compound, soluble silicon compound and / or silica sol, metatitanic acid slurry and soluble silicon compound And / or a composite hydroxide (y component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of silica sol or a mixed aqueous solution of metatitanic acid slurry, soluble tungsten compound, soluble silicon compound and / or silica sol. A catalyst for removing nitrogen oxides, containing the obtained composite oxide (component A) and an oxide of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten (component B).
【請求項2】 前記複合酸化物(A成分)中に含まれる
x成分由来の複合酸化物の量が5〜30重量%の範囲に
あることを特徴とする請求項1記載の窒素酸化物除去用
触媒。
2. The nitrogen oxide removal according to claim 1, wherein the amount of the composite oxide derived from the component x contained in the composite oxide (component A) is in the range of 5 to 30% by weight. Catalyst.
【請求項3】 前記複合酸化物(A成分)の組成が、酸
化チタンとして75〜90重量%、酸化ケイ素として1
0〜20重量%、酸化タングステンとして0〜5重量%
の範囲にあることを特徴とする請求項1または2記載の
窒素酸化物除去用触媒。
3. The composition of the composite oxide (component A) is 75 to 90% by weight as titanium oxide and 1 as silicon oxide.
0-20% by weight, 0-5% by weight as tungsten oxide
The nitrogen oxide removing catalyst according to claim 1 or 2, characterized in that
【請求項4】 前記複合酸化物(A成分)が酸化物基準
で硫酸根をSOとして1〜10重量%含有することを
特徴とする請求項1〜3のいずれか記載の窒素酸化物除
去用触媒。
4. The nitrogen oxide removal according to claim 1, wherein the composite oxide (component A) contains 1 to 10% by weight of sulfate as SO 4 based on the oxide. Catalyst.
【請求項5】 前記複合酸化物(A成分)を85〜9
9.9重量%、金属酸化物(B成分)を0.1〜15重
量%の割合で含有する請求項1〜4のいずれか記載の窒
素酸化物除去用触媒。
5. The composite oxide (component A) is added to 85-9.
The nitrogen oxide removing catalyst according to any one of claims 1 to 4, which contains 9.9% by weight and a metal oxide (component B) in a proportion of 0.1 to 15% by weight.
【請求項6】 (1)可溶性チタン化合物、可溶性ケイ
素化合物および/またはシリカゾルの混合水溶液、もし
くは可溶性チタン化合物、可溶性タングステン化合物、
可溶性ケイ素化合物および/またはシリカゾルの混合水
溶液に、塩基性水溶液を添加・中和して複合水酸化物
(x成分)のスラリーを得、(2)別途、メタチタン酸
スラリーと可溶性ケイ素化合物および/またはシリカゾ
ルの混合水溶液、もしくはメタチタン酸スラリー、可溶
性タングステン化合物、可溶性ケイ素化合物および/ま
たはシリカゾルの混合水溶液に、塩基性水溶液を添加・
中和して複合水酸化物(y成分)スラリーを得、(3)
前述のx成分である複合水酸化物のスラリーとy成分で
ある複合水酸化物のスラリーとを混合した後、洗浄、乾
燥して得られた複合水酸化物(a成分)または複合酸化
物(A成分)に、バナジウム、モリブデンおよびタング
ステンからなる群から選ばれた少なくとも一種の金属の
酸化物の前駆物質(b成分)を担持し、乾燥、焼成する
ことを特徴とする窒素酸化物除去用触媒の製造方法。
6. (1) A mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or silica sol, or a soluble titanium compound, a soluble tungsten compound,
A basic aqueous solution is added to and neutralized with a mixed aqueous solution of a soluble silicon compound and / or silica sol to obtain a slurry of a composite hydroxide (component x). (2) Separately, a metatitanic acid slurry and a soluble silicon compound and / or Add a basic aqueous solution to a mixed aqueous solution of silica sol or a mixed aqueous solution of metatitanic acid slurry, soluble tungsten compound, soluble silicon compound and / or silica sol.
Neutralize to obtain a composite hydroxide (y component) slurry, (3)
The composite hydroxide (a component) or the composite oxide (a component) obtained by mixing the slurry of the composite hydroxide as the x component and the slurry of the composite hydroxide as the y component, and then washing and drying the mixture ( A catalyst for nitrogen oxide removal, characterized in that (A component) carries a precursor (component b) of an oxide of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten, and the mixture is dried and calcined. Manufacturing method.
JP2001296580A 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same Expired - Lifetime JP4798909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296580A JP4798909B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296580A JP4798909B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003093880A true JP2003093880A (en) 2003-04-02
JP4798909B2 JP4798909B2 (en) 2011-10-19

Family

ID=19117791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296580A Expired - Lifetime JP4798909B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4798909B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
US7491676B2 (en) 2004-10-19 2009-02-17 Millennium Inorganic Chemicals High activity titania supported metal oxide DeNOx catalysts
US7879759B2 (en) 2009-02-16 2011-02-01 Augustine Steve M Mobile DeNOx catalyst
US7968492B2 (en) 2009-05-11 2011-06-28 Millennium Inorganic Chemicals, Inc. Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
US8148295B2 (en) 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US8617502B2 (en) 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
CN109790236A (en) * 2016-09-30 2019-05-21 切弗朗菲利浦化学公司 The method for preparing catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935027A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JPH0417091A (en) * 1990-05-11 1992-01-21 Hitachi Ltd Automatic transaction machine capable of inputting booking comment
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JPH11342333A (en) * 1998-05-29 1999-12-14 Catalysts & Chem Ind Co Ltd Shared of nox removal catalyst and its production
JP2001276617A (en) * 2000-03-31 2001-10-09 Nippon Shokubai Co Ltd Denitration catalyst and denitration method
JP2003093881A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935027A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JPH0417091A (en) * 1990-05-11 1992-01-21 Hitachi Ltd Automatic transaction machine capable of inputting booking comment
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JPH11342333A (en) * 1998-05-29 1999-12-14 Catalysts & Chem Ind Co Ltd Shared of nox removal catalyst and its production
JP2001276617A (en) * 2000-03-31 2001-10-09 Nippon Shokubai Co Ltd Denitration catalyst and denitration method
JP2003093881A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP4538198B2 (en) * 2002-04-18 2010-09-08 日揮触媒化成株式会社 Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
US7491676B2 (en) 2004-10-19 2009-02-17 Millennium Inorganic Chemicals High activity titania supported metal oxide DeNOx catalysts
US8465714B2 (en) 2009-02-16 2013-06-18 Cristal Usa Inc. Catalyst promoters in vanadium-free mobile catalyst
US8148295B2 (en) 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US7879759B2 (en) 2009-02-16 2011-02-01 Augustine Steve M Mobile DeNOx catalyst
US7968492B2 (en) 2009-05-11 2011-06-28 Millennium Inorganic Chemicals, Inc. Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US9421519B2 (en) 2009-07-31 2016-08-23 Cristal USA, Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US8617502B2 (en) 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
US8900536B2 (en) 2012-08-24 2014-12-02 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
US9108185B2 (en) 2012-08-24 2015-08-18 Cristal Usa Inc. Catalyst support materials, catalysts, methods of making them and uses thereof
CN109790236A (en) * 2016-09-30 2019-05-21 切弗朗菲利浦化学公司 The method for preparing catalyst

Also Published As

Publication number Publication date
JP4798909B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US8173098B2 (en) Titanium oxide, catalyst for treating exhaust gas and method for purifying exhaust gas
US20140155256A1 (en) Raw Materials for Vanadium-Free or Vanadium-Reduced Denox Catalysts, and Method for Producing Same
JPS6214339B2 (en)
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
JP2008024565A (en) Modified titanium oxide particle and its manufacturing method and exhaust gas treating catalyst using the same
CN114832829B (en) High-temperature denitration catalyst for gas exhaust and preparation method thereof
US6638486B2 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP2003093880A (en) Catalyst for removing nitrogen oxide and manufacturing method therefor
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP3507906B2 (en) DeNOx catalyst
WO2002034388A1 (en) Exhaust gas purifying catalyst compound, catalyst comprising said compound and method for preparing the compound
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JPH07289897A (en) Catalyst for decomposition of ammonia and decomposing method of ammonia using the same
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH11342333A (en) Shared of nox removal catalyst and its production
JPS59213442A (en) Preparation of denitration catalyst
JPH08229412A (en) Catalyst and method for removing nitrogen oxide
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH03270733A (en) Catalyst for removing nitrogen oxide
JPH08257409A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide using the same
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP2012206058A (en) Denitration catalyst and denitrification method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250