JPH08229412A - Catalyst and method for removing nitrogen oxide - Google Patents

Catalyst and method for removing nitrogen oxide

Info

Publication number
JPH08229412A
JPH08229412A JP7311454A JP31145495A JPH08229412A JP H08229412 A JPH08229412 A JP H08229412A JP 7311454 A JP7311454 A JP 7311454A JP 31145495 A JP31145495 A JP 31145495A JP H08229412 A JPH08229412 A JP H08229412A
Authority
JP
Japan
Prior art keywords
catalyst
pore
honeycomb
exhaust gas
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7311454A
Other languages
Japanese (ja)
Inventor
Motonobu Kobayashi
基伸 小林
Futoshi Kinoshita
太 木下
Tasuku Nanba
翼 難波
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP7311454A priority Critical patent/JPH08229412A/en
Publication of JPH08229412A publication Critical patent/JPH08229412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce and remove nitrogen oxide in exhaust gas in the presence of ammonia by using a honeycomb catalyst for reducing and removing nitrogen oxide in exhaust gas in the presence of ammonia. CONSTITUTION: A nitrogen oxide removing catalyst has pores substantially consisting of two independent pore groups and is characterized by that pore vol. occupied by pore groups having a pore size of 0.01-0.03μm is 50-80% of total pore vol. and pare vol. occupied by pore groups having a poree size of 0.8-4μm is 10-30% of the total pore vol. Exhaust gas is brought into contact with this catalyst to reduce and remove nitrogen oxide in exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒素酸化物除去用触
媒および該触媒を用いた窒素酸化物の除去方法に関す
る。更に詳しくは、ボイラ、加熱炉、ガスタービン、デ
ィーゼルエンジンおよび各種工業プロセスなどから排出
される排ガス中に含まれる窒素酸化物の除去に使用する
ハニカム状触媒および該触媒を用いて窒素酸化物を効率
よく除去する方法に関する。
TECHNICAL FIELD The present invention relates to a catalyst for removing nitrogen oxides and a method for removing nitrogen oxides using the catalyst. More specifically, a honeycomb catalyst used for removing nitrogen oxides contained in exhaust gas discharged from a boiler, a heating furnace, a gas turbine, a diesel engine, various industrial processes, etc. Well about how to remove.

【0002】[0002]

【従来の技術および問題点】現在、排ガス中の窒素酸化
物を除去する方法としては、高濃度の酸素を含む排ガス
であっても窒素酸化物を選択的に除去でき、また使用す
る還元剤も少量ですみ、経済的であるため、アンモニア
を還元剤として用いる選択的接触還元法が主流となって
いる。
2. Description of the Related Art Currently, as a method for removing nitrogen oxides in exhaust gas, nitrogen oxides can be selectively removed even in exhaust gas containing a high concentration of oxygen, and a reducing agent to be used is also used. The selective catalytic reduction method using ammonia as a reducing agent has become mainstream because it requires only a small amount and is economical.

【0003】この選択的接触還元法において使用される
触媒の形状に関しては、排ガス中のダストが触媒床に堆
積しにくく、また触媒床の圧力損失が少ないという理由
でハニカム状が効果的であり、現在ではハニカム状触媒
が広く実用化されている。ハニカム状触媒を用いた窒素
酸化物除去方法としては、例えば特公昭54−2941
9号公報に、ハニカム状触媒の貫通孔の相当直径を2〜
30mm、開口率を50〜80%、またガス流速を0.
5〜60m/secの範囲に特定することにより、ダス
トによる貫通孔の閉塞がなく、圧力損失も小さく、かつ
高い窒素酸化物除去率(以下、「脱硝率」という)が得
られることが開示されている。
Regarding the shape of the catalyst used in this selective catalytic reduction method, the honeycomb shape is effective because the dust in the exhaust gas is hard to deposit on the catalyst bed and the pressure loss of the catalyst bed is small. Nowadays, honeycomb catalysts are widely used. As a method for removing nitrogen oxides using a honeycomb catalyst, for example, Japanese Patent Publication No. 54-2941
No. 9 discloses the equivalent diameter of the through holes of the honeycomb-shaped catalyst to be 2 to
30 mm, aperture ratio 50 to 80%, gas flow rate 0.
It is disclosed that by specifying in the range of 5 to 60 m / sec, the through holes are not blocked by dust, the pressure loss is small, and a high nitrogen oxide removal rate (hereinafter referred to as "denitration rate") can be obtained. ing.

【0004】一方、近年、酸性雨に代表されるように窒
素酸化物による環境汚染が世界的に深刻化するにともな
い、窒素酸化物の低減対策として、高性能かつ低コスト
の脱硝技術がますます強く要望されている。
On the other hand, in recent years, as environmental pollution due to nitrogen oxides, such as acid rain, has become more serious in the world, high-performance and low-cost denitration technology is increasingly available as a measure to reduce nitrogen oxides. There is a strong demand.

【0005】しかしながら、上記要望に応えるには、特
公昭54−29419号公報記載の方法では決して十分
でなく、更に高い脱硝性能を有する窒素酸化物除去用触
媒および窒素酸化物除去方法の開発が強く望まれてい
る。
However, in order to meet the above demand, the method described in Japanese Patent Publication No. 54-29419 is not sufficient, and the development of a catalyst for removing nitrogen oxides and a method for removing nitrogen oxides having higher denitration performance is strongly desired. Is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ハニカム状
触媒であって、脱硝性能に優れ、耐久性も良好な窒素酸
化物除去用触媒および該触媒を用いた窒素酸化物の効率
的な除去方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a honeycomb catalyst, which is excellent in denitration performance and has good durability, and a catalyst for nitrogen oxide removal using the catalyst, and efficient removal of nitrogen oxides using the catalyst. It is intended to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、特定な細孔分布を有するハニカム状触媒を使用す
ることにより上記目的が達成できることを知り、この知
見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above object can be achieved by using a honeycomb catalyst having a specific pore distribution, and the present invention is based on this finding. It came to completion.

【0008】すなわち、本発明は、排ガス中の窒素酸化
物をアンモニアの存在下に接触的に還元除去するための
ハニカム状触媒であって、実質的に二つの独立した細孔
群からなる細孔を有し、0.01〜0.03μmの範囲
の孔径を有する細孔群が占める細孔容積が全細孔容積の
50〜80%であり、0.8〜4μmの範囲の孔径を有
する細孔群が占める細孔容積が全細孔容積の10〜30
%であることを特徴とする窒素酸化物除去用触媒に関す
る。
That is, the present invention is a honeycomb-shaped catalyst for catalytically reducing and removing nitrogen oxides in exhaust gas in the presence of ammonia, the pores being substantially composed of two independent pore groups. And the pore volume occupied by the group of pores having a pore diameter in the range of 0.01 to 0.03 μm is 50 to 80% of the total pore volume and has a pore diameter in the range of 0.8 to 4 μm. The pore volume occupied by the pore group is 10 to 30 of the total pore volume.
%, Relates to a catalyst for removing nitrogen oxides.

【0009】また、本発明は、排ガスをアンモニアの存
在下に上記触媒に接触させて排ガス中の窒素酸化物を除
去することを特徴とする窒素酸化物の除去方法に関す
る。
The present invention also relates to a method for removing nitrogen oxides, which comprises contacting exhaust gas with the above catalyst in the presence of ammonia to remove nitrogen oxides from the exhaust gas.

【0010】[0010]

【発明の実施の形態】本発明のハニカム状触媒は、実質
的に二つの独立した細孔群からなる細孔を有し、これら
細孔群のうち0.01〜0.03μmの範囲の孔径を有
する第一の細孔群が全細孔容積の50〜80%を占め、
また0.8〜4μmの範囲の孔径を有する第二の細孔群
が全細孔容積の10〜30%を占めている。なお、本発
明のハニカム状触媒の全細孔容積は0.3〜0.55c
c/gの範囲にあるのが好ましい。本発明のおける細孔
径、細孔径分布および細孔容積は水銀圧入式ポロシメー
ターを用いて測定した。本発明のハニカム状触媒は、第
1図に示すように、二つの細孔群が互いに独立して存在
し、しかも極めてシャープな細孔径分布を示している点
に特徴がある。これに対し、第2図に示すように、細孔
が単一の細孔群からなる場合、あるいは第3図に示すよ
うに、細孔が独立した二つの細孔群からならず、一部重
なりあい、しかも均一な細孔径を有していない場合には
本発明の目的を達成できない。
BEST MODE FOR CARRYING OUT THE INVENTION The honeycomb-shaped catalyst of the present invention has pores substantially composed of two independent pore groups, and the pore diameter of these pore groups is in the range of 0.01 to 0.03 μm. The first group of pores occupying 50-80% of the total pore volume,
The second group of pores having a pore size in the range of 0.8 to 4 μm accounts for 10 to 30% of the total pore volume. The total pore volume of the honeycomb catalyst of the present invention is 0.3 to 0.55c.
It is preferably in the range of c / g. The pore diameter, pore diameter distribution and pore volume in the present invention were measured using a mercury porosimetry porosimeter. The honeycomb-shaped catalyst of the present invention is characterized in that, as shown in FIG. 1, two groups of pores exist independently of each other, and that the pore size distribution is extremely sharp. On the other hand, as shown in FIG. 2, when the pores consist of a single pore group, or as shown in FIG. 3, the pores do not consist of two independent pore groups and The objects of the present invention cannot be achieved if they do not overlap with each other and do not have a uniform pore size.

【0011】本発明のハニカム状触媒においては、細孔
群がきわめてシャープな細孔径分布を示すことは、二つ
の細孔群がきわめて均一な細孔径を有する細孔から構成
されていることを意味し、これが本発明のハニカム状触
媒が優れた脱硝活性を示す原因と考えられる。このメカ
ニズムは明らかではないが、ガスが触媒の細孔内に拡散
していく際に、本発明のように均一な細孔径からなる細
孔群のほうがガスの細孔内拡散が容易に行われ、その結
果、セル壁厚に関係なく脱硝活性が向上するものと考え
られる。
In the honeycomb-shaped catalyst of the present invention, the extremely narrow pore size distribution of the pore groups means that the two pore groups are composed of pores having extremely uniform pore sizes. However, this is considered to be the reason why the honeycomb-shaped catalyst of the present invention exhibits excellent denitration activity. Although this mechanism is not clear, when the gas diffuses into the pores of the catalyst, the group of pores having a uniform pore size as in the present invention facilitates the diffusion of the gas into the pores. As a result, it is considered that the denitration activity is improved regardless of the cell wall thickness.

【0012】本発明のハニカム状触媒は、前記のような
特定の細孔分布を有する限り、その触媒活性成分の種類
に特に制限はなく、各種の触媒活性成分を含有するハニ
カム状触媒を使用することができる。具体的には、例え
ばチタンを含む酸化物または複合酸化物など、チタンを
触媒活性成分として含有する触媒を使用することができ
るが、特に(A)チタンおよびケイ素を含む二元系酸化
物(以下、「TiO2−SiO2」と略記する)60〜9
9.5重量%と(B)バナジウム、タングステン、銅、
マンガン、セリウムおよびスズから選ばれる少なく1種
の金属の酸化物0.5〜40重量%とから触媒が好適に
用いられる。
The honeycomb-shaped catalyst of the present invention is not particularly limited in the kind of its catalytically active component as long as it has the specific pore distribution as described above, and a honeycomb-shaped catalyst containing various catalytically active components is used. be able to. Specifically, for example, a catalyst containing titanium as a catalytically active component such as an oxide or a composite oxide containing titanium can be used. In particular, (A) a binary oxide containing titanium and silicon (hereinafter , Abbreviated as “TiO 2 —SiO 2 ”) 60 to 9
9.5 wt% and (B) vanadium, tungsten, copper,
A catalyst is preferably used because it contains 0.5 to 40% by weight of an oxide of at least one metal selected from manganese, cerium and tin.

【0013】この成分(A)と成分(B)とかなる触媒
において、成分(A)としてのTiO2−SiO2の組成
は、原子百分率でチタンが40〜95%、ケイ素が5〜
60%の範囲にあるのが好ましい。チタンが40%未満
では脱硝活性が低下し、95%を超えるとSO2酸化活
性が増大して好ましくない。成分(B)は、バナジウ
ム、タングステン、銅、マンガン、セリウムおよびスズ
から選ばれる1種または2種以上の金属の酸化物であ
る。成分(A)の割合は60〜99.5重量%、好まし
くは80〜99重量%であり、また成分Bの割合は0.
5〜40重量%、好ましくは1〜20重量%である。成
分(A)の割合が60重量%未満では触媒の原料コスト
が高くなるわりには脱硝活性の向上は期待できず、また
99.5重量%を超えると脱硝活性が低下して好ましく
ない。
In the catalyst composed of the components (A) and (B), the composition of TiO 2 --SiO 2 as the component (A) is 40 to 95% of titanium and 5 to 5% of silicon in atomic percentage.
It is preferably in the range of 60%. If the content of titanium is less than 40%, the denitration activity is lowered, and if it exceeds 95%, the SO 2 oxidation activity is increased, which is not preferable. The component (B) is an oxide of one or more metals selected from vanadium, tungsten, copper, manganese, cerium and tin. The proportion of component (A) is 60 to 99.5% by weight, preferably 80 to 99% by weight, and the proportion of component B is 0.
It is 5 to 40% by weight, preferably 1 to 20% by weight. If the proportion of the component (A) is less than 60% by weight, the denitration activity cannot be expected to improve even though the raw material cost of the catalyst becomes high, and if it exceeds 99.5% by weight, the denitration activity is lowered, which is not preferable.

【0014】本発明のハニカム状触媒の調製方法につい
ては特に制限はなく、種々の方法で調製することができ
る。以下に、上記成分(A)と成分(B)とからなる触
媒に関して、その代表的な調製方法について説明するが
本発明はこれに限定されるものではない。
The method for preparing the honeycomb-shaped catalyst of the present invention is not particularly limited and can be prepared by various methods. Hereinafter, a typical preparation method of the catalyst composed of the components (A) and (B) will be described, but the present invention is not limited thereto.

【0015】成分(A)としてのTi02−SiO2の調
製において、チタン源としては、塩化チタン、硫酸チタ
ンなどの無機チタン化合物、蓚酸チタン、テトライソプ
ロピルチタネートなどの有機チタン化合物などから選ば
れる1種または2種以上の化合物を、またケイ素源とし
ては、コロイド状シリカ、微粒子ケイ酸、水ガラス、四
塩化ケイ素など無機ケイ素化合物、テトラエチルシリケ
ートなどの有機ケイ素化合物などから選ばれる1種また
は2種以上の化合物を使用することができる。上記チタ
ン源およびケイ素源の化合物を、チタンおよびケイ素の
原子百分率がそれぞれ40〜95%および5〜60%と
なるようにとり、酸性の水溶液状態またはゾル状態でチ
タンおよびケイ素を酸化物に換算して1〜100g/L
(リットル、以下同じ)の濃度とし10〜100℃に保
つ。そこに撹拌下中和剤としてアンモニア水を滴下し、
チタンおよびケイ素を含む共沈化合物を生成し、ろ別
し、よく洗浄した後、80〜140℃でl〜10時間乾
燥し、さらに450〜700℃で1〜10時間焼成する
ことによりTiO2−SiO2が得られる。
In the preparation of TiO 2 --SiO 2 as the component (A), the titanium source is selected from inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. Or two or more compounds, and as the silicon source, one or two selected from colloidal silica, fine particle silicic acid, water glass, inorganic silicon compounds such as silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. The above compounds can be used. The compounds of the titanium source and the silicon source are taken so that the atomic percentages of titanium and silicon are 40 to 95% and 5 to 60%, respectively, and titanium and silicon are converted into oxides in an acidic aqueous solution state or a sol state. 1-100g / L
The concentration is (liter, the same applies hereinafter) and kept at 10 to 100 ° C. Ammonia water was added dropwise thereto as a neutralizing agent under stirring,
A coprecipitated compound containing titanium and silicon is produced, filtered off, washed well, dried at 80 to 140 ° C. for 1 to 10 hours, and further calcined at 450 to 700 ° C. for 1 to 10 hours to form TiO 2 −. SiO 2 is obtained.

【0016】成分(B)としてのバナジウム、タングス
テン、銅、マンガン、セリウムおよびスズから選ばれる
少なくとも1種の金属の酸化物の調製に使用する出発原
料としては、各金属の酸化物、水酸化物、アンモニウム
塩、シュウ酸塩、ハロゲン化物などから適宜選択するこ
とができる。具体的には、バナジウム源としては、メタ
バナジン酸アンモニウム、硫酸バナジル、シュウ酸バナ
ジル、酸化バナジウムなどを、またタングステン源とし
ては、酸化タングステン、パラタングステン酸アンモニ
ウム、タングステン酸などを挙げることができる。
The starting material used for preparing the oxide of at least one metal selected from vanadium, tungsten, copper, manganese, cerium and tin as the component (B) is an oxide or hydroxide of each metal. , Ammonium salt, oxalate, halide and the like. Specifically, examples of the vanadium source include ammonium metavanadate, vanadyl sulfate, vanadyl oxalate, vanadium oxide, and the like, and examples of the tungsten source include tungsten oxide, ammonium paratungstate, and tungstic acid.

【0017】成分(B)の出発原料の水溶液を成型助剤
と共に上記成分(A)に加えて、混合、混練し、押し出
し成型機でハニカム状に成形する。得られた成型物は、
50〜120℃で乾燥した後、450〜700℃、好ま
しくは500〜650℃で1〜10時間、好ましくは2
〜6時間空気中で焼成することにより本発明のハニカム
状触媒が得られる。なお、本発明のハニカム状触媒の比
表面積(BET表面積)は80m2/g以上であるのが
好ましい。
An aqueous solution of the starting material of the component (B) is added to the above component (A) together with a molding aid, mixed and kneaded, and molded into a honeycomb shape by an extrusion molding machine. The obtained molded product is
After drying at 50 to 120 ° C., 450 to 700 ° C., preferably 500 to 650 ° C. for 1 to 10 hours, preferably 2
The honeycomb catalyst of the present invention can be obtained by calcination in air for 6 hours. The specific surface area (BET surface area) of the honeycomb catalyst of the present invention is preferably 80 m 2 / g or more.

【0018】本発明の細孔径が均一で、二つの独立した
細孔群からなる細孔を有するハニカム状触媒は、前記ハ
ニカム状触媒の調製の際に、(1)成型時に焼成段階で
揮発・分解する樹脂、セルロースなどの有機高分子や硝
酸アンモニアなどの無機塩類を添加、混合する方法、
(2)硅砂、α−アルミナ、コージーライト、ジルコニ
アなどの粉体を添加、混合する方法、(3)原料粉体の
粒子径を適度に調整する方法などによって製造すること
ができる。
The honeycomb-shaped catalyst of the present invention having a uniform pore diameter and having pores composed of two independent pore groups has the following features: (1) volatilization at the firing step during molding during the preparation of the honeycomb-shaped catalyst; A method of adding and mixing resins that decompose, organic polymers such as cellulose, and inorganic salts such as ammonia nitrate,
(2) Silica sand, α-alumina, cordierite, zirconia, and other powders may be added and mixed, and (3) the raw material powder may be appropriately adjusted in particle size.

【0019】上記方法(1)において使用できる有機高
分子の代表例としては、ポリエチレン樹脂、アクリル樹
脂、結晶性セルロースなどを挙げることができる。ま
た、無機塩類の代表例としては、硝酸アンモニウム、シ
ュウ酸アンモニウム、炭酸アンモニウムなどを挙げるこ
とができる。これらの添加量については、5〜30重量
%の範囲が好ましい。方法(2)における粉体の平均粒
子径および添加量はそれぞれ1〜20μmおよび5〜3
0%の範囲が好ましい。方法(3)の場合、原料粉体の
平均粒子径は通常2〜30μmであり、あまり粒子径を
小さくすると目的とする細孔分布を有するハニカム状触
媒を調製することができない。
Typical examples of the organic polymer which can be used in the above method (1) include polyethylene resin, acrylic resin, crystalline cellulose and the like. Further, as typical examples of the inorganic salts, ammonium nitrate, ammonium oxalate, ammonium carbonate and the like can be mentioned. The addition amount of these is preferably in the range of 5 to 30% by weight. The average particle size and the addition amount of the powder in the method (2) are 1 to 20 μm and 5 to 3, respectively.
The range of 0% is preferable. In the case of the method (3), the average particle size of the raw material powder is usually 2 to 30 μm, and if the particle size is too small, it is impossible to prepare a honeycomb-shaped catalyst having a desired pore distribution.

【0020】本発明のハニカム状触媒における断面の開
口率には特に制限はないが、80〜90%とするのが好
ましい。断面の開口率を80%以上とすることによっ
て、触媒床の圧力損失を低下させることが可能となり、
ファンに要する電力消費量を低減できるなどの経済的効
果を得ることができる。なお、断面の開口率が90%を
超えるとセル壁厚が非常に薄くなり強度が低下して、実
用的でなくなる。貫通孔を隔てる隔壁の厚みについても
特に制限はないが、0.2〜0.8mmとするのが好ま
しい。この厚みが0.2mm未満では強度が低くなり、
一方0.8mmを超えると圧力損失が増加するため好ま
しくない。また、目開き(貫通孔の直径)は2〜8mm
の範囲が好ましい。
The opening ratio of the cross section of the honeycomb-shaped catalyst of the present invention is not particularly limited, but is preferably 80 to 90%. By setting the opening ratio of the cross section to 80% or more, it becomes possible to reduce the pressure loss of the catalyst bed,
Economical effects such as reduction of power consumption required for the fan can be obtained. If the aperture ratio of the cross section exceeds 90%, the cell wall thickness becomes very thin and the strength decreases, which is not practical. The thickness of the partition wall separating the through holes is not particularly limited, but is preferably 0.2 to 0.8 mm. If the thickness is less than 0.2 mm, the strength will be low,
On the other hand, if it exceeds 0.8 mm, the pressure loss increases, which is not preferable. The opening (diameter of the through hole) is 2 to 8 mm.
Is preferred.

【0021】本発明のハニカム状触媒によって処理でき
る排ガスについては特に制限はなく、本発明のハニカム
状触媒は、ボイラ、加熱炉、ガスタービン、ディーゼル
エンジンおよび各種工業プロセスなどから排出される排
ガスに含まれる窒素酸化物の除去に適用することができ
る。
The exhaust gas that can be treated by the honeycomb-shaped catalyst of the present invention is not particularly limited, and the honeycomb-shaped catalyst of the present invention is included in the exhaust gas discharged from boilers, heating furnaces, gas turbines, diesel engines and various industrial processes. It can be applied to the removal of nitrogen oxides.

【0022】具体的には、例えば硫黄酸化物(SOx)
0〜3,000ppm、酸素1〜20容量%、炭酸ガス
1〜15容量%、水蒸気5〜15容量%、媒塵0〜30
g/Nm3および窒素酸化物(NOx、主にNO)0〜
1,000ppm程度を含有する排ガスに適用すること
ができる。通常のボイラ排ガスは上記範囲のガス組成を
有する。また、本発明のハニカム状触媒は、硫黄酸化物
を含まない窒素酸化物含有排ガス、ハロゲン化合物を含
む窒素酸化物含有排ガスなどの特殊な排ガスの処理にも
使用することができる。
Specifically, for example, sulfur oxide (SOx)
0 to 3,000 ppm, oxygen 1 to 20% by volume, carbon dioxide gas 1 to 15% by volume, water vapor 5 to 15% by volume, dust particles 0 to 30
g / Nm 3 and nitrogen oxides (NOx, mainly NO) 0 to
It can be applied to exhaust gas containing about 1,000 ppm. Normal boiler exhaust gas has a gas composition in the above range. The honeycomb-shaped catalyst of the present invention can also be used for treating special exhaust gas such as exhaust gas containing nitrogen oxides containing no sulfur oxides and exhaust gas containing nitrogen oxides containing halogen compounds.

【0023】処理条件については、排ガスの種類、性状
などに応じて異なるが、通常、アンモニア(NH3)の
添加量はNOx1容量部に対して0.5〜3容量部とす
るのがよい。例えば、ボイラの排ガスの場合、NOxの
うち大部分がNOであるので、NOとNH3のモル比を
1:1近辺にするのが好ましい。これは、過剰のNH3
が未反応物として排出されないように留意しなければな
らないからである。さらに、未反応分のNH3を極力抑
制する必要のある場合は、NH3/NOxのモル比を
1:1以下にするのが好ましい。ガス流速はできるだけ
低いほうが圧力損失を小さくするためにも好ましいが1
m/sec未満では排ガス中の媒塵またはダストにより
触媒床が閉塞されるため好ましくない。従って、実用
上、ガス流速は1〜20m/secの範囲内で適宜選択
するのが好ましい。反応温度は、通常200〜700℃
であり、特に250〜600℃の範囲が好ましい。空間
速度は、通常1,000〜100,000hr-1であり、
特に3,000〜30,000hr-1の範囲が好まし
い。圧力については特に制限はないが、0.01〜10
kg/cm2の範囲が好ましい。
The treatment conditions differ depending on the type and properties of the exhaust gas, but usually the amount of ammonia (NH 3 ) added is preferably 0.5 to 3 parts by volume with respect to 1 part by volume of NOx. For example, in the case of boiler exhaust gas, most of NOx is NO, so it is preferable to set the molar ratio of NO to NH 3 to around 1: 1. This is an excess of NH 3
This is because it must be taken care that is not discharged as an unreacted material. Furthermore, when it is necessary to suppress the unreacted NH 3 as much as possible, it is preferable to set the NH 3 / NOx molar ratio to 1: 1 or less. It is preferable that the gas flow velocity be as low as possible in order to reduce pressure loss, but 1
If it is less than m / sec, the catalyst bed is clogged with dust particles or dust in the exhaust gas, which is not preferable. Therefore, in practice, it is preferable to appropriately select the gas flow rate within the range of 1 to 20 m / sec. The reaction temperature is usually 200 to 700 ° C.
And a range of 250 to 600 ° C. is particularly preferable. The space velocity is usually 1,000 to 100,000 hr -1 ,
Particularly, the range of 3,000 to 30,000 hr -1 is preferable. The pressure is not particularly limited, but 0.01 to 10
The range of kg / cm 2 is preferred.

【0024】反応器の形式については特に制限はなく、
通常の固定床、移動床、流動床などの反応器を使用する
ことができる。
There are no particular restrictions on the type of reactor,
Conventional fixed bed, moving bed, fluidized bed and other reactors can be used.

【0025】[0025]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0026】実施例1 [成分Aの調製]チタン源として下記組成を有する硫酸
チタニルの硫酸水溶液を用いた。
Example 1 [Preparation of component A] An aqueous sulfuric acid solution of titanyl sulfate having the following composition was used as a titanium source.

【0027】 TiOSO4:250g/L(TiO2として) 全H2SO4:1,100g/L 別に、水400Lにアンモニア水(NH3、25%)2
86Lを添加し、これにスノーテックスNCS−30
(日産化学(株)製シリカゾル、SiO2を約30重量
%含有)24kgを加えた。得られた溶液中に上記硫酸
チタニルの硫酸水溶液153Lを水300Lに添加して
希釈したチタン含有硫酸水溶液を撹拌下徐々に滴下し、
共沈ゲルを生成した。更にそのまま15時間放置してT
iO2−SiO2ゲルを得た。このゲルをろ過し、水洗し
た後、200℃で10時間乾燥した。次いで、600℃
で6時間空気雰囲気下で焼成し、さらにハンマーミルを
用いて粉砕し、分級機で分級して平均粒子径10μmの
粉体を得た。得られた粉体(以下、「TS−1」とい
う)の組成はTi:Si=4:1(原子比)で、BET
表面積は160m2/gであった。
TiOSO 4 : 250 g / L (as TiO 2 ) Total H 2 SO 4 : 1,100 g / L Separately, 400 L of water and ammonia water (NH 3 , 25%) 2
86L was added, and Snowtex NCS-30 was added to this.
24 kg (containing about 30% by weight of silica sol manufactured by Nissan Kagaku Co., Ltd., SiO 2 ) was added. To the resulting solution, 153 L of the above-mentioned sulfuric acid aqueous solution of titanyl sulfate was added to 300 L of water and diluted to slowly add a titanium-containing sulfuric acid aqueous solution under stirring,
A co-precipitated gel was produced. Let it stand for 15 hours as it is.
It was obtained iO 2 -SiO 2 gel. This gel was filtered, washed with water, and then dried at 200 ° C. for 10 hours. Then 600 ° C
The powder was calcined in an air atmosphere for 6 hours, ground with a hammer mill, and classified with a classifier to obtain a powder having an average particle diameter of 10 μm. The composition of the obtained powder (hereinafter referred to as “TS-1”) was Ti: Si = 4: 1 (atomic ratio), and BET
The surface area was 160 m 2 / g.

【0028】[ハニカム状触媒の調製]モノエタノール
アミン0.45Lを水4.5Lと混合し、これにパラタ
ングステン酸アンモニウム0.907kgを加えて溶解
させ、次いでメタバナジン酸アンモニウム0.444k
gを溶解させ均一な溶液とした。この溶液を上記のTS
−1の10kgに加え、ニーダーで適量の水を添加しつ
つよく混合、混練した後、押し出し成型機で外形50m
m角、開口率84.6%、目開き6.9mm、セル壁厚
0.5mmの格子状に成型した。次いで、60℃で乾燥
した後、500℃で5時間空気流通下で焼成した。
[Preparation of Honeycomb-like Catalyst] 0.45 L of monoethanolamine was mixed with 4.5 L of water, 0.907 kg of ammonium paratungstate was added and dissolved therein, and then ammonium metavanadate 0.444 k
g was dissolved to form a uniform solution. This solution is
In addition to 10 kg of -1, add a proper amount of water with a kneader, mix well, knead, and then use an extrusion molding machine to obtain an outer shape of 50 m.
It was molded into a grid shape with an m-square, an aperture ratio of 84.6%, an opening of 6.9 mm, and a cell wall thickness of 0.5 mm. Then, after drying at 60 ° C., it was baked at 500 ° C. for 5 hours under air circulation.

【0029】得られたハニカム状触媒の組成は、酸化物
としての重量比で、TS−1:V25:WO3=87:
3:7であった。また、0.01〜0.03μmおよび
0.8〜4μmの範囲の孔径を有する第一の細孔群およ
び第二の細孔群の細孔容積がそれぞれ全細孔容積の68
%および18%であり、全細孔容積は0.44cc/g
であった。なお、得られたハニカム状触媒の細孔径分布
を水銀圧入式ポロシメーター(島津製作所製)により測
定し、その結果を第1図に示した。第1図から、このハ
ニカム状触媒は、二つの独立した細孔群からなる細孔を
有することがわかる。
The composition of the obtained honeycomb catalyst was TS-1: V 2 O 5 : WO 3 = 87: in a weight ratio as an oxide.
It was 3: 7. Further, the pore volume of the first pore group and the second pore group having pore diameters in the range of 0.01 to 0.03 μm and 0.8 to 4 μm is 68% of the total pore volume, respectively.
% And 18%, total pore volume 0.44 cc / g
Met. The pore size distribution of the resulting honeycomb catalyst was measured by a mercury porosimetry porosimeter (manufactured by Shimadzu Corporation), and the results are shown in FIG. From FIG. 1, it can be seen that this honeycomb-shaped catalyst has pores composed of two independent pore groups.

【0030】[ハニカム状触媒の性能評価]このハニカ
ム状触媒を反応器に充填し、反応温度380℃、触媒の
ガス接触面積当りのガス量(AV)25Nm3/m2
、触媒断面当りのガス流速6m/sec(380℃)
の条件で下記に示す模擬ガスを供給し、脱硝率および圧
力損失(1m当りの圧力損失)を測定した。脱硝率およ
び圧力損失は次のようにして測定した。
[Evaluation of Performance of Honeycomb Catalyst] This honeycomb catalyst was filled in a reactor, the reaction temperature was 380 ° C., and the gas amount (AV) per gas contact area of the catalyst was 25 Nm 3 / m 2 h.
, Gas flow rate per catalyst cross section 6m / sec (380 ° C)
The following simulated gas was supplied under the conditions of No. 1 and the denitration rate and pressure loss (pressure loss per 1 m) were measured. The denitration rate and pressure loss were measured as follows.

【0031】脱硝率:触媒層入口および出口のNOx濃
度をNOx計(化学発光式、柳本製作所製)により測定
し、次式に従って求めた。
Denitration rate: The NOx concentration at the inlet and outlet of the catalyst layer was measured by a NOx meter (chemiluminescence type, manufactured by Yanagimoto Seisakusho) and determined according to the following equation.

【0032】脱硝率(%)=[{(入口NOx濃度)−
(出口NOx濃度)}/(入口NOx濃度)]×100 圧力損失:触媒層入口および出口の圧力差を測定し、触
媒長さ1m当りに換算して求めた。結果を表1に示す。
Denitration rate (%) = [{(inlet NOx concentration) −
(Outlet NOx concentration)} / (Inlet NOx concentration)] × 100 Pressure loss: The pressure difference between the inlet and outlet of the catalyst layer was measured and calculated by converting it per 1 m of catalyst length. The results are shown in Table 1.

【0033】模擬ガス組成 NO:800ppm O2:4% SO2:1,000ppm H2O:10% NH3:800ppm N2:残部 実施例2〜5 実施例1に準じて、開口率およびセル壁厚の異なるハニ
カム状触媒を調製し、その脱硝率および圧力損失を実施
例1と同様に測定した。結果を表1に示す。
Simulated gas composition NO: 800 ppm O 2 : 4% SO 2 : 1,000 ppm H 2 O: 10% NH 3 : 800 ppm N 2 : balance balance Examples 2 to 5 According to Example 1, the aperture ratio and the cell were measured. Honeycomb-shaped catalysts having different wall thicknesses were prepared, and the denitration rate and pressure loss thereof were measured in the same manner as in Example 1. The results are shown in Table 1.

【0034】比較例1 実施例1で得られたTS−1粉体をさらに気流粉砕機で
粉砕し、平均粒子径1μmの粉体を得た。この粉体を用
い、実施例1に準じて、開口率62.4%、セル壁厚
1.0mm、目開き3.95mmのハニカム状触媒を調
製した。このハニカム状触媒の全細孔容積は0.40c
c/gであり、細孔分布は第2図に示すように0.01
〜0.03μmの範囲の内径を有する単一の細孔群から
なり、これら細孔が占める細孔容積は全細孔容積の90
%であった。このハニカム状触媒を用いて実施例1と同
様にして脱硝率および圧力損失を測定し、その結果を表
1に示した。
Comparative Example 1 The TS-1 powder obtained in Example 1 was further pulverized by an air flow pulverizer to obtain a powder having an average particle diameter of 1 μm. Using this powder, according to Example 1, a honeycomb catalyst having an aperture ratio of 62.4%, a cell wall thickness of 1.0 mm, and an opening of 3.95 mm was prepared. The total pore volume of this honeycomb catalyst is 0.40c
c / g, and the pore distribution is 0.01 as shown in FIG.
It is composed of a single pore group having an inner diameter in the range of ˜0.03 μm, and the pore volume occupied by these pores is 90% of the total pore volume.
%Met. Using this honeycomb-shaped catalyst, the NOx removal rate and pressure loss were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0035】比較例2 比較例1において、ハニカム状触媒を成型する時に比表
面積50m2/gの酸化チタン(TiO2)をTS−1:
TiO2=10:2(重量比)の割合で添加して成型す
る以外は比較例1と同様にしてハニカム状触媒を調製し
た。得られたハニカム状触媒の全細孔容積は0.38c
c/gであり、細孔径分布は第3図に示すように、二つ
の細孔群が一部重なりあったものであり、しかも細孔径
も均一でないことが判る。このハニカム状触媒を用いて
実施例1と同様にして脱硝率および圧力損失を測定し、
その結果を表1に示した。
Comparative Example 2 In Comparative Example 1, titanium oxide (TiO 2 ) having a specific surface area of 50 m 2 / g was used as TS-1:
A honeycomb catalyst was prepared in the same manner as in Comparative Example 1 except that TiO 2 was added at a ratio of 10: 2 (weight ratio) and molded. The total pore volume of the obtained honeycomb catalyst is 0.38c.
As shown in FIG. 3, the pore size distribution is c / g, and it can be seen that the two pore groups partially overlap with each other and the pore sizes are not uniform. Using this honeycomb-shaped catalyst, the denitration rate and the pressure loss were measured in the same manner as in Example 1,
The results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果から、本発明のハニカム状触媒
は、脱硝活性に優れていることが理解される。
From the results shown in Table 1, it is understood that the honeycomb catalyst of the present invention is excellent in denitration activity.

【0038】[0038]

【発明の効果】本発明のハニカム状用触媒は、特定な細
孔径分布を有するので高い脱硝活性を示す。また、良好
な耐久性を有する。このように、本発明のハニカム状触
媒は、高い脱硝性能を有し、良好な耐久性を示すことか
ら、これを用いることにより排ガス中の窒素酸化物を効
率よく除去することができる。
The honeycomb-shaped catalyst of the present invention exhibits a high denitration activity because it has a specific pore size distribution. Also, it has good durability. As described above, since the honeycomb catalyst of the present invention has high denitration performance and good durability, it can be used to efficiently remove nitrogen oxides in exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたハニカム状触媒の細孔径分
布を示す。
FIG. 1 shows the pore size distribution of the honeycomb-shaped catalyst obtained in Example 1.

【図2】比較例1で得られたハニカム状触媒の細孔径分
布を示す。
FIG. 2 shows the pore size distribution of the honeycomb-shaped catalyst obtained in Comparative Example 1.

【図3】比較例2で得られたハニカム状触媒の細孔径分
布を示す。
FIG. 3 shows the pore size distribution of the honeycomb-shaped catalyst obtained in Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/30 B01J 23/34 A 23/34 23/72 A 23/72 B01D 53/36 102C 102A (72)発明者 井上 明 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/30 B01J 23/34 A 23/34 23/72 A 23/72 B01D 53/36 102C 102A (72) Inventor Akira Inoue 1 992 Nishikioki, Hamahama, Aboshi-ku, Himeji-shi, Hyogo Prefecture Nippon Shokubai Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物をアンモニアの存
在下に接触的に還元除去するためのハニカム状触媒であ
って、実質的に二つの独立した細孔群からなる細孔を有
し、0.01〜0.03μmの範囲の孔径を有する細孔
群が占める細孔容積が全細孔容積の50〜80%であ
り、0.8〜4μmの範囲の孔径を有する細孔群が占め
る細孔容積が全細孔容積の10〜30%であることを特
徴とする窒素酸化物除去用触媒。
1. A honeycomb catalyst for catalytically reducing and removing nitrogen oxides in exhaust gas in the presence of ammonia, which has pores substantially composed of two independent pore groups, The pore volume occupied by the pore group having a pore diameter in the range of 0.01 to 0.03 μm is 50 to 80% of the total pore volume, and the pore group having a pore diameter in the range of 0.8 to 4 μm occupies A catalyst for nitrogen oxide removal, which has a pore volume of 10 to 30% of the total pore volume.
【請求項2】 チタンを含有する酸化物または複合酸化
物である請求項1記載の触媒。
2. The catalyst according to claim 1, which is an oxide or a composite oxide containing titanium.
【請求項3】 チタンおよびケイ素を含む二元系酸化物
60〜99.5重量%とバナジウム、タングステン、
銅、マンガン、セリウムおよびスズから選ばれる少なく
とも1種の金属の酸化物0.5〜40重量%とからなる
触媒活性成分を含有する請求項1記載の触媒。
3. A binary oxide containing titanium and silicon in an amount of 60 to 99.5% by weight and vanadium, tungsten,
The catalyst according to claim 1, containing a catalytically active component consisting of 0.5 to 40% by weight of an oxide of at least one metal selected from copper, manganese, cerium and tin.
【請求項4】 排ガスをアンモニアの存在下に請求項
1、2または3記載の触媒に接触させて排ガス中の窒素
酸化物を除去することを特徴とする窒素酸化物の除去方
法。
4. A method for removing nitrogen oxides, which comprises contacting the exhaust gas with the catalyst according to claim 1, 2 or 3 in the presence of ammonia to remove the nitrogen oxides in the exhaust gas.
JP7311454A 1995-11-30 1995-11-30 Catalyst and method for removing nitrogen oxide Pending JPH08229412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311454A JPH08229412A (en) 1995-11-30 1995-11-30 Catalyst and method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311454A JPH08229412A (en) 1995-11-30 1995-11-30 Catalyst and method for removing nitrogen oxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1204607A Division JP2730987B2 (en) 1989-08-09 1989-08-09 Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst

Publications (1)

Publication Number Publication Date
JPH08229412A true JPH08229412A (en) 1996-09-10

Family

ID=18017419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311454A Pending JPH08229412A (en) 1995-11-30 1995-11-30 Catalyst and method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH08229412A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125212A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
WO2009118816A1 (en) * 2008-03-24 2009-10-01 イビデン株式会社 Honeycomb structure
EP2130592A2 (en) 2008-05-20 2009-12-09 Ibiden Co., Ltd. Honeycomb structure
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
JP2014180645A (en) * 2013-03-21 2014-09-29 Nippon Shokubai Co Ltd Denitration catalyst and denitration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155740A (en) * 1979-05-22 1980-12-04 Nippon Shokubai Kagaku Kogyo Co Ltd Fortified catalyzer for exhaust gas treatment
JPS6227044A (en) * 1985-07-29 1987-02-05 Ube Ind Ltd Structural body type catalyst
JPS63143941A (en) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for nitrogen oxide removal
JPS63185448A (en) * 1986-09-30 1988-08-01 Sakai Chem Ind Co Ltd Catalyst and method for removing nitrogen oxide in exhaust gas
JPH0368456A (en) * 1989-08-09 1991-03-25 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155740A (en) * 1979-05-22 1980-12-04 Nippon Shokubai Kagaku Kogyo Co Ltd Fortified catalyzer for exhaust gas treatment
JPS6227044A (en) * 1985-07-29 1987-02-05 Ube Ind Ltd Structural body type catalyst
JPS63185448A (en) * 1986-09-30 1988-08-01 Sakai Chem Ind Co Ltd Catalyst and method for removing nitrogen oxide in exhaust gas
JPS63143941A (en) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for nitrogen oxide removal
JPH0368456A (en) * 1989-08-09 1991-03-25 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
JP2005125212A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
WO2009118816A1 (en) * 2008-03-24 2009-10-01 イビデン株式会社 Honeycomb structure
US8021621B2 (en) 2008-03-24 2011-09-20 Ibiden Co., Ltd. Honeycomb structure, exhaust gas purifying apparatus, and method for producing honeycomb structure
EP2130592A2 (en) 2008-05-20 2009-12-09 Ibiden Co., Ltd. Honeycomb structure
US8187691B2 (en) 2008-05-20 2012-05-29 Ibiden Co., Ltd. Honeycomb structure
JP2014180645A (en) * 2013-03-21 2014-09-29 Nippon Shokubai Co Ltd Denitration catalyst and denitration method

Similar Documents

Publication Publication Date Title
US8465714B2 (en) Catalyst promoters in vanadium-free mobile catalyst
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
US5550096A (en) Catalyst for purifying nitrogen oxides from exhaust and waste gases
US7264784B2 (en) Method for treating exhaust gas
US6120747A (en) Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
US5658546A (en) Denitration catalyst
JP4098703B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
US6638486B2 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
JP3507906B2 (en) DeNOx catalyst
JPH08229412A (en) Catalyst and method for removing nitrogen oxide
JP3537209B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2001113170A (en) Method for manufacturing for denitration catalyst
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP3537210B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH03270732A (en) Catalyst for removing nitrogen oxide
JPS61230748A (en) Catalyst for purifying nitrogen oxide
JPS61204040A (en) Production of catalyst for purifying nitrogen oxides
JP2002102696A (en) Denitration catalyst and processing method for exhaust gas using this
CA2261218C (en) Catalyst for removal of nitrogen oxides and method for removal of nitrogen oxides by use of the catalyst