JP2014180645A - Denitration catalyst and denitration method - Google Patents

Denitration catalyst and denitration method Download PDF

Info

Publication number
JP2014180645A
JP2014180645A JP2013058269A JP2013058269A JP2014180645A JP 2014180645 A JP2014180645 A JP 2014180645A JP 2013058269 A JP2013058269 A JP 2013058269A JP 2013058269 A JP2013058269 A JP 2013058269A JP 2014180645 A JP2014180645 A JP 2014180645A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
mass
denitration
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013058269A
Other languages
Japanese (ja)
Inventor
Hiroki Tsutsumi
広樹 堤
Mitsuharu Hagi
光晴 萩
Atsushi Morita
敦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013058269A priority Critical patent/JP2014180645A/en
Publication of JP2014180645A publication Critical patent/JP2014180645A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oxide which can be used for a catalyst capable of efficiently treating nitrogen oxides in exhaust gas and effectively treating exhaust gas generated from a gas fired boiler and a gas turbine in particular.SOLUTION: A nitrogen oxide purification catalyst contains oxides of titanium, silicon, and tungsten having a particle size distribution in which a median diameter (d50) is 10-100 μm. Preferably, the content of titanium is 40-98 mass% (calculated as TiO), the content of silicon is 1-30 mass% (calculated as SiO), and the content of tungsten is 1-30 mass% (calculated as WO).

Description

本発明は、チタン・ケイ素・タングステンの酸化物、それを用いた脱硝触媒、当該酸化物の調製方法および脱硝方法に関する。特に、重油焚きボイラや石炭焚きボイラ、ガス焚きボイラ、ガスタービン、ガスエンジン、ディーゼルエンジン、火力発電所、ごみ焼却炉および各種工業プロセスから排出される排ガス中に含まれる窒素酸化物(NO)の除去に優れた脱硝触媒、その調製方法、および脱硝方法に関する。 The present invention relates to an oxide of titanium, silicon and tungsten, a denitration catalyst using the oxide, a method for preparing the oxide, and a denitration method. In particular, oil-fired boilers and coal-fired boiler, gas-fired boilers, gas turbines, gas engines, diesel engines, thermal power plants, nitrogen oxides contained in exhaust gas discharged from waste incinerators and various industrial processes (NO X) The present invention relates to a denitration catalyst that is excellent in removing water, a preparation method thereof, and a denitration method.

現在実用化されている排ガス中の窒素酸化物除去方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的である。近年、酸性雨に代表されるように窒素酸化物による環境汚染が世界的に深刻化するに伴い、高性能な触媒が求められている。   As a method for removing nitrogen oxides in exhaust gas that is currently in practical use, a selective catalyst that catalytically reduces nitrogen oxides in exhaust gas using a reducing agent such as ammonia or urea and decomposes it into nitrogen and water. The reduction method (SCR method) is common. In recent years, as environmental pollution caused by nitrogen oxides has become serious worldwide, as represented by acid rain, a high-performance catalyst has been demanded.

脱硝触媒に関する従来技術としては、例えば、窒素酸化物の除去に有効な触媒として二酸化チタンおよび/またはチタン複合酸化物からなる排ガス処理触媒について開示されているが(特許文献1)、充分な処理性能を有するとはいえなかった。   As a prior art relating to a denitration catalyst, for example, an exhaust gas treatment catalyst comprising titanium dioxide and / or a titanium composite oxide is disclosed as an effective catalyst for removing nitrogen oxides (Patent Document 1), but sufficient treatment performance is disclosed. Could not be said to have.

また、酸化チタンと酸化ケイ素の複合酸化物を触媒成分とする排ガス処理触媒が数多く提案されているが更なる活性の向上が望まれている。   Many exhaust gas treatment catalysts using a composite oxide of titanium oxide and silicon oxide as a catalyst component have been proposed, but further improvement in activity is desired.

これらの触媒が有効に作用しない原因として、排出されるガスの対象である重油焚きボイラや石炭焚きボイラ、ガス焚きボイラ、ガスタービン、ガスエンジン、ディーゼルエンジン、火力発電所、ごみ焼却炉および各種工業プロセスから排出される排ガスの差異より、触媒毒となるもの存在、水蒸気の存在および処理するガスと触媒との関係である空間速度、窒素酸化物(NO)の濃度などの関係から処理対象となる窒素酸化物(NO)が効率よく処理できないことにある。 The reasons why these catalysts do not work effectively include heavy oil-fired boilers, coal-fired boilers, gas-fired boilers, gas turbines, gas engines, diesel engines, thermal power plants, waste incinerators, and various industries. Due to the difference in exhaust gas discharged from the process, the target of treatment depends on the existence of catalyst poison, the presence of water vapor, the space velocity between the gas to be treated and the catalyst, the concentration of nitrogen oxides (NO x ), etc. The nitrogen oxide (NO x ) that is formed cannot be efficiently processed.

特開2004−943号公報Japanese Patent Laid-Open No. 2004-943

本発明は上記触媒の活性向上を目的としている。特にガス焚きボイラやガスタービンから生じる排ガスの処理に有効な触媒開発を目的としている。   The present invention aims to improve the activity of the catalyst. In particular, it aims to develop an effective catalyst for the treatment of exhaust gas generated from gas-fired boilers and gas turbines.

上記課題を解決すめるために本発明者らは鋭意検討の結果、下記技術を見出し、発明を完成するに至ったものである。即ち、粒度分布を測定したとき、メジアン径(d50)の値が10〜100μmを示すことを特徴とするチタン・ケイ素・タングステンの酸化物(以下、「Ti−Si−W酸化物」とも記載する)であり、更に当該酸化物を用いた脱硝触媒、当該酸化物の製造方法および当該触媒を用いた脱硝方法である。   In order to solve the above-mentioned problems, the present inventors have intensively studied and found the following technique to complete the invention. That is, when the particle size distribution is measured, the value of the median diameter (d50) is 10 to 100 μm, which is also described as a titanium-silicon-tungsten oxide (hereinafter referred to as “Ti—Si—W oxide”). And a denitration catalyst using the oxide, a method for producing the oxide, and a denitration method using the catalyst.

本発明にかかるTi−Si−W酸化物は、特殊な粒度分布を有する物質であり、これを排煙脱硝用触媒に用いることで効率よく排ガス中の窒素酸化物(NO)を処理することができ、特にガス焚きボイラやガスタービンから生じる排ガスの処理に有効に作用するものである。また、同一組成のTi−Si−W酸化物を用いるときであっても、触媒活性助剤により触媒の全細孔容積を増加させることができ脱硝性能を向上させることができる。 The Ti—Si—W oxide according to the present invention is a substance having a special particle size distribution, and by using it as a catalyst for flue gas denitration, nitrogen oxide (NO X ) in exhaust gas can be efficiently processed. In particular, it effectively acts on the treatment of exhaust gas generated from a gas-fired boiler or gas turbine. Moreover, even when Ti-Si-W oxides having the same composition are used, the catalyst pore size can be increased by the catalyst activity aid, and the denitration performance can be improved.

図1は本発明である実施例1に関する触媒Aを、細孔測定し微分表示したものである。横軸は細孔径、縦軸は強度を示す任意の値である。特定範囲の細孔径におけるピーク面積から細孔容積が算出できる。FIG. 1 shows the differential display of the catalyst A related to Example 1 which is the present invention by measuring pores. The horizontal axis is the pore diameter, and the vertical axis is an arbitrary value indicating the strength. The pore volume can be calculated from the peak area in a specific range of pore diameters. 図2は本発明である実施例2に関する触媒Bを、細孔測定し微分表示したものである。横軸・縦軸の説明は図1と同じ。FIG. 2 shows the differential display of the catalyst B related to Example 2 which is the present invention by measuring pores. The explanation of the horizontal and vertical axes is the same as in FIG. 図3は本発明である実施例3に関する触媒Cを、細孔測定し微分表示したものである。横軸・縦軸の説明は図1と同じ。FIG. 3 is a differential display of the catalyst C relating to Example 3 of the present invention, which is measured for pores. The explanation of the horizontal and vertical axes is the same as in FIG. 図4は比較例1に関する触媒aを、細孔測定し微分表示したものである。横軸・縦軸の説明は図1と同じ。FIG. 4 shows a differential display of the catalyst a related to Comparative Example 1 by measuring pores. The explanation of the horizontal and vertical axes is the same as in FIG.

第一発明は、メジアン径(d50)が10〜100μmを示す粒度分布を有することを特徴とするチタン・ケイ素・タングステンの酸化物(以下、「Ti−Si−W酸化物」とも記載する)を含む窒素酸化物浄化用触媒である。好ましくは当該触媒の全細孔容積(0.003〜40μmにおける細孔径の細孔容積)を1としたとき1〜20μm(Aピーク)の細孔容積が0.05〜0.6(A/全細孔容積)であること、当該Ti−Si−W酸化物において、チタンが40〜98質量%(TiO換算)、ケイ素が1〜30質量%(SiO換算)およびタングステンが1〜30質量%(WO換算)である。 The first invention is a titanium-silicon-tungsten oxide (hereinafter also referred to as "Ti-Si-W oxide") having a particle size distribution with a median diameter (d50) of 10 to 100 m. A catalyst for purifying nitrogen oxides. Preferably, when the total pore volume of the catalyst (pore volume of pore diameter at 0.003 to 40 μm) is 1, the pore volume of 1 to 20 μm (A peak) is 0.05 to 0.6 (A / In the Ti—Si—W oxide, titanium is 40 to 98% by mass (in terms of TiO 2 ), silicon is in the range of 1 to 30% by mass (in terms of SiO 2 ), and tungsten is in the range of 1 to 30%. by mass% (WO 3 conversion).

第二発明は、当該酸化物を含む触媒を用いたことを特徴とする窒素酸化物除去方法である。   The second invention is a method for removing nitrogen oxides characterized by using a catalyst containing the oxide.

第三発明は、触媒を用いて窒素酸化物を含む排ガスをアンモニア存在下に処理することを特徴とする脱硝方法である。   A third invention is a denitration method characterized in that exhaust gas containing nitrogen oxides is treated in the presence of ammonia using a catalyst.

(窒素酸化物除去用触媒)
第一発明は、メジアン径(d50)が10〜100μmを示す粒度分布を有することを特徴とするチタン・ケイ素・タングステンの酸化物(以下、「Ti−Si−W酸化物」とも記載する)を含む窒素酸化物浄化用触媒である。
(Catalyst for removing nitrogen oxides)
The first invention is a titanium-silicon-tungsten oxide (hereinafter also referred to as "Ti-Si-W oxide") having a particle size distribution with a median diameter (d50) of 10 to 100 m. A catalyst for purifying nitrogen oxides.

好ましくは当該触媒の全細孔容積(0.003〜40μmにおける細孔径の細孔容積)を1としたとき1〜20μm(Aピーク)の細孔容積が0.05〜0.6(A/全細孔容積)である。   Preferably, when the total pore volume of the catalyst (pore volume of pore diameter at 0.003 to 40 μm) is 1, the pore volume of 1 to 20 μm (A peak) is 0.05 to 0.6 (A / Total pore volume).

好ましくは、当該Ti−Si−W酸化物において、チタンが40〜98質量%(TiO換算)、ケイ素が1〜30質量%(SiO換算)およびタングステンが1〜30質量%(WO換算)である。 Preferably, in the Ti—Si—W oxide, titanium is 40 to 98 mass% (in terms of TiO 2 ), silicon is 1 to 30 mass% (in terms of SiO 2 ), and tungsten is 1 to 30 mass% (in terms of WO 3). ).

−Ti−Si−W酸化物の粒度分布−
当該Ti−Si−W酸化物の粒度がメジアン径(d50)で10〜100μmであり、好ましくは10〜80μm、更に好ましくは10〜60μmである。10μm未満であれば脱硝性能が低くなり好ましくないからであり、100μmを超える場合には脱硝性能はそれほど向上しないが、触媒の機械的強度が低下して耐摩耗強度が低くなるなど弊害が生じるおそれがあるからである。なお、粒度分布の測定方法は、市販のレーザー回折法・散乱式粒度分布測定装置により測定できる。
-Particle size distribution of Ti-Si-W oxide-
The particle size of the Ti—Si—W oxide is 10 to 100 μm in median diameter (d50), preferably 10 to 80 μm, and more preferably 10 to 60 μm. This is because if the thickness is less than 10 μm, the denitration performance is lowered, which is not preferable. If the thickness exceeds 100 μm, the denitration performance is not improved so much, but the mechanical strength of the catalyst is lowered and the wear resistance may be lowered. Because there is. The particle size distribution can be measured by a commercially available laser diffraction / scattering particle size distribution measuring apparatus.

Ti−Si−W酸化物は、チタンが40〜98質量%(TiO換算)、ケイ素が1〜30質量%(SiO換算)およびタングステンが1〜30質量%(WO換算)であることが好ましい。更に好ましくはチタンが60〜98質量%(TiO換算)、ケイ素が1〜20質量%(SiO換算)およびタングステンが1〜20質量%(WO換算)であり、最も好ましくはチタンが70〜98質量%(TiO換算)、ケイ素が1〜20質量%(SiO換算)およびタングステンが1〜10質量%(WO換算)である。チタンが40質量%未満であれば脱硝性能が低くなり好ましくなく、98質量%を超える場合は触媒の耐熱性が低くなり好ましくないからであり、ケイ素が1質量%未満であれば触媒の成形性が悪くなり好ましくなく、30質量%を超える場合には脱硝性能が低くなり好ましくないからであり、タングステンが1質量%未満であれば脱硝性能が低くなり好ましくなく、30質量%を超える場合には添加効果が充分に得られず脱硝性能が低下する場合があるからである。 Ti-Si-W oxides are titanium 40-98 mass% (TiO 2 conversion), silicon 1-30 mass% (SiO 2 conversion) and tungsten 1-30 mass% (WO 3 conversion). Is preferred. More preferably, titanium is 60 to 98% by mass (in terms of TiO 2 ), silicon is in the range of 1 to 20% by mass (in terms of SiO 2 ), and tungsten is in the range of 1 to 20% by mass (in terms of WO 3 ). Most preferably, titanium is 70%. 98 wt% (TiO 2 equivalent), a silicon 1 to 20 mass% (SiO 2 equivalent) and tungsten 1 to 10 mass% (WO 3 conversion). If titanium is less than 40% by mass, the denitration performance is low, which is not preferable. If it exceeds 98% by mass, the heat resistance of the catalyst is low, which is not preferable. If silicon is less than 1% by mass, the moldability of the catalyst is not preferable. This is because when the amount exceeds 30% by mass, the denitration performance becomes low and is not preferable. When the content of tungsten is less than 1% by mass, the denitration performance decreases and is not preferable, and when it exceeds 30% by mass, This is because the additive effect cannot be sufficiently obtained and the denitration performance may be lowered.

当該Ti−Si−W酸化物は特異的な粒度分布を持つことで酸化反応、還元反応に効果を示し、特に窒素酸化物の除去に優れた効果を示すものである。   The Ti—Si—W oxide has a specific particle size distribution, and thus has an effect on the oxidation reaction and the reduction reaction, and particularly has an excellent effect on removing nitrogen oxides.

また、当該Ti−Si−W酸化物は当該粒度分布を有するものであれば良く、各酸化物が複合化している必要はない。   In addition, the Ti—Si—W oxide only needs to have the particle size distribution, and the oxides do not need to be complexed.

−Ti−Si−W酸化物の製法−
当該Ti−Si−W酸化物の調製方法としては、(1)アンモニア水とケイ素源とタングステン源の混合水溶液に硫酸チタニルの硫酸水溶液を中和し十分に混合し、pH3〜10好ましくはpH4〜8でpH調整して主に水酸化物として沈殿を生成させ、十分に沈殿させた後、沈殿スラリーを濾過、水洗後、乾燥し、焼成する共沈法、(2)一方の酸化物に他方の水溶液を含浸し乾燥し、焼成する含浸法、(3)各々の前駆体である水不溶物質を水と混合しスラリーとし混練し、乾燥し、焼成する混練法、(4)各々の酸化物前駆体を十分混合し焼成する固相反応法があるが、好ましくは共沈法である。
-Manufacturing method of Ti-Si-W oxide-
As a method for preparing the Ti-Si-W oxide, (1) a mixed aqueous solution of ammonia water, a silicon source and a tungsten source is neutralized with a sulfuric acid aqueous solution of titanyl sulfate and mixed thoroughly, and pH 3 to 10, preferably pH 4 to The pH is adjusted at 8 to produce a precipitate mainly as a hydroxide, and after sufficient precipitation, the precipitate slurry is filtered, washed with water, dried and fired, (2) one oxide on the other (3) a kneading method in which a water-insoluble substance as each precursor is mixed with water, kneaded into a slurry, dried, and calcined, and (4) each oxide. There is a solid phase reaction method in which precursors are sufficiently mixed and calcined, and a coprecipitation method is preferred.

また、当該酸化物を製造するとき、市販の原料をそのまま使用することもできるが、好ましくは所定の濃度の液に調整し用いることである。例えば、チタン源の場合には液1リットル(L)に対して20〜400g(TiO換算)、好ましくは50〜100g(TiO換算)である。ケイ素源の場合には液1リットルに対して0.5〜200g(SiO換算)、好ましくは1〜100g(SiO換算)である。タングステン源の場合には液1リットルに対して50〜500g(WO換算)、好ましくは100〜400g(WO換算)である。これらの量を超える場合には均一に混合する前に局所的に反応が進行し均一な水酸化物を生じ難くなり好ましくはなく、これらの量未満であれば液pHが所定の範囲になり難く好ましくはないからである。何れにしても目標となる酸化物を生じさせ難くなることがあるからである。 Moreover, when manufacturing the said oxide, although a commercially available raw material can also be used as it is, Preferably it is adjusting and using for the liquid of a predetermined density | concentration. For example, 20 to 400 g (TiO 2 basis) with respect to L of liquid (L) in the case of the titanium source is preferably 50 to 100 g (TiO 2 equivalent). In the case of a silicon source, it is 0.5 to 200 g (SiO 2 equivalent), preferably 1 to 100 g (SiO 2 equivalent) per liter of liquid. In the case of tungsten source 50 to 500 g (WO 3 conversion) with respect to L of liquid, preferably 100 to 400 g (WO 3 conversion). When these amounts are exceeded, the reaction proceeds locally before mixing uniformly and it is difficult to produce uniform hydroxides, and this is not preferred. If the amount is less than these amounts, the pH of the solution is unlikely to fall within a predetermined range. This is not preferable. In any case, it may be difficult to produce a target oxide.

−窒素酸化物除去用触媒−
窒素酸化物は当該Ti−Si−W酸化物を含むものである。触媒は当該Ti−Si−W酸化物により構成されていても良いが、当該Ti−Si−W酸化物の特異的な粒度分布により生じる効果に影響を与えないものであれば他の化合物が含まれていても問題はなく、当該Ti−Si−W酸化物を含む脱硝触媒としての機能を更に向上させる目的(触媒活性助剤)で、例えばバナジウム、モリブデン、鉄、マンガン、ニッケル、バリウム、ストロンチウム、銀、セシウム、マグネシウム等の酸化物を当該Ti−Si−W酸化物に対して0.1〜20質量%添加することができる。特にバナジウム、タングステンおよびモリブデンからなる群より選ばれる1種以上の元素またはその化合物を活性成分として含むものが好ましい。当該活性成分の含有量は、触媒を100質量%としたとき0.1〜20質量%(酸化物換算)、好ましくは0.2〜15質量%(酸化物換算)、更に好ましくは0.4〜10質量%(酸化物換算)である。0.1質量%(酸化物換算)未満であれば脱硝性能が低くなり好ましくはないからであり、20質量%(酸化物換算)を超えるときは添加効果が充分に得られず脱硝性能が低下する場合があるからである。
-Catalyst for removing nitrogen oxides-
The nitrogen oxide includes the Ti—Si—W oxide. The catalyst may be composed of the Ti-Si-W oxide, but other compounds are included as long as they do not affect the effect caused by the specific particle size distribution of the Ti-Si-W oxide. In order to further improve the function as a denitration catalyst containing the Ti—Si—W oxide (catalytic activity aid), for example, vanadium, molybdenum, iron, manganese, nickel, barium, strontium An oxide such as silver, cesium, and magnesium can be added in an amount of 0.1 to 20 mass% with respect to the Ti-Si-W oxide. In particular, those containing one or more elements selected from the group consisting of vanadium, tungsten and molybdenum or compounds thereof as active ingredients are preferred. The content of the active ingredient is 0.1 to 20% by mass (as oxide) when the catalyst is 100% by mass, preferably 0.2 to 15% by mass (as oxide), more preferably 0.4. -10% by mass (as oxide). This is because if the amount is less than 0.1% by mass (as oxide), the denitration performance is lowered, which is not preferable. If the amount exceeds 20% by mass (as oxide), the addition effect cannot be sufficiently obtained and the denitration performance is deteriorated. Because there is a case to do.

上記触媒成分は、水、成形助剤等を加え粘土状とし、使用する用途に適応した形状、例えばハニカム状、ペレット状、粉体状に成形されることがある。ハニカム状であれば、一辺50〜200mmの角、目開きが一辺1〜10mmの角、リブ厚が0.1〜1.5mm、長さが200〜2000mmのものが好ましい。   The catalyst component may be formed into a clay shape by adding water, a molding aid, and the like, and may be formed into a shape suitable for the intended use, for example, a honeycomb shape, a pellet shape, or a powder shape. In the case of a honeycomb, it is preferable that the corner has a side of 50 to 200 mm, the opening has a side of 1 to 10 mm, the rib thickness is 0.1 to 1.5 mm, and the length is 200 to 2000 mm.

−窒素酸化物除去用触媒の細孔容積−
当該触媒は、細孔容積を測定し細孔径を横軸、対応する細孔容積を縦軸とし、かつ微分型表示にしたとき、少なくとも細孔径が1〜20μmにピーク(Aピーク)を有することが好ましく、更に好ましくは更に0.006〜0.06μmにピーク(Bピーク)を有するものであり、最も好ましくはAピークまたはBピークの少なくも一方が当該細孔径を測定した範囲内で一番目の大きさ示すことである。
-Pore volume of nitrogen oxide removal catalyst-
The catalyst has a peak (A peak) at least at a pore diameter of 1 to 20 μm when the pore volume is measured, the pore diameter is plotted on the horizontal axis, the corresponding pore volume is plotted on the vertical axis, and the differential type is displayed. More preferably, it further has a peak (B peak) at 0.006 to 0.06 μm, and most preferably at least one of the A peak or the B peak is the first in the range in which the pore diameter is measured. Is to show the size of

当該触媒の全細孔容積(0.003〜40μmにおける細孔径の細孔容積)を1としたとき、1〜20μm(Aピーク)の細孔容積が0.05〜0.6(A/全細孔容積)であり、好ましくは0.05〜0.5(A/全細孔容積)、更に好ましくは0.05〜0.45である。0.05未満であれば脱硝性能が低くなり好ましくないからであり、0.6を超える場合には脱硝性能はそれほど向上しないが、触媒の機械的強度が低下して耐摩耗強度が低くなるなど弊害が生じるおそれがあるからである。   When the total pore volume of the catalyst (pore volume of pore diameter at 0.003 to 40 μm) is 1, the pore volume of 1 to 20 μm (A peak) is 0.05 to 0.6 (A / total Pore volume), preferably 0.05 to 0.5 (A / total pore volume), more preferably 0.05 to 0.45. If it is less than 0.05, the denitration performance is lowered, which is not preferable. If it exceeds 0.6, the denitration performance is not improved so much, but the mechanical strength of the catalyst is lowered and the wear resistance strength is lowered. This is because harmful effects may occur.

AピークまたはBピークが0.003〜40μmにおける細孔径の範囲で、少なくとも一方が一番目のピークの大きさを示すものであり、双方が同じピークの大きさであっても良いが、好ましくは一方が一番目、他方が二番目の大きさ示すものである。一番目の大きさとは、細孔径が0.003〜40μmにおいて、細孔径がピークを示す細孔径の範囲における細孔容積が最大のピークを示す細孔群をいう。二番目の大きさとは同様にして、細孔容積が二番目のピークを示す細孔群をいう。   A peak or B peak is in the range of pore diameters in the range of 0.003 to 40 μm, at least one shows the size of the first peak, and both may have the same peak size, One shows the first size and the other shows the second size. The first size refers to a group of pores having a maximum peak in the pore volume in a range of pore diameters in which the pore diameter is a peak when the pore diameter is 0.003 to 40 μm. Similarly, the second size refers to a group of pores having a second peak in pore volume.

当該細孔径と細孔容積は、通常使用される水銀圧入式ポロシメーターなどにより測定できる。当該ピークは、細孔径測定の結果を細孔径を横軸、細孔容積を縦軸とし、かつ微分型に表示されたときに生じるピークである。   The pore diameter and pore volume can be measured by a commonly used mercury intrusion porosimeter. The peak is a peak generated when the pore diameter measurement result is displayed in a differential form with the pore diameter as the horizontal axis and the pore volume as the vertical axis.

(窒素酸化物除去方法)
第二発明は、当該触媒を用いたことを特徴とする窒素酸化物除去方法である。対象となるガスは窒素酸化物を含むものであれば何れのガスであってもよいが、好ましくはガス焚きボイラやガスタービンから生じる排ガスである。窒素酸化物(NO)の濃度は10〜2000ppm(NO換算)、好ましくは20〜500ppm(NO換算)、更に好ましくは40〜100ppm(NO換算)である。これらのガスには水、SO、ダストなどが含まれていても処理することができる。
(Nitrogen oxide removal method)
The second invention is a nitrogen oxide removing method using the catalyst. The target gas may be any gas as long as it contains nitrogen oxides, but is preferably exhaust gas generated from a gas-fired boiler or a gas turbine. The concentration of nitrogen oxides (NO X ) is 10 to 2000 ppm (NO X conversion), preferably 20 to 500 ppm (NO X conversion), more preferably 40 to 100 ppm (NO X conversion). These gases can be treated even if they contain water, SO x , dust or the like.

空間速度は1000〜100000hr−1(STP)、好ましくは2000〜50000hr−1(STP)、更に好ましくは3000〜30000hr−1(STP)である。 The space velocity is 1000 to 100000 hr −1 (STP), preferably 2000 to 50000 hr −1 (STP), more preferably 3000 to 30000 hr −1 (STP).

更に第三発明は、脱硝に際して、排ガス中にアンモニアまたは尿素を添加することができる。添加量は、窒素酸化物(NO換算)1モルに対して、アンモニア換算(尿素の場合は1/2モル)で0.2〜2.0モル、好ましくは0.5〜1.0モルである。 Furthermore, in the third invention, ammonia or urea can be added to the exhaust gas during denitration. The addition amount is 0.2 to 2.0 mol, preferably 0.5 to 1.0 mol in terms of ammonia (1/2 mol in the case of urea) with respect to 1 mol of nitrogen oxide (NO X conversion). It is.

処理温度は、150〜500℃、好ましくは200〜450℃、更に好ましくは250〜400℃である。   Processing temperature is 150-500 degreeC, Preferably it is 200-450 degreeC, More preferably, it is 250-400 degreeC.

下記実施例において上述の成分を添加することもできるが、代表例として、以下の実施例、比較例により、発明を詳細に説明する。なお、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   Although the above-mentioned components can be added in the following examples, the invention will be described in detail by the following examples and comparative examples as representative examples. The present invention is not limited to the following examples as long as the effects of the present invention are achieved.

(調製例1)
<化合物A(Ti−Si−W酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)1.4kg、モノエタノールアミン0.6kgを水10Lに混合・溶解させ(WOとして120g/L含有)、均一溶液を調製した。このタングステン含有溶液とシリカゾル(SiOとして30重量%含有)3.4kg、10質量%アンモニア水250Lを混合した溶液(SiOとして4g/L含有)に、硫酸チタニルの硫酸溶液(TiOとして100g/L含有、硫酸濃度400g/L)190Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを7に調整した。このスラリーを濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物A(Ti−Si−W酸化物)を得た。
(Preparation Example 1)
<Preparation of Compound A (Ti-Si-W Oxide)>
1.4 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 0.6 kg of monoethanolamine were mixed and dissolved in 10 L of water (containing 120 g / L as WO 3 ) to prepare a uniform solution. This tungsten-containing solution and silica sol (containing 30 wt% as SiO 2 ) 3.4 kg, mixed with 250 L of 10 mass% aqueous ammonia (containing 4 g / L as SiO 2 ), sulfuric acid solution of titanyl sulfate (100 g as TiO 2 ) / L content, sulfuric acid concentration 400 g / L) 190 L was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of 25 mass% aqueous ammonia was added to adjust the pH to 7. This slurry was filtered, washed, and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound A (Ti—Si—W oxide).

化合物Aの組成はTiO/SiO/WOの質量比(酸化物換算)で89/5/6質量%であった。 The composition of Compound A was 89/ 5 /6% by mass (as oxide) of TiO 2 / SiO 2 / WO 3 .

(調製例2)
<化合物B(Ti−Si−W酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)1.4kg、モノエタノールアミン0.6kgを水10Lに混合・溶解させ(WOとして120g/L含有)、均一溶液を調製した。このタングステン含有溶液とシリカゾル(SiOとして30重量%含有)1.7kg、10質量%アンモニア水250Lを混合した溶液(SiOとして2g/L含有)に、硫酸チタニルの硫酸溶液(TiOとして100g/L含有、硫酸濃度400g/L)190Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを7に調整した。このスラリーを濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物B(Ti−Si−W酸化物)を得た。化合物Bの組成はTiO/SiO/WOの質量比(酸化物換算)で91.5/2.5/6質量%であった。
(Preparation Example 2)
<Preparation of Compound B (Ti-Si-W Oxide)>
1.4 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 0.6 kg of monoethanolamine were mixed and dissolved in 10 L of water (containing 120 g / L as WO 3 ) to prepare a uniform solution. This tungsten-containing solution and silica sol (containing 30% by weight as SiO 2 ) 1.7 kg, 10% by mass aqueous ammonia 250 L (containing 2 g / L as SiO 2 ), sulfuric acid solution of titanyl sulfate (100 g as TiO 2 ) / L content, sulfuric acid concentration 400 g / L) 190 L was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of 25 mass% aqueous ammonia was added to adjust the pH to 7. This slurry was filtered, washed, and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound B (Ti—Si—W oxide). Composition of the compound B was 91.5 / 2.5 / 6 mass% in mass ratio of TiO 2 / SiO 2 / WO 3 ( as oxide).

(調製例3)
<化合物C(Ti−Si−W酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)1.4kg、モノエタノールアミン0.6kgを水10Lに混合・溶解させ(WOとして120g/L含有)、均一溶液を調製した。このタングステン含有溶液とシリカゾル(SiOとして30重量%含有)1.7kg、10質量%アンモニア水250Lを混合した溶液(SiOとして2g/L含有)に、硫酸チタニルの硫酸溶液(TiOとして100g/L含有、硫酸濃度400g/L)190Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを5に調整した。このスラリーを濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物C(Ti−Si−W酸化物)を得た。化合物Cの組成はTiO/SiO/WOの質量比(酸化物換算)で91.5/2.5/6質量%であった。
(Preparation Example 3)
<Preparation of Compound C (Ti-Si-W Oxide)>
1.4 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 0.6 kg of monoethanolamine were mixed and dissolved in 10 L of water (containing 120 g / L as WO 3 ) to prepare a uniform solution. This tungsten-containing solution and silica sol (containing 30% by weight as SiO 2 ) 1.7 kg, 10% by mass aqueous ammonia 250 L (containing 2 g / L as SiO 2 ), sulfuric acid solution of titanyl sulfate (100 g as TiO 2 ) / L content, sulfuric acid concentration 400 g / L) 190 L was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of 25 mass% aqueous ammonia was added to adjust the pH to 5. This slurry was filtered, washed, and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound C (Ti—Si—W oxide). The composition of Compound C was 91.5 / 2.5 / 6% by mass in terms of a mass ratio of TiO 2 / SiO 2 / WO 3 (as oxide).

(比較調製例1)
市販のチタンおよびタングステンの混合酸化物(以下「Ti−W混合酸化物」という)であるCristal Global社製のDT−52(商品名)を混合物aとした。混合物aの組成はTiO/WOの質量比(酸化物換算)で90/10質量%であった。
(Comparative Preparation Example 1)
DT-52 (trade name) manufactured by Cristal Global, which is a commercially available mixed oxide of titanium and tungsten (hereinafter referred to as “Ti—W mixed oxide”) was used as the mixture a. The composition of the mixture a was 90/10% by mass in terms of TiO 2 / WO 3 (as oxide).

(粒度分布の測定)
調製例1、2、3で得られた化合物A、B、Cおよび比較調製例1で得られた混合物aを株式会社堀場製作所のレーザ回折・散乱式粒度分布測定装置LA−920により粒度分布を測定した。
(Measurement of particle size distribution)
The compound A, B, C obtained in Preparation Examples 1, 2, and 3 and the mixture a obtained in Comparative Preparation Example 1 were subjected to particle size distribution using a laser diffraction / scattering type particle size distribution analyzer LA-920 manufactured by Horiba, Ltd. It was measured.

メジアン径(d50)の値を表1に示した。表1から分かるように化合物A、B、C(調製例1、2、3)は混合物a(比較調製例1)に較べて、メジアン径(d50)の値が高いことが分かる。以下にこれらの化合物および混合物を用いて触媒を調製する。   The median diameter (d50) values are shown in Table 1. As can be seen from Table 1, compounds A, B, and C (Preparation Examples 1, 2, and 3) have a higher median diameter (d50) than the mixture a (Comparative Preparation Example 1). In the following, a catalyst is prepared using these compounds and mixtures.

Figure 2014180645
Figure 2014180645

(実施例1)
<触媒Aの調製>
調製例1で得られたTi−Si−W酸化物粉体(化合物A)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Aを得た。
Example 1
<Preparation of catalyst A>
20 kg of the Ti—Si—W oxide powder (Compound A) obtained in Preparation Example 1, 1.5 kg of ammonium metavanadate (containing 78% by weight as V 2 O 5 ), 2.1 kg of oxalic acid, monoethanolamine 0 A homogeneous solution in which 5 kg is mixed and dissolved in 3 L of water, 0.9 kg of ammonium paratungstate (containing 90 wt% as WO 3 ), and a uniform solution in which 0.4 kg of monoethanolamine is mixed and dissolved in 2 L of water are molded. The mixture was added together with an auxiliary agent and an appropriate amount of water, kneaded with a kneader, and then molded into a honeycomb shape having an external shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst A.

触媒Aの組成は化合物A/V/WOの質量比(酸化物換算)で91/5/4質量%であった。 The composition of catalyst A was 91/ 5 /4% by mass in terms of the mass ratio of compound A / V 2 O 5 / WO 3 (as oxide).

(実施例2)
<触媒Bの調製>
調製例2で得られたTi−Si−W酸化物粉体(化合物B)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.0kg、モノエタノールアミン0.6kgを水3Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Bを得た。
(Example 2)
<Preparation of catalyst B>
20 kg of the Ti—Si—W oxide powder (Compound B) obtained in Preparation Example 2, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.0 kg of oxalic acid, monoethanolamine 0 Add a uniform solution prepared by mixing and dissolving 6 kg in 3 L of water together with a molding aid and an appropriate amount of water, knead with a kneader, and then use an extrusion molding machine to measure the outer shape 80 mm square, length 500 mm, mesh opening 2.9 mm, wall thickness Molded into a 0.4 mm honeycomb. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst B.

触媒Bの組成は化合物B/Vの質量比(酸化物換算)で94.5/5.5質量%であった。 The composition of catalyst B was 94.5 / 5.5% by mass in terms of the mass ratio of compound B / V 2 O 5 (as oxide).

(実施例3)
<触媒Cの調製>
調製例3で得られたTi−Si−W酸化物粉体(化合物C)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.0kg、モノエタノールアミン0.6kgを水3Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Cを得た。
(Example 3)
<Preparation of catalyst C>
20 kg of the Ti—Si—W oxide powder (Compound C) obtained in Preparation Example 3 was added to 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.0 kg of oxalic acid, monoethanolamine 0 Add a uniform solution prepared by mixing and dissolving 6 kg in 3 L of water together with a molding aid and an appropriate amount of water, knead with a kneader, and then use an extrusion molding machine to measure the outer shape 80 mm square, length 500 mm, mesh opening 2.9 mm, wall thickness Molded into a 0.4 mm honeycomb. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst C.

触媒Cの組成は化合物C/Vの質量比(酸化物換算)で94.5/5.5質量%であった。 The composition of the catalyst C was 94.5 / 5.5% by mass in terms of the mass ratio of compound C / V 2 O 5 (as oxide).

(比較例1)
<触媒aの調製>
比較調製例1で得られたTi−W混合酸化物粉体(混合物a)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒aを得た。
(Comparative Example 1)
<Preparation of catalyst a>
20 kg of the Ti—W mixed oxide powder (mixture a) obtained in Comparative Preparation Example 1, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, monoethanolamine 0 A homogeneous solution in which 5 kg is mixed and dissolved in 3 L of water, 0.9 kg of ammonium paratungstate (containing 90 wt% as WO 3 ), and a uniform solution in which 0.4 kg of monoethanolamine is mixed and dissolved in 2 L of water are molded. The mixture was added together with an auxiliary agent and an appropriate amount of water, kneaded with a kneader, and then molded into a honeycomb shape having an external shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain catalyst a.

触媒aの組成は混合物a/V/WOの質量比(酸化物換算)で91/5/4質量%であった。 The composition of the catalyst a was 91/ 5 /4% by mass in terms of the mass ratio of the mixture a / V 2 O 5 / WO 3 (as oxide).

(細孔径および細孔容積の測定)
実施例1、2、3で得られた触媒A、B、Cおよび比較例1で得られた触媒aを水銀圧入式ポロシメーターにより細孔径および細孔容積を測定した。
(Measurement of pore diameter and pore volume)
The pore diameter and pore volume of the catalysts A, B and C obtained in Examples 1, 2, and 3 and the catalyst a obtained in Comparative Example 1 were measured with a mercury intrusion porosimeter.

Aピーク(1〜20μm)と全細孔容積(0.003〜40μm)の細孔容積比(A/全細孔容積)の値を表2に示した。表2から分かるように触媒A、B、C(実施例1、2、3)は触媒a(比較例1)に較べて、A/全細孔容積の値が高いことが分かる。   Table 2 shows the value of the pore volume ratio (A / total pore volume) between the A peak (1 to 20 μm) and the total pore volume (0.003 to 40 μm). As can be seen from Table 2, the catalysts A, B, and C (Examples 1, 2, and 3) have a higher value of A / total pore volume than the catalyst a (Comparative Example 1).

細孔径を横軸、細孔容積を縦軸とし、かつ微分型の表示にした細孔径分布の結果を触媒A(実施例1)は図1、触媒B(実施例2)は図2、触媒C(実施例3)は図3、触媒a(比較例1)は図4に示した。図1〜4から分かるように触媒A、B、C(実施例1、2、3)は触媒a(比較例1)に較べて、Aピーク、Bピークが一番目と二番目のピークであり、Aピーク(0.006〜0.06μm)のピーク面積が多いことが分かる。一方、触aは細孔系が0.1〜0.5μmに二番目の大きさのピークを有するものであることも分かる。   The results of the pore size distribution in which the pore diameter is plotted on the horizontal axis, the pore volume on the vertical axis, and the differential display is shown in FIG. 1 for catalyst A (Example 1) and FIG. 2 for catalyst B (Example 2). C (Example 3) is shown in FIG. 3, and catalyst a (Comparative Example 1) is shown in FIG. As can be seen from FIGS. 1 to 4, the catalysts A, B, and C (Examples 1, 2, and 3) are the first and second peaks in comparison with the catalyst a (Comparative Example 1). It can be seen that the peak area of the A peak (0.006 to 0.06 μm) is large. On the other hand, it is also understood that the touch a has a second peak at 0.1 to 0.5 μm in the pore system.

Figure 2014180645
Figure 2014180645

(触媒評価)
実施例1、2、3で得られた触媒A、B、Cおよび比較例1で得られた触媒aを溶融塩浴に浸漬されたステンレス製反応管に充填し、下記組成の合成ガスを下記条件下で触媒層に導入し、脱硝率の測定し、結果を表3に示した。
(Catalyst evaluation)
The catalysts A, B, and C obtained in Examples 1, 2, and 3 and the catalyst a obtained in Comparative Example 1 were filled in a stainless steel reaction tube immersed in a molten salt bath, and a synthesis gas having the following composition was added to the following: The catalyst was introduced into the catalyst layer under the conditions, the denitration rate was measured, and the results are shown in Table 3.

脱硝率は反応管入口および反応管出口のNOx濃度をNOx計(化学発光式、日本サーモ株式会社製MODEL5100)により測定し、下記式に従い求めた。得られた脱硝率を表3に示した。表3から分かるように触媒A、B、C(実施例1、2、3)は触媒a(比較例1)に較べて、脱硝率が高いことが分かる。   The NOx removal rate was determined according to the following equation by measuring the NOx concentration at the reaction tube inlet and the reaction tube outlet with a NOx meter (chemiluminescence type, MODEL5100 manufactured by Nippon Thermo Co., Ltd.). The obtained denitration rate is shown in Table 3. As can be seen from Table 3, the catalysts A, B, and C (Examples 1, 2, and 3) have a higher denitration rate than the catalyst a (Comparative Example 1).

<反応条件>
ガス温度 :350℃
空間速度(STP) :26000hr−1
<合成ガス組成>
NO :100ppm,dry
NH :100ppm,dry、
:15%,dry
O :10%,wet
:balance
<Reaction conditions>
Gas temperature: 350 ° C
Space velocity (STP): 26000 hr −1
<Syngas composition>
NO X : 100 ppm, dry
NH 3 : 100 ppm, dry,
O 2 : 15%, dry
H 2 O: 10%, wet
N 2 : balance

Figure 2014180645
Figure 2014180645

Figure 2014180645
Figure 2014180645

本発明は排ガス処理分野、特に窒素酸化物を含む排ガスの処理に有効な技術である。   The present invention is a technique effective in the field of exhaust gas treatment, particularly in the treatment of exhaust gas containing nitrogen oxides.

Claims (4)

メジアン径(d50)が10〜100μmである粒度分布を有するチタン・ケイ素・タングステンの酸化物を含むことを特徴とする窒素酸化物浄化用触媒。 A catalyst for purifying nitrogen oxides, comprising a titanium-silicon-tungsten oxide having a particle size distribution with a median diameter (d50) of 10 to 100 µm. 当該触媒の全細孔容積(0.003〜40μmにおける細孔径の細孔容積)を1としたとき、1〜20μm(Aピーク)の細孔容積が0.05〜0.6(A/全細孔容積)であることを特徴とする請求項1記載の窒素酸化物除去用触媒。 When the total pore volume of the catalyst (pore volume of pore diameter at 0.003 to 40 μm) is 1, the pore volume of 1 to 20 μm (A peak) is 0.05 to 0.6 (A / total The catalyst for removing nitrogen oxides according to claim 1, wherein the catalyst has a pore volume. チタンが40〜98質量%(TiO換算)、ケイ素が1〜30質量%(SiO換算)およびタングステンが1〜30質量%(WO換算)であることを特徴とする請求項1記載の窒素酸化物除去用触媒。 Titanium 40 to 98 wt% (TiO 2 basis), silicon 1-30 wt% (SiO 2 equivalent) and tungsten according to claim 1, wherein 1 to 30 wt% (WO 3 conversion) Catalyst for removing nitrogen oxides. 請求項1、2又は3記載の窒素酸化物除去用触媒を用いることを特徴とする窒素酸化物浄化方法。 A method for purifying nitrogen oxides, comprising using the catalyst for removing nitrogen oxides according to claim 1, 2 or 3.
JP2013058269A 2013-03-21 2013-03-21 Denitration catalyst and denitration method Pending JP2014180645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058269A JP2014180645A (en) 2013-03-21 2013-03-21 Denitration catalyst and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058269A JP2014180645A (en) 2013-03-21 2013-03-21 Denitration catalyst and denitration method

Publications (1)

Publication Number Publication Date
JP2014180645A true JP2014180645A (en) 2014-09-29

Family

ID=51699864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058269A Pending JP2014180645A (en) 2013-03-21 2013-03-21 Denitration catalyst and denitration method

Country Status (1)

Country Link
JP (1) JP2014180645A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229412A (en) * 1995-11-30 1996-09-10 Nippon Shokubai Co Ltd Catalyst and method for removing nitrogen oxide
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
WO2008105469A1 (en) * 2007-02-27 2008-09-04 Nippon Shokubai Co., Ltd. Catalyst for exhaust gas treatment and exhaust gas treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229412A (en) * 1995-11-30 1996-09-10 Nippon Shokubai Co Ltd Catalyst and method for removing nitrogen oxide
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
WO2008105469A1 (en) * 2007-02-27 2008-09-04 Nippon Shokubai Co., Ltd. Catalyst for exhaust gas treatment and exhaust gas treatment method

Similar Documents

Publication Publication Date Title
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
JP2013091045A (en) Exhaust gas treating method
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP6441140B2 (en) Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
JP6591919B2 (en) Method for manufacturing honeycomb-type denitration catalyst
JP2015147165A (en) Honeycomb catalyst and production method of honeycomb catalyst
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JPWO2012086413A1 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2013193938A (en) Denitration catalyst, method of preparing the same, and method of denitration
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2014180645A (en) Denitration catalyst and denitration method
JP6308832B2 (en) Method for producing exhaust gas treatment catalyst
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP2014062012A (en) Oxide of titanium/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP7183081B2 (en) Denitrification catalyst and method for producing the same
JP2012206058A (en) Denitration catalyst and denitrification method
JP2016068031A (en) Denitration catalyst and denitration method
JP6391397B2 (en) Method for producing exhaust gas treatment catalyst
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321