JP6441140B2 - Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder - Google Patents

Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder Download PDF

Info

Publication number
JP6441140B2
JP6441140B2 JP2015057718A JP2015057718A JP6441140B2 JP 6441140 B2 JP6441140 B2 JP 6441140B2 JP 2015057718 A JP2015057718 A JP 2015057718A JP 2015057718 A JP2015057718 A JP 2015057718A JP 6441140 B2 JP6441140 B2 JP 6441140B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas treatment
titanium oxide
treatment catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015057718A
Other languages
Japanese (ja)
Other versions
JP2015192999A5 (en
JP2015192999A (en
Inventor
健太郎 山口
健太郎 山口
足立 健太郎
健太郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2015057718A priority Critical patent/JP6441140B2/en
Publication of JP2015192999A publication Critical patent/JP2015192999A/en
Publication of JP2015192999A5 publication Critical patent/JP2015192999A5/en
Application granted granted Critical
Publication of JP6441140B2 publication Critical patent/JP6441140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、使用済み触媒を用いた排ガス処理触媒の製造方法および排ガス処理触媒に関する。   The present invention relates to a method for producing an exhaust gas treatment catalyst using a spent catalyst and an exhaust gas treatment catalyst.

従来、発電所等の固定発生源、自動車等の移動発生源から排出される汚染物質とくにNOxは、選択還元型NOx触媒(以下、SCR触媒という)としてハニカム触媒を用いて処理されている。 Conventionally, stationary sources such as power plants, pollutants and country NO x exhausted from mobile sources such as an automobile, selective reduction the NO x catalyst (hereinafter, referred to as SCR catalyst) has been treated with a honeycomb catalyst as .

発電所等の固定発生源の場合、石炭、重質油、木材等が燃料として使用されているが、例えば石炭の場合、燃焼排ガスにV、Ni、Fe、Hg、As、Si、Ca、Mg、S成分、灰分等が含まれており、これらが排ガス処理触媒に沈着・堆積し、物理的に、化学的に触媒の性能を劣化させることが知られている。そこで、性能劣化が一定レベルに達した場合、新たな排ガス処理触媒に取り換えて運転されている。   In the case of fixed sources such as power plants, coal, heavy oil, wood, etc. are used as fuel. For example, in the case of coal, V, Ni, Fe, Hg, As, Si, Ca, Mg are used as combustion exhaust gas. , S component, ash, etc. are included, and these are deposited and deposited on the exhaust gas treatment catalyst, and it is known that the catalyst performance is physically and chemically deteriorated. Therefore, when the performance deterioration reaches a certain level, it is operated with a new exhaust gas treatment catalyst.

ここで、取り出した使用済み触媒はそのまま廃棄すると環境問題を惹起することがあり、また、使用済み触媒には酸化チタン、Mo、W、V等の有用な成分、活性金属成分を多く含んでいることから再生して再利用することが検討されている。特開2005−185928号公報(特許文献1)、特開2011−251245号公報(特許文献2)   Here, if the used catalyst taken out is discarded as it is, environmental problems may be caused, and the used catalyst contains a lot of useful components such as titanium oxide, Mo, W, V, and active metal components. Therefore, it is being considered to recycle and reuse. JP 2005-185928 A (Patent Document 1), JP 2011-251245 A (Patent Document 2)

例えば、特開2005−185928号公報(特許文献1)には、超重質油の燃焼排ガス用に使用した排ガス処理触媒を加熱処理した後、シュウ酸水溶液で洗浄することによって脱硝性能およびSO2酸化能を回復することのできる使用済み排ガス処理触媒の再生方法が開示されている。 For example, Japanese Patent Laid-Open No. 2005-185928 (Patent Document 1) describes a denitration performance and SO 2 oxidation by heat treatment of an exhaust gas treatment catalyst used for combustion exhaust gas of superheavy oil and then washing with an oxalic acid aqueous solution. A method for regenerating a spent exhaust gas treatment catalyst capable of recovering performance is disclosed.

また、特開2011−251245号公報(特許文献2)には、使用済み排ガス処理触媒を粉砕して微細化し、これを用いて基体用成型体を調製し、別途、新規排ガス処理触媒を粉砕し、これをスラリー液とし、このスラリー液を基体用成型体の表面に被覆する使用済み排ガス処理触媒の再生方法が開示されている。   Japanese Patent Application Laid-Open No. 2011-251245 (Patent Document 2) discloses that a used exhaust gas treatment catalyst is pulverized and refined, a molded body for a substrate is prepared using this, and a new exhaust gas treatment catalyst is separately pulverized. A method for regenerating a used exhaust gas treatment catalyst is disclosed in which this is used as a slurry liquid and the surface of the molded body for a substrate is coated with this slurry liquid.

特開2005−185928号公報JP 2005-185928 A 特開2011−251245号公報JP 2011-251245 A

しかしながら、特許文献1に記載の方法では、脱硝性能およびSO2酸化能の回復が必ずしも充分ではなく、加えてバナジウム、硫酸イオン等の不純物および処理に用いたシュウ酸を含む大量の洗浄廃液の処理が必要で、経済性に課題があった。 However, the method described in Patent Document 1 does not always have sufficient recovery of NOx removal performance and SO 2 oxidation ability, and in addition, treatment of a large amount of washing waste liquid containing impurities such as vanadium and sulfate ions and oxalic acid used in the treatment. There was a problem in economic efficiency.

また、特許文献2の方法では、粉砕した使用済み排ガス処理触媒を用いた成型体の成型性は、通常の排ガス処理触媒の成型性に比して劣り、大口径、薄肉あるいはピッチ数が多いハニカム状成型体の成型が困難な場合があり、加えて、焼成して再生する工程で付着物質を充分に除去することができず、通常の排ガス処理触媒に比して初期排ガス処理性能および触媒寿命が不充分であった。   Further, in the method of Patent Document 2, the moldability of the molded body using the pulverized spent exhaust gas treatment catalyst is inferior to that of a normal exhaust gas treatment catalyst, and the honeycomb has a large diameter, a thin wall, or a large number of pitches. In some cases, it may be difficult to mold the shaped molded body. In addition, the adhering substances cannot be sufficiently removed in the process of firing and regeneration, and the initial exhaust gas treatment performance and catalyst life compared to ordinary exhaust gas treatment catalysts. Was insufficient.

本発明は、使用済み酸化チタン含有排ガス処理触媒を利用し、成型性、強度、耐摩耗性等に優れるとともに排ガス処理触媒性能に優れた排ガス処理触媒の製造方法および排ガス処理触媒を提供することを課題としている。   The present invention provides a method for producing an exhaust gas treatment catalyst and an exhaust gas treatment catalyst that are excellent in moldability, strength, wear resistance, and the like, and are excellent in exhaust gas treatment catalyst performance, using a used titanium oxide-containing exhaust gas treatment catalyst. It is an issue.

そこで、本願発明者らは、鋭意検討した結果、従来の排ガス処理触媒の調製工程で使用する酸化チタン系微粉末を調製する際に、通常原料として使用される硫酸チタニルあるいはメタチタン酸スラリーに、粉砕した使用済み酸化チタン含有排ガス処理触媒を混合して濾過すると触媒を劣化させる成分であるNa、K、Ca等のアルカリ金属、アルカリ土類金属を除去でき、これを主原料として用いると成型性に優れ、得られる排ガス処理触媒は強度、耐摩耗性、排ガス処理性能等に優れることを見出して本発明を完成するに至った。   Therefore, as a result of intensive studies, the present inventors have crushed into titanyl sulfate or metatitanic acid slurry, which is usually used as a raw material, when preparing a titanium oxide-based fine powder used in the preparation process of a conventional exhaust gas treatment catalyst. Mixing and filtering spent titanium oxide-containing exhaust gas treatment catalyst can remove alkali metals and alkaline earth metals such as Na, K, and Ca, which are components that degrade the catalyst, and if this is used as the main raw material, moldability It was found that the obtained exhaust gas treatment catalyst was excellent in strength, abrasion resistance, exhaust gas treatment performance, etc., and completed the present invention.

本発明に係る排ガス処理触媒の製造方法は、
使用済み酸化チタン含有排ガス処理触媒を粉砕して平均粒子径が0.1〜15μmの粉体としたのち、
硫酸チタニル水溶液および/またはメタチタン酸スラリーと、使用済み酸化チタン含有排ガス処理触媒粉体とを、硫酸チタニル水溶液および/またはメタチタン酸スラリーのTiO2としての濃度(CT)と、粉砕した使用済み酸化チタン含有排ガス処理触媒の固形分としての濃度(CRC)との濃度比(CT)/(CRC)が0.1〜9.0の範囲となるように混合して混合スラリーを調製し、
該混合スラリーを濾過後、塩基性化合物を添加して、硫酸チタニルおよび/またはメタチタン酸を中和して、pHが7〜12の範囲にある酸化チタンゲルを調製し、
該ゲルを焼成し、次いで粉砕して、酸化チタン系微粉末を調製し、
該酸化チタン微粉末と補強材と混合し、
混合物を成型後焼成することを特徴とする。
The method for producing an exhaust gas treatment catalyst according to the present invention comprises:
After pulverizing the spent titanium oxide-containing exhaust gas treatment catalyst to obtain a powder having an average particle size of 0.1 to 15 μm,
Concentration (C T ) of titanyl sulfate aqueous solution and / or metatitanic acid slurry and spent titanium oxide-containing exhaust gas treatment catalyst powder as TiO 2 in the aqueous solution of titanyl sulfate and / or metatitanic acid slurry and used oxidation A mixed slurry is prepared by mixing so that the concentration ratio (C T ) / (C RC ) with the concentration (C RC ) as the solid content of the titanium-containing exhaust gas treatment catalyst is in the range of 0.1 to 9.0. ,
After filtering the mixed slurry, a basic compound is added to neutralize titanyl sulfate and / or metatitanic acid to prepare a titanium oxide gel having a pH in the range of 7 to 12,
The gel is fired and then pulverized to prepare a titanium oxide fine powder,
Mixing the titanium oxide fine powder and the reinforcing material,
The mixture is fired after molding.

塩基性化合物による中和前に、活性成分前駆体化合物を混合してもよく、補強材とともに、活性成分前駆体化合物を混合してもよい。
活性成分前駆体化合物は、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の化合物であり、当該元素の金属ないし酸化物を生成しうるものである。
The active ingredient precursor compound may be mixed before neutralization with the basic compound, or the active ingredient precursor compound may be mixed together with the reinforcing material.
The active component precursor compound is a compound of at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. The metal or oxide of the element can be generated.

本発明にかかる排ガス処理触媒は、前記方法で得られ、
(i)酸化チタン系微粉末と(ii)補強材とを含み、(i)酸化チタン系微粉末の含有量が60〜97重量%の範囲にあり、(ii)補強材の含有量が3〜15重量%の範囲にあることを特徴とする。
The exhaust gas treatment catalyst according to the present invention is obtained by the above method,
(i) a titanium oxide fine powder and (ii) a reinforcing material, (i) a content of titanium oxide fine powder is in the range of 60 to 97% by weight, and (ii) a reinforcing material content is 3 It is characterized by being in the range of ˜15% by weight.

さらに、(iii)活性成分を含み、該(iii)活性成分の含有量が酸化物として0.001〜15重量%の範囲にあることが好ましい。
前記(i)酸化チタン系微粉末中の使用済み酸化チタン含有排ガス処理触媒由来の酸化チタン系酸化物(または成分)の含有量が8.5〜90重量%の範囲にあることが好ましい。
Furthermore, it is preferable that (iii) the active ingredient is contained, and the content of the (iii) active ingredient is in the range of 0.001 to 15% by weight as an oxide.
The content of the titanium oxide-based oxide (or component) derived from the spent titanium oxide-containing exhaust gas treatment catalyst in the (i) titanium oxide-based fine powder is preferably in the range of 8.5 to 90% by weight.

さらに、フィラーを含み、該フィラーの含有量が0.5〜15重量%の範囲にあることが好ましい。
前記排ガス処理触媒がハニカム成型体であり、該ハニカムの外径が30〜400mmの範囲にあり、長さが3〜1500mmの範囲にあり、ピッチが6〜500cpsiの範囲にあり、肉厚が0.1〜1.9mmの範囲にあることが好ましい。
Furthermore, it is preferable that a filler is included and the content of the filler is in the range of 0.5 to 15% by weight.
The exhaust gas treatment catalyst is a honeycomb molded body, the honeycomb has an outer diameter in the range of 30 to 400 mm, a length in the range of 3 to 1500 mm, a pitch in the range of 6 to 500 cpsi, and a wall thickness of 0. It is preferable that it exists in the range of 0.1-1.9 mm.

前記活性成分が、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の金属または金属酸化物であることが好ましい。
前記活性成分の含有量が酸化物として0.001〜15重量%の範囲にあることが好ましい。
The active component is a metal or metal oxide of at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir It is preferable that
The content of the active ingredient is preferably in the range of 0.001 to 15% by weight as an oxide.

本発明によれば、成型性、強度、耐摩耗性、および排ガス処理触媒性能に優れ、加えて経済性にも優れた排ガス処理触媒の製造方法および排ガス処理触媒を提供することができる。   According to the present invention, it is possible to provide a method for producing an exhaust gas treatment catalyst and an exhaust gas treatment catalyst that are excellent in moldability, strength, abrasion resistance, and exhaust gas treatment catalyst performance, and in addition, are excellent in economy.

まず、本発明に係る排ガス処理触媒の製造方法について説明する。
[排ガス処理触媒の製造方法]
本発明に係る排ガス処理触媒の製造方法は、使用済み酸化チタン含有排ガス処理触媒を粉砕して平均粒子径が0.1〜15μmの粉体とする(工程(a))
First, a method for producing an exhaust gas treatment catalyst according to the present invention will be described.
[Method for producing exhaust gas treatment catalyst]
In the method for producing an exhaust gas treatment catalyst according to the present invention, a used titanium oxide-containing exhaust gas treatment catalyst is pulverized to obtain a powder having an average particle size of 0.1 to 15 μm (step (a)).

工程(a)
使用済み酸化チタン含有排ガス処理触媒を粉砕する。
使用済み酸化チタン含有排ガス処理触媒としては、主に前記した発電所等の固定発生源、自動車等の移動発生源から排出される汚染物質とくにNOxガスの選択還元処理に使用されたものを用いることができる。
Step (a)
The spent titanium oxide-containing exhaust gas treatment catalyst is pulverized.
As the spent titanium oxide-containing exhaust gas treatment catalyst, the one used mainly for the selective reduction treatment of pollutants, particularly NO x gas, emitted from fixed sources such as the above-mentioned power plants and mobile sources such as automobiles is used. be able to.

使用済み酸化チタン含有排ガス処理触媒は、後述する灰分等を除いて、酸化チタンが、TiO2として50重量%以上含まれているものが好ましい。
使用済み酸化チタン含有排ガス処理触媒は、石炭、重質油、木材等を燃料として使用する発電所等の固定発生源で発生する排ガスの処理に用いられたハニカム状のものが好適に使用される。
The used titanium oxide-containing exhaust gas treatment catalyst preferably contains 50% by weight or more of titanium oxide as TiO 2 except for ash and the like described later.
As the spent titanium oxide-containing exhaust gas treatment catalyst, a honeycomb-like one used for treatment of exhaust gas generated at a fixed generation source such as a power plant using coal, heavy oil, wood or the like as fuel is preferably used. .

特に燃料として石炭が用いられた場合、燃焼排ガスにV、Ni、Fe、Hg、As、Si、Ca、Mg、Na、K、S成分、灰分等が含まれており、これらが使用済み酸化チタン含有排ガス処理触媒に沈着・堆積しているが、本発明の製造方法によれば、最終的に得られる排ガス処理触媒中に含まれるこれら成分を選択的に低減または除去することができる。   In particular, when coal is used as fuel, combustion exhaust gas contains V, Ni, Fe, Hg, As, Si, Ca, Mg, Na, K, S component, ash, etc., and these are used titanium oxide. Although deposited and deposited on the contained exhaust gas treatment catalyst, according to the production method of the present invention, these components contained in the finally obtained exhaust gas treatment catalyst can be selectively reduced or removed.

使用済み酸化チタン含有排ガス処理触媒の粉砕方法としては、所望の大きさに粉砕できれば特に制限はなく、従来公知の方法を採用することができる。例えば、アトマイザー、ヘンシルミキサー、パルベライザー、ヤリヤ粉砕機等を使用して粉砕することができる。   A method for pulverizing the used titanium oxide-containing exhaust gas treatment catalyst is not particularly limited as long as it can be pulverized to a desired size, and a conventionally known method can be employed. For example, it can be pulverized using an atomizer, a hensil mixer, a pulverizer, a yary pulverizer, or the like.

粉砕した使用済み酸化チタン含有排ガス処理触媒の大きさは、粉砕に要するエネルギー、設備等の経費、粉砕工程での回収率、濾過性や粒子内部の不純物除去などの点で、平均粒子径として0.1〜15μm、さらには0.5〜10.0μmの範囲にあることが好ましい。   The size of the pulverized spent titanium oxide-containing exhaust gas treatment catalyst is 0 as the average particle size in terms of energy required for pulverization, equipment costs, recovery rate in the pulverization process, filterability and removal of impurities inside the particles. It is preferably in the range of 1 to 15 μm, more preferably 0.5 to 10.0 μm.

粉砕した使用済み酸化チタン含有排ガス処理触媒の平均粒子径が前記範囲下限未満では、粉砕に要するエネルギー、設備等の経費が嵩む上に粉砕工程での回収率が低下する場合があり、スラリーの濾過性が低下し、不純物の除去が不充分となる場合があり、平均粒子径が大きすぎると、濾過性は良くなるが、粉砕した使用済み酸化チタン含有排ガス処理触媒の粒子内部の不純物を除去できないためか、洗浄効果が不充分となる場合がある。   If the average particle size of the pulverized spent titanium oxide-containing exhaust gas treatment catalyst is less than the lower limit of the above range, the energy required for pulverization, the cost of equipment, etc. may increase and the recovery rate in the pulverization process may decrease, and the slurry may be filtered. If the average particle size is too large, the filterability is improved, but the impurities inside the particles of the pulverized used titanium oxide-containing exhaust gas treatment catalyst cannot be removed. For this reason, the cleaning effect may be insufficient.

本発明では、粉砕した使用済み酸化チタン含有排ガス処理触媒および後述する工程(h)における酸化チタン系微粉末の平均粒子径は、レーザー回折散乱式粒子径分布測定装置(堀場製作所製:LA−300)で測定する。   In the present invention, the average particle size of the pulverized spent titanium oxide-containing exhaust gas treatment catalyst and the titanium oxide fine powder in the step (h) described later is determined by a laser diffraction scattering type particle size distribution measuring apparatus (manufactured by Horiba: LA-300). ) To measure.

次に、硫酸チタニル水溶液および/またはメタチタン酸スラリーと、粉砕した使用済み酸化チタン含有排ガス処理触媒とを、硫酸チタニル水溶液および/またはメタチタン酸スラリーのTiO2としての濃度(CT)と、粉砕した使用済み酸化チタン含有排ガス処理触媒の固形分としての濃度(CRC)との濃度比(CT)/(CRC)が0.1〜9.0の範囲となるように混合して混合スラリーを調製する。(工程(b)および(c)) Next, the titanyl sulfate aqueous solution and / or metatitanic acid slurry and the pulverized used titanium oxide-containing exhaust gas treatment catalyst were pulverized with the concentration (C T ) of the aqueous titanyl sulfate and / or metatitanic acid slurry as TiO 2 . Mixing slurry so that concentration ratio (C T ) / (C RC ) with concentration (C RC ) as solid content of spent titanium oxide-containing exhaust gas treatment catalyst is in the range of 0.1 to 9.0 To prepare. (Steps (b) and (c))

工程(b)
硫酸チタニル水溶液および/またはメタチタン酸スラリーと、粉砕した使用済み酸化チタン含有排ガス処理触媒とを混合して混合スラリーとする。
ここで、メタチタン酸スラリーとは、硫酸チタンを加水分解した含水酸化チタンのスラリーである。
Step (b)
The aqueous solution of titanyl sulfate and / or metatitanic acid slurry and the pulverized spent titanium oxide-containing exhaust gas treatment catalyst are mixed to obtain a mixed slurry.
Here, the metatitanic acid slurry is a hydrous titanium oxide slurry obtained by hydrolyzing titanium sulfate.

混合スラリー中の硫酸チタニル水溶液および/またはメタチタン酸スラリーのTiO2としての濃度(CT)は5〜40重量%、さらには10〜30重量%の範囲にあることが好ましい。混合スラリー中の前記濃度(CT)が低いと、経済性が低下し、混合スラリー中の前記濃度(CT)が高すぎると、工程(b)、および工程(d)でスラリーの粘度が高くなり、撹拌が困難となる場合がある。 The concentration (C T ) of TiO 2 in the aqueous titanyl sulfate solution and / or metatitanic acid slurry in the mixed slurry is preferably in the range of 5 to 40% by weight, more preferably 10 to 30% by weight. If the concentration (C T ) in the mixed slurry is low, the economy is reduced, and if the concentration (C T ) in the mixed slurry is too high, the viscosity of the slurry in step (b) and step (d) is low. It may become high and stirring may become difficult.

粉砕した使用済み酸化チタン含有排ガス処理触媒を、硫酸チタニルおよび/またはメタチタン酸に分散させると、pHが酸性になり、特にアルカリ成分を中心に塩となり溶解する。また硫黄分が硫酸イオンとなる。これらが濾過・脱水工程で除去される。なお、後記する塩基性化合物の添加による中和(アルカリ性)で、硫酸チタニルおよび/またはメタチタン酸から酸化チタンゲルが生じる。このゲルは、粉砕した使用済み酸化チタン含有排ガス処理触媒を覆うような形で生成するため、予めゲルを調製した後に粉砕した使用済み酸化チタン含有排ガス処理触媒を混合する場合に比して、排ガス処理触媒の成型性が高く、また強度等に優れたものを得られる。   When the pulverized spent titanium oxide-containing exhaust gas treatment catalyst is dispersed in titanyl sulfate and / or metatitanic acid, the pH becomes acidic, and in particular, a salt mainly dissolves in the alkali component and dissolves. The sulfur content becomes sulfate ions. These are removed in the filtration / dehydration step. In addition, a titanium oxide gel is produced from titanyl sulfate and / or metatitanic acid by neutralization (alkaline) by addition of a basic compound described later. Since this gel is produced so as to cover the pulverized spent titanium oxide-containing exhaust gas treatment catalyst, compared with the case of mixing the pulverized spent titanium oxide-containing exhaust gas treatment catalyst after preparing the gel in advance, the exhaust gas A processing catalyst having high moldability and excellent strength can be obtained.

また、混合スラリー中の使用済み酸化チタン含有排ガス処理触媒は、固形分としての濃度(CRC)が3〜55重量%、さらには9〜25重量%の範囲で含まれることが好ましい。 Moreover, it is preferable that the used titanium oxide containing exhaust gas treatment catalyst in the mixed slurry is contained in a concentration (C RC ) as a solid content of 3 to 55% by weight, more preferably 9 to 25% by weight.

前記濃度(CRC)が少ないと、使用済み酸化チタン含有排ガス処理触媒を再利用する点においては効率的ではない。前記濃度(CRC)が多すぎると、混合スラリーの粘度が高くなり、撹拌が困難となる場合がある。 If the concentration (C RC ) is small, it is not efficient in reusing the used titanium oxide-containing exhaust gas treatment catalyst. If the concentration (C RC ) is too large, the viscosity of the mixed slurry becomes high and stirring may become difficult.

このとき、前記濃度(CT)と前記濃度(CRC)との濃度比(CT)/(CRC)は0.1〜9.0、さらには1.0〜5.0の範囲にあることが好ましい。
濃度比(CT)/(CRC)が低すぎると、粉砕した使用済み酸化チタン含有排ガス処理触媒中の不純物の除去が不充分となるとともに成型性が悪くなる場合があり、また、最終的に得られる排ガス処理触媒の脱硝性能が不充分となる場合がある。濃度比(CT)/(CRC)が高すぎても、使用済み酸化チタン含有排ガス処理触媒の使用量が少ないので、使用済み酸化チタン含有排排ガス処理触媒を再利用する点においては効率的ではない。
At this time, the concentration (C T) and the concentration (C RC) and the concentration ratio of (C T) / (C RC ) is 0.1 to 9.0, more in the range of 1.0 to 5.0 Preferably there is.
If the concentration ratio (C T ) / (C RC ) is too low, the impurities in the pulverized spent titanium oxide-containing exhaust gas treatment catalyst may be insufficiently removed and the moldability may be deteriorated. In some cases, the NOx removal performance of the exhaust gas treatment catalyst obtained is insufficient. Even if the concentration ratio (C T ) / (C RC ) is too high, the amount of used titanium oxide-containing exhaust gas treatment catalyst is small, so it is efficient in terms of reusing the used titanium oxide-containing exhaust gas treatment catalyst. is not.

混合スラリーの全固形分濃度は8〜60重量%、さらには19〜39重量%の範囲にあることが好ましい。
混合スラリーの全固形分濃度が低いと、工程(c)での濾液が多くなり、不純物濃度が低い濾液を多く処理する必要が生じるので、処理効率および経済性が低下する場合がある。混合スラリーの全固形分濃度が高すぎると、混合スラリーの粘度が高くなり、撹拌や濾過に支障をきたし、後続の工程の実施が困難となる場合がある。なお、混合スラリーの全固形分濃度が高すぎる場合、必要に応じて希釈水を加えることもできる。
The total solid concentration of the mixed slurry is preferably 8 to 60% by weight, more preferably 19 to 39% by weight.
When the total solid content concentration of the mixed slurry is low, the filtrate in the step (c) increases, and it is necessary to process a large amount of the filtrate with a low impurity concentration, so that the processing efficiency and economy may be lowered. If the total solid concentration of the mixed slurry is too high, the viscosity of the mixed slurry increases, which may hinder stirring and filtration, and may make it difficult to perform subsequent steps. In addition, when the total solid content concentration of a mixing slurry is too high, dilution water can also be added as needed.

また、通常、混合スラリーのpHは0.5〜4の範囲にあり、さらには1.0〜3.0の範囲にあることが好ましい。混合スラリーのpHが0.5未満の場合は、後述する工程(c)で濾過した際のアルカリ、アルカリ土類金属等の不純物の除去率がさらに高くなることもなく、工程(d)で中和に使用する塩基性化合物の使用量が多くなるため経済的ではない。   Moreover, normally, the pH of the mixed slurry is in the range of 0.5 to 4, and more preferably in the range of 1.0 to 3.0. When the pH of the mixed slurry is less than 0.5, the removal rate of impurities such as alkali and alkaline earth metal when filtered in the later-described step (c) is not further increased, and in the step (d) It is not economical because the amount of the basic compound used for the sum increases.

混合スラリーのpHが4を超えると、アルカリ、アルカリ土類金属等の不純物の除去が不十分となる場合がある。
なお、混合スラリーのpHが前記範囲にない場合は、酸またはアルカリを添加してpHを前記範囲に調整することができる。
When the pH of the mixed slurry exceeds 4, removal of impurities such as alkali and alkaline earth metal may be insufficient.
In addition, when the pH of the mixed slurry is not in the above range, an acid or alkali can be added to adjust the pH to the above range.

酸としては、塩酸、硝酸、硫酸等の鉱酸あるいはシュウ酸等の有機酸を用いることができる。また、アルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、NH4OH等を用いることができる。 As the acid, a mineral acid such as hydrochloric acid, nitric acid or sulfuric acid, or an organic acid such as oxalic acid can be used. As the alkali, sodium hydroxide, potassium hydroxide, sodium carbonate, NH 4 OH, or the like can be used.

また、混合スラリーは必要に応じて加熱することができる。
加熱条件としては、次工程(c)の濾過でCa、K、Na等の不純物を効率的に除去できれば特に制限はないが、概ね40〜60℃の範囲が好ましく、このとき、無撹拌であってもよいが、撹拌することが好ましい。
混合スラリーを加熱することによって、Ca、K、Na等の不純物との中和反応が促進され、不純物が可溶性塩となることによって効率的に不純物を除去することができる。
Moreover, the mixed slurry can be heated as necessary.
The heating condition is not particularly limited as long as impurities such as Ca, K, and Na can be efficiently removed by filtration in the next step (c), but a range of approximately 40 to 60 ° C. is preferable. However, stirring is preferable.
By heating the mixed slurry, the neutralization reaction with impurities such as Ca, K, and Na is promoted, and the impurities can be efficiently removed by becoming a soluble salt.

工程(c)
こうして調製した、混合スラリーを、濾過・脱水する。濾過・脱水方法としては特に制限はなく従来公知の方法を採用することができる。
例えば、真空濾過法、加圧濾過法、重圧濾過法、遠心分離等が挙げられる。
Step (c)
The mixed slurry thus prepared is filtered and dehydrated. There is no restriction | limiting in particular as a filtration / dehydration method, A conventionally well-known method is employable.
For example, a vacuum filtration method, a pressure filtration method, a heavy pressure filtration method, a centrifugal separation and the like can be mentioned.

濾過・脱水により、濾液に溶出した触媒の劣化原因であるCa、K、Na、S(SO4)等や灰分を除去できるので、最終的に活性に優れた排ガス処理触媒を得ることができる。
濾過・脱水したケーキの固形分量は、粒子の大きさによってある程度変動するが、30重量%以上、好ましくは45〜55重量%の範囲にある。
濾過・脱水したケーキの固形分濃度が低いと、脱水が不十分であり、不純物が多く残存し、得られる排ガス処理触媒の性能が不充分となる場合がある。
濾過・脱水したケーキに、塩基性化合物を添加して、硫酸チタニルおよび/またはメタチタン酸を中和して、pHが7〜12の範囲にある酸化チタンゲルを調製する。(工程(d))
By filtration and dehydration, Ca, K, Na, S (SO 4 ) and the like, which are causes of deterioration of the catalyst eluted in the filtrate, and ash can be removed, so that an exhaust gas treatment catalyst having excellent activity can be finally obtained.
The solid content of the filtered and dehydrated cake varies to some extent depending on the size of the particles, but is 30% by weight or more, preferably 45 to 55% by weight.
If the solid content concentration of the filtered and dehydrated cake is low, the dehydration is insufficient, many impurities remain, and the performance of the resulting exhaust gas treatment catalyst may be insufficient.
A basic compound is added to the filtered and dehydrated cake to neutralize titanyl sulfate and / or metatitanic acid to prepare a titanium oxide gel having a pH in the range of 7-12. (Process (d))

工程(d)
濾過・脱水したケーキに塩基性化合物を添加して硫酸チタニルおよび/またはメタチタン酸を中和して酸化チタンゲルを調製する。
塩基性化合物としては、中和によって硫酸チタニルおよび/またはメタチタン酸が酸化チタンゲルとなればよく、NH4OH、水酸化ナトリウム、水酸化カリウム等が挙げられる。
Step (d)
A basic compound is added to the filtered and dehydrated cake to neutralize titanyl sulfate and / or metatitanic acid to prepare a titanium oxide gel.
As the basic compound, it is sufficient that titanyl sulfate and / or metatitanic acid is converted into a titanium oxide gel by neutralization, and examples thereof include NH 4 OH, sodium hydroxide, and potassium hydroxide.

本発明では、アルカリ金属を含まない点でNH4OHが好適に用いられる。
中和後の酸化チタンゲルのpHは7〜12、さらには8〜10の範囲にあることが好ましい。
In the present invention, NH 4 OH is preferably used because it does not contain an alkali metal.
The pH of the neutralized titanium oxide gel is preferably in the range of 7 to 12, more preferably 8 to 10.

中和後の酸化チタンゲルのpHが7未満の場合は、硫酸イオンが多く残存する場合があり、成型性が不十分となる場合がある。また、工程(g)での焼成後の原料の比表面積が小さくなり、得られる排ガス処理触媒の性能が不充分となる場合がある。
中和後の酸化チタンゲルのpHが12を超えると、塩基性化合物の使用量が多くなり、経済性が低下する場合がある。
When the pH of the titanium oxide gel after neutralization is less than 7, a large amount of sulfate ions may remain, and moldability may be insufficient. Moreover, the specific surface area of the raw material after calcination in the step (g) becomes small, and the performance of the obtained exhaust gas treatment catalyst may be insufficient.
If the pH of the neutralized titanium oxide gel exceeds 12, the amount of the basic compound used increases, and the economic efficiency may decrease.

本発明では、塩基性化合物を添加して硫酸チタニルおよび/またはメタチタン酸を中和する前に活性成分前駆体化合物(A)を混合することができる。
活性成分前駆体化合物(A)としてはV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の化合物が用いられる。
In the present invention, the active ingredient precursor compound (A) can be mixed before adding a basic compound to neutralize titanyl sulfate and / or metatitanic acid.
The active component precursor compound (A) includes at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. A compound is used.

具体的には、メタバナジン酸アンモニウム、硫酸バナジル、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、タングステン酸、モリブデン酸アンモニウム、硝酸クロム、酢酸クロム、硝酸マンガン、酢酸マンガン、硝酸パラジウム、硫酸鉄、硝酸ニッケル、硝酸銅、硝酸銀、硝酸イットリウム、硝酸セリウム、塩化金、塩化イリジウムなどが挙げられる。   Specifically, ammonium metavanadate, vanadyl sulfate, ammonium paratungstate, ammonium metatungstate, tungstic acid, ammonium molybdate, chromium nitrate, chromium acetate, manganese nitrate, manganese acetate, palladium nitrate, iron sulfate, nickel nitrate, Examples thereof include copper nitrate, silver nitrate, yttrium nitrate, cerium nitrate, gold chloride, and iridium chloride.

活性成分前駆体化合物(A)は溶液として用いることが好ましく、化合物の種類によっても異なるが、水、モノエタノールアミン等のアルカリ、シュウ酸等の酸で溶解して用いることが好ましい。   The active component precursor compound (A) is preferably used as a solution, and although it varies depending on the type of compound, it is preferably used after being dissolved in water, an alkali such as monoethanolamine, or an acid such as oxalic acid.

活性成分前駆体化合物(A)の混合量は、前記した使用済み酸化チタン含有排ガス処理触媒中の活性成分の含有量を考慮し、最終的に得られる排ガス処理触媒中に元素の酸化物としての含有量が0.001〜15重量%、さらには0.3〜12重量%の範囲となるように用いることが好ましい。活性成分の含有量が少ないと、排ガス処理触媒、例えば選択還元型NOx触媒として用いた場合にNOxの除去率が不充分となる場合がある。活性成分の含有量が多すぎても、成型体の圧縮強度、耐クラック性が不充分となる。 The mixing amount of the active component precursor compound (A) is determined in consideration of the content of the active component in the above-described spent titanium oxide-containing exhaust gas treatment catalyst, and as an elemental oxide in the exhaust gas treatment catalyst finally obtained. The content is preferably 0.001 to 15% by weight, and more preferably 0.3 to 12% by weight. When the content of the active component is small, the NO x removal rate may be insufficient when used as an exhaust gas treatment catalyst, for example, a selective reduction type NO x catalyst. Even if there is too much content of an active ingredient, the compressive strength and crack resistance of a molded object will become inadequate.

ついで、前記所定のpH範囲となるように中和した後、加熱・熟成することが好ましい。
このとき、熟成温度は40〜95℃、さらには50〜75℃の範囲にあることが好ましく、熟成時間は、熟成温度によっても異なるが概ね1〜24時間である。
Next, it is preferable to heat and age after neutralization to achieve the predetermined pH range.
At this time, the aging temperature is preferably in the range of 40 to 95 ° C, more preferably 50 to 75 ° C, and the aging time is generally 1 to 24 hours, although it varies depending on the aging temperature.

熟成温度が前記範囲にあると、ゲルが均質化し、工程(k)での成型性が向上し、得られる成型体のクラックが抑制され、強度、耐摩耗性等に優れた排ガス処理触媒を得ることができる。   When the aging temperature is within the above range, the gel is homogenized, the moldability in the step (k) is improved, cracks of the resulting molded body are suppressed, and an exhaust gas treatment catalyst excellent in strength, wear resistance, etc. is obtained. be able to.

工程(e)
ついで、中和後の酸化チタンゲルを洗浄する。なお洗浄はかならずしも行わなくともよいが、洗浄方法としてCa、K、Na、SO4等の不純物を低減、除去できれば特に制限はなく従来公知の方法を採用することができる。
Step (e)
Next, the neutralized titanium oxide gel is washed. Although cleaning is not necessarily performed, there is no particular limitation as long as impurities such as Ca, K, Na, and SO 4 can be reduced and removed, and a conventionally known method can be employed.

例えば、前記工程(c)と同様の装置を用い、中和後の酸化チタンゲルを濾過・脱水した後、水、好ましくは温水を掛けることによって洗浄することができる。
このとき、水に希アンモニア水を用いると効率的に硫酸イオン等の陰イオンを除去することができる。
For example, it can be washed by applying water, preferably hot water, after filtering and dehydrating the neutralized titanium oxide gel using the same apparatus as in step (c).
At this time, when dilute ammonia water is used as water, anions such as sulfate ions can be efficiently removed.

工程(f)
工程(e)にて得られたゲルを、乾燥する。
乾燥方法としては、このゲルを粉末化することができれば特に制限はなく、従来公知の方法を採用することができる。
Step (f)
The gel obtained in step (e) is dried.
The drying method is not particularly limited as long as the gel can be powdered, and conventionally known methods can be employed.

乾燥温度は乾燥時間によっても異なるが概ね70〜120℃の範囲である。
こうして粉末化したゲルを焼成し、次いで粉砕して、酸化チタン系微粉末を調製する(工程(g)および(h))。
The drying temperature varies depending on the drying time, but is generally in the range of 70 to 120 ° C.
The powdered gel is fired and then pulverized to prepare titanium oxide fine powder (steps (g) and (h)).

工程(g)
焼成温度は450〜700℃、さらには500〜650℃の範囲にあることが好ましい。
焼成温度が低いと、酸化チタンの結晶化が不充分であるため、工程(i)での混練がし難く、さらに加圧成型時の離水が起き易いため成型性が不充分となる場合がある。
Step (g)
The firing temperature is preferably in the range of 450 to 700 ° C, more preferably 500 to 650 ° C.
If the firing temperature is low, the crystallization of titanium oxide is insufficient, so that kneading in step (i) is difficult, and water separation during pressure molding is likely to occur, and the moldability may be insufficient. .

焼成温度が高すぎても、酸化チタンの結晶化が進み、比表面積が小さくなり、これを用いて得られる排ガス処理触媒は性能が不充分となる場合がある。
焼成時間は、焼成温度によっても異なるが、概ね1〜24時間である。
Even if the calcination temperature is too high, crystallization of titanium oxide proceeds, the specific surface area becomes small, and the exhaust gas treatment catalyst obtained using this may have insufficient performance.
Although the firing time varies depending on the firing temperature, it is generally 1 to 24 hours.

工程(h)
焼成後、粉砕して得られる酸化チタン系微粉末の平均粒子径は0.1〜15μm、さらには0.5〜5μmの範囲にあることが好ましい。
酸化チタン系微粉末の前記範囲下限以下まで粉砕することは、粉砕に要するエネルギー、設備等の経費が嵩む上に、成型性がさらに向上することもないので好ましくない。平均粒子径が大きすぎると、工程(k)での成型性が低下し、得られる成型体はクラックを生じたり、強度、耐摩耗性等が不充分となる場合があり好ましくない。
Step (h)
The average particle size of the titanium oxide fine powder obtained by pulverization after firing is preferably in the range of 0.1 to 15 μm, more preferably 0.5 to 5 μm.
It is not preferable to pulverize the titanium oxide fine powder to the lower limit of the range or less because the energy required for the pulverization, the cost of equipment, etc. are increased and the moldability is not further improved. If the average particle size is too large, the moldability in the step (k) is lowered, and the resulting molded product may be cracked, and the strength, wear resistance and the like may be insufficient.

このときの粉砕方法は、平均粒子径が前記範囲となれば特に制限はなく従来公知の方法を採用することができ、例えば、前記工程(a)と同様の方法、装置を採用することができる。
この後、該酸化チタン微粉末と補強材を混合し、混合物を成型した後、乾燥、焼成する(工程(i)〜(m))。
The pulverization method at this time is not particularly limited as long as the average particle diameter falls within the above range, and a conventionally known method can be adopted. For example, the same method and apparatus as in the step (a) can be adopted. .
Thereafter, the titanium oxide fine powder and the reinforcing material are mixed, the mixture is molded, dried and fired (steps (i) to (m)).

工程(i)
前記酸化チタン系微粉末に、補強材を混合した混合物(以下、成型体用組成物という)を調製する。該組成物中の酸化チタン系微粉末の含有量は固形分として33〜80重量%、さらには40〜75重量%の範囲にあることが好ましい。成型体用組成物中の酸化チタン系微粉末の含有量が少ないと、成型が困難となるとともに、触媒性能、例えば選択還元型NOx触媒のNOxの除去率が不充分となる場合がある。
Step (i)
A mixture in which the reinforcing material is mixed with the titanium oxide fine powder (hereinafter referred to as a molding composition) is prepared. The content of the titanium oxide fine powder in the composition is preferably 33 to 80% by weight, more preferably 40 to 75% by weight as a solid content. When the content of the titanium oxide fine powder in the molded body composition is small, molding becomes difficult and the catalyst performance, for example, the NO x removal rate of the selective reduction type NO x catalyst may be insufficient. .

補強材
補強材としては、グラスファイバー、セラミックファイバー等の繊維状補強材を用いることができる。
このような補強材を含んでいると、押出し成型した後の乾燥時の収縮による亀裂の発生を抑制することができ、圧縮強度、耐摩耗性に優れた排ガス処理触媒を調製することができる。
As the reinforcing material reinforcing material, a fibrous reinforcing material such as glass fiber or ceramic fiber can be used.
When such a reinforcing material is included, generation of cracks due to shrinkage during drying after extrusion molding can be suppressed, and an exhaust gas treatment catalyst having excellent compressive strength and wear resistance can be prepared.

成型体用組成物中の補強材の含有量は、固形分として1.8〜12.8重量%、さらには3〜10重量%の範囲にあることが好ましい。
成型体用組成物中の補強材の含有量が少ないと、押出し成型した後の乾燥時に収縮による亀裂が発生する場合がある。成型体用組成物中の補強材の含有量が多すぎても、押出し成型時に成型用金型に補強材が詰まり、成型性を阻害する場合がある。
The content of the reinforcing material in the molded body composition is preferably in the range of 1.8 to 12.8% by weight, more preferably 3 to 10% by weight as the solid content.
If the content of the reinforcing material in the molding composition is small, cracks due to shrinkage may occur during drying after extrusion molding. Even if the content of the reinforcing material in the molded body composition is too large, the reinforcing material may be clogged in the molding die during extrusion molding, which may impair the moldability.

フィラー
本発明では、成型体用組成物中にフィラーを含んでいても良い。フィラーを含んでいると、連続して押出し成型が可能となるとともに圧縮強度、耐摩耗性に優れた成型体を調製することができる。
Filler In the present invention, a filler may be contained in the molded body composition. When the filler is included, it is possible to continuously perform extrusion molding and to prepare a molded body excellent in compressive strength and wear resistance.

フィラーとしては、コージェライト、アルミナ、ジルコニア、窒化珪素、炭化珪素、粘土鉱物等のセラミックス粉体を用いることができる。
成型体用組成物中のフィラーの含有量は、固形分として0.42〜12.8重量%、さらには1〜10重量%の範囲にあることが好ましい。
As the filler, ceramic powder such as cordierite, alumina, zirconia, silicon nitride, silicon carbide, clay mineral can be used.
The content of the filler in the molded body composition is preferably in the range of 0.42 to 12.8% by weight, more preferably 1 to 10% by weight as the solid content.

成型体用組成物中のフィラーの含有量が少ないと、連続押し出し成型性が低下し、長寸法の成型体、特に長寸法のハニカム成型体の成型が困難となる場合があり、また、成型用金型の清掃あるいは取り換えが頻繁になり、生産性、経済性が低下する場合がある。成型体用組成物中のフィラーの含有量が多すぎても、触媒性能が不充分となる場合がある。   If the content of the filler in the molded body composition is low, continuous extrusion moldability is lowered, and it may be difficult to mold a long-sized molded body, particularly a long-sized honeycomb molded body. The mold may be frequently cleaned or replaced, which may reduce productivity and economy. Even if there is too much content of the filler in the composition for shaping | molding bodies, catalyst performance may become inadequate.

有機添加剤
本発明では、成型体用組成物中にさらに有機添加剤を含んでいてもよい。
有機添加剤としては、脂肪酸、脂肪酸エステル等が用いられる。
前記脂肪酸は、下記式(1)で表される飽和脂肪酸および/または下記式(2)で表される不飽和脂肪酸であることが好ましい。
n2n−CO2H・・・・・・・・・・・・・・・・(1)
(但し、nは4〜23の整数)
n'2n'-2m+1−CO2H・・・・・・(2)
(但し、n'は13〜23の整数、mは2重結合の数を表す1〜6の整数)
飽和脂肪酸としては、具体的には、ステアリン酸、ラウリン酸、ミリスチン酸、ベヘン酸、アラキジン酸、リグノセリン酸、パルミチン酸等およびこれらの混合物が挙げられる。
Organic additive In this invention, the organic additive may be further contained in the composition for molded objects.
As the organic additive, fatty acid, fatty acid ester and the like are used.
The fatty acid is preferably a saturated fatty acid represented by the following formula (1) and / or an unsaturated fatty acid represented by the following formula (2).
C n H 2n -CO 2 H (1)
(Where n is an integer from 4 to 23)
C n 'H 2n'-2m + 1 -CO 2 H ······ (2)
(Where n ′ is an integer from 13 to 23, m is an integer from 1 to 6 representing the number of double bonds)
Specific examples of the saturated fatty acid include stearic acid, lauric acid, myristic acid, behenic acid, arachidic acid, lignoceric acid, palmitic acid and the like, and mixtures thereof.

また、不飽和脂肪酸としては、オレイン酸、アラキドン酸、リノール酸、リノレン酸、イコサペンタエン酸、ドコサヘキサエン酸等およびこれらの混合物が挙げられる。
その他、グリセリン脂肪酸エステル等の脂肪酸エステル、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシメチルセルロース、結晶セルロース、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンオキサイド等も好適に用いることができる。
Examples of unsaturated fatty acids include oleic acid, arachidonic acid, linoleic acid, linolenic acid, icosapentaenoic acid, docosahexaenoic acid, and the like, and mixtures thereof.
In addition, fatty acid esters such as glycerin fatty acid ester, carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, crystalline cellulose, polyethylene glycol, polypropylene glycol, polyethylene oxide, and the like can also be suitably used.

このような有機添加材を含んでいると、成型用金型からの剥離性、成型性等が向上する効果が得られる。
成型体用組成物中の有機添加剤の含有量は0.03〜4.3重量%、さらには0.5〜2重量%の範囲にあることが好ましい。
When such an organic additive is contained, an effect of improving the peelability from the molding die, moldability, and the like can be obtained.
The content of the organic additive in the molding composition is preferably in the range of 0.03 to 4.3% by weight, more preferably 0.5 to 2% by weight.

成型体用組成物中の有機添加剤の含有量が少ないと、成型性が不充分となり、多すぎても、得られる成型体触媒の細孔容積が大きくなり、圧縮強度が不充分となる他、成型体の焼成時に亀裂が発生する場合がある。   If the content of the organic additive in the molded body composition is small, the moldability becomes insufficient, and if it is too much, the pore volume of the resulting molded body catalyst becomes large and the compressive strength becomes insufficient. In some cases, cracks may occur during firing of the molded body.

活性成分前駆体化合物(B)
さらに、本工程(i)では、活性成分前駆体化合物(B)を混合することができる。
活性成分前駆体化合物(B)としては、前記した活性成分前駆体化合物(A)と同様の化合物を用いることができる。
Active ingredient precursor compound (B)
Furthermore, in this step (i), the active ingredient precursor compound (B) can be mixed.
As the active component precursor compound (B), the same compounds as the active component precursor compound (A) described above can be used.

活性成分前駆体化合物(B)の混合量は、前記した使用済み酸化チタン含有排ガス処理触媒中の活性成分の含有量および活性成分前駆体化合物(A)の含有量を考慮し、最終的に得られる排ガス処理触媒中に元素の酸化物としての含有量が0.001〜15重量%、さらには0.3〜12重量%の範囲となるように用いることが好ましい。   The mixing amount of the active component precursor compound (B) is finally obtained in consideration of the content of the active component and the content of the active component precursor compound (A) in the spent titanium oxide-containing exhaust gas treatment catalyst described above. It is preferable that the content of the element as an oxide in the exhaust gas treatment catalyst is 0.001 to 15% by weight, more preferably 0.3 to 12% by weight.

活性成分の含有量が少ないと、排ガス処理触媒、例えば選択還元型NOx触媒として用いた場合にNOxの除去率が不充分となる場合がある。活性成分の含有量が多すぎても、成型体の圧縮強度、耐クラック性が不充分となる。 When the content of the active component is small, the NO x removal rate may be insufficient when used as an exhaust gas treatment catalyst, for example, a selective reduction type NO x catalyst. Even if there is too much content of an active ingredient, the compressive strength and crack resistance of a molded object will become inadequate.

溶剤
成型体用組成物は、上記成分以外に、溶剤を含んでいてもよい。溶剤としては、使用目的や成型方法に応じて適宜選択される。
具体的には、水、メタノール、エタノール、プロパノール、メチルエチルケトンなど揮発性溶剤が挙げられ、水が好ましい。
このような成型体用組成物の溶剤の濃度は15〜40重量%、好ましくは25〜35重量の範囲にあり、全固形分濃度は60〜85重量%、さらには65〜75重量%の範囲にあることが好ましい。
The composition for solvent molding may contain a solvent in addition to the above components. The solvent is appropriately selected depending on the purpose of use and the molding method.
Specific examples include volatile solvents such as water, methanol, ethanol, propanol, and methyl ethyl ketone, with water being preferred.
The concentration of the solvent in such a molding composition is 15 to 40% by weight, preferably 25 to 35% by weight, and the total solid content is 60 to 85% by weight, more preferably 65 to 75% by weight. It is preferable that it exists in.

成型体用組成物の全固形分濃度が低すぎると、押出し成型後、乾燥前の成型体の保形性が弱く、変形する場合がある。
成型体用組成物の全固形分濃度が大きすぎても、成型金型を通過する際のすべり性が小さく、成型性、特に連続成型性が低下する場合がある。
If the total solid content concentration of the composition for a molded product is too low, the shape retention of the molded product before drying after the extrusion molding is weak and may be deformed.
Even if the total solid content concentration of the composition for a molded body is too large, the slipping property when passing through the molding die is small, and the moldability, particularly the continuous moldability may be lowered.

工程(j)
こうして調製した成型体用組成物を混練・捏和する。混練・捏和方法としては、前記各材料を均一に混合できれば特に制限はなく、従来公知の混合方法を採用することができる。
通常、ニーダーが用いられるが、コンティニュアスニーダー、ミキサー等を用いることもできる。
混練および捏和は、加温下で行うことが好ましい。このときの温度は概ね80〜140℃、さらには90〜130℃の範囲にあることが好ましい。このような温度範囲で混練および捏和を行うことによって、成型性に優れた成型体用組成物を調製することができる。
また、混合時間は、温度によっても異なるが、概ね0.25〜5時間である。
Step (j)
The molding composition thus prepared is kneaded and kneaded. The kneading and kneading method is not particularly limited as long as the above materials can be mixed uniformly, and conventionally known mixing methods can be employed.
Usually, a kneader is used, but a continuous kneader, a mixer or the like can also be used.
Kneading and kneading are preferably performed under heating. The temperature at this time is preferably in the range of approximately 80 to 140 ° C, more preferably 90 to 130 ° C. By performing kneading and kneading in such a temperature range, it is possible to prepare a molded article composition having excellent moldability.
Moreover, although mixing time changes also with temperature, it is 0.25 to 5 hours in general.

工程(k)
混練および捏和物の成型方法は、公知の成型機を用いることが可能であり、成型体の形状、種類等によって適宜選択することができ、通常、押出成型機が用いられ、ハニカム型成型体のような複雑な構造の成型体を成型する場合は真空押出成型機が好適に用いられる。
Step (k)
A kneading and molding method of the kneaded product can use a known molding machine, and can be appropriately selected depending on the shape, type, etc. of the molded body. Usually, an extrusion molding machine is used. When molding a molded body having such a complicated structure, a vacuum extrusion molding machine is preferably used.

工程(l)
乾燥工程(l)における乾燥方法としては、湾曲することなく、歪を生じることなく、また、クラックを発生することなく均一に乾燥できれば特に制限はなく、従来公知の方法を採用することができる。
例えば、ハニカム状成型体を乾燥する場合、外径、長さ、ピッチ、肉厚等によっても異なるが、温度は概ね30〜65℃の範囲にあり、乾燥時間は概ね24〜72時間の範囲にあることが好ましい。
Step (l)
The drying method in the drying step (l) is not particularly limited as long as it can be uniformly dried without bending, without causing distortion, and without causing cracks, and a conventionally known method can be employed.
For example, when drying a honeycomb-shaped formed body, the temperature is generally in the range of 30 to 65 ° C., and the drying time is generally in the range of 24 to 72 hours, although it varies depending on the outer diameter, length, pitch, wall thickness, and the like. Preferably there is.

工程(m)
この後、焼成するが、焼成温度は450〜700℃、さらには480〜600℃の範囲にあることが好ましい。焼成温度が低いと、使用した有機化合物等による有機物が残存し、触媒性能を阻害する場合がある。焼成温度が高すぎても、酸化チタンの結晶化が進みすぎ、得られる排ガス処理触媒の比表面積や細孔容積が小さくなる場合があり、触媒性能が不充分となる場合がある。
焼成時間は、焼成温度によっても異なるが、概ね1〜24時間である。
以上の各工程を経て本発明にかかる排ガス処理触媒を製造することができる。
Process (m)
Thereafter, firing is performed, but the firing temperature is preferably in the range of 450 to 700 ° C, more preferably 480 to 600 ° C. If the calcination temperature is low, organic substances such as organic compounds used may remain, which may impair catalyst performance. Even if the calcination temperature is too high, the crystallization of titanium oxide proceeds too much, and the specific surface area and pore volume of the resulting exhaust gas treatment catalyst may become small, and the catalyst performance may be insufficient.
Although the firing time varies depending on the firing temperature, it is generally 1 to 24 hours.
The exhaust gas treatment catalyst according to the present invention can be produced through the above steps.

[排ガス処理触媒]
本発明に係る排ガス処理触媒は、前記した方法で製造され、(i)酸化チタン系微粉末と(ii)補強材とを含み、(i)酸化チタン系微粉末の含有量が、60〜97重量%の範囲にあり、(ii)補強材の含有量が3〜15重量%の範囲にあることを特徴としている。
[Exhaust gas treatment catalyst]
The exhaust gas treatment catalyst according to the present invention is produced by the method described above, and includes (i) a titanium oxide fine powder and (ii) a reinforcing material, and (i) the content of the titanium oxide fine powder is 60 to 97. It is in the range of wt%, and (ii) the content of the reinforcing material is in the range of 3 to 15 wt%.

(i)酸化チタン系微粉末
排ガス処理触媒中の(i)酸化チタン系微粉末の含有量は、60〜97重量%、好ましくは60〜96重量%、より好ましくは75〜90重量%の範囲にある。
排ガス処理触媒中の(i)酸化チタン系微粉末の含有量が少ないと、排ガス処理触媒の性能、具体的には選択還元型NOx触媒のNOxの除去率が不充分となる場合がある。
The content of (i) titanium oxide fine powder in the exhaust gas treatment catalyst of (i) titanium oxide fine powder is in the range of 60 to 97% by weight, preferably 60 to 96% by weight, more preferably 75 to 90% by weight. It is in.
If the content of (i) titanium oxide fine powder in the exhaust gas treatment catalyst is low, the performance of the exhaust gas treatment catalyst, specifically, the NOx removal rate of the selective reduction NOx catalyst may be insufficient.

排ガス処理触媒中の(i)酸化チタン系微粉末の含有量が多すぎると、後述する他の補強材、フィラー、活性成分前駆体の使用量が制限されるため、排ガス処理触媒の圧縮強度、耐クラック性およびNOx除去率等が不充分となる場合がある。   If the content of the titanium oxide fine powder (i) in the exhaust gas treatment catalyst is too large, the amount of other reinforcing materials, fillers, and active ingredient precursors described later is limited, so the compression strength of the exhaust gas treatment catalyst, Crack resistance, NOx removal rate, etc. may be insufficient.

排ガス処理触媒中の(i)酸化チタン系微粉末中の使用済み酸化チタン含有排ガス処理触媒由来の酸化チタン系酸化物(または成分)の含有量は、8.5〜90重量%、より好ましくは10〜90重量%、さらには好ましくは25〜50重量%の範囲にある。なお、(i)酸化チタン系微粉末中には、活性成分などの除去されなかった他の成分も含まれている。   The content of the titanium oxide-based oxide (or component) derived from the spent titanium oxide-containing exhaust gas treatment catalyst in the (i) titanium oxide-based fine powder in the exhaust gas treatment catalyst is 8.5 to 90% by weight, more preferably It is in the range of 10 to 90% by weight, more preferably 25 to 50% by weight. The (i) titanium oxide fine powder also contains other components that have not been removed, such as active ingredients.

(ii)補強材
排ガス処理触媒中の(ii)補強材の含有量は3〜15重量%、さらには3〜10重量%の範囲にあることが好ましい。
補強材の含有量が少ないと、押出し成型した後の乾燥時に収縮による亀裂が発生する場合があり、補強材の含有量が多すぎても、押出し成型時に成型用金型に補強材が詰まり、成型性を阻害する場合がある。
(ii) The content of the reinforcing material (ii) in the reinforcing material exhaust gas treatment catalyst is preferably in the range of 3 to 15% by weight, more preferably 3 to 10% by weight.
If the content of the reinforcing material is small, cracks due to shrinkage may occur during drying after extrusion molding, and even if the content of the reinforcing material is too much, the reinforcing material is clogged in the molding die during extrusion molding, It may hinder moldability.

(iii)活性成分
さらに、排ガス処理触媒は、活性成分として前記した活性成分を含んでいることが好ましい。
排ガス処理触媒中の活性成分の含有量は酸化物として0.001〜15重量%、さらには0.3〜12重量%の範囲にあることが好ましい。活性成分の含有量が少ないと、選択還元型NOx触媒として用いた場合にNOxの除去率が不充分となる場合がある。活性成分の含有量が多すぎても、成型体の圧縮強度、耐クラック性が不充分となる。
(iii) Active component Furthermore, the exhaust gas treatment catalyst preferably contains the above-mentioned active component as an active component.
The content of the active component in the exhaust gas treatment catalyst is preferably in the range of 0.001 to 15% by weight, more preferably 0.3 to 12% by weight as an oxide. If the content of the active component is small, the NO x removal rate may be insufficient when used as a selective reduction type NO x catalyst. Even if there is too much content of an active ingredient, the compressive strength and crack resistance of a molded object will become inadequate.

ここで、活性成分は、使用済み排ガス処理触媒に含まれる活性成分、前記工程(d)および/または前記工程(i)で使用した活性成分前駆体化合物(A)および(B)に由来する活性成分の合計である。   Here, the active ingredient is an active ingredient contained in the used exhaust gas treatment catalyst, an activity derived from the active ingredient precursor compounds (A) and (B) used in the step (d) and / or the step (i). It is the sum of ingredients.

フィラー
排ガス処理触媒は、フィラーを含んでいても良い。フィラーを含んでいると、圧縮強度、耐摩耗性に優れる。
排ガス処理触媒は、前記したフィラーを含むことができる。
The filler exhaust gas treatment catalyst may contain a filler. When it contains a filler, it is excellent in compressive strength and wear resistance.
The exhaust gas treatment catalyst can contain the filler described above.

排ガス処理触媒中のフィラーの含有量は、0.5〜15重量%、さらには3〜10重量%の範囲にあることが好ましい。
排ガス処理触媒中のフィラーの含有量が少ないと、強度が低く、また、フィラーの含有量が多すぎても、触媒性能が不充分となる場合がある。
The filler content in the exhaust gas treatment catalyst is preferably in the range of 0.5 to 15% by weight, more preferably 3 to 10% by weight.
If the content of the filler in the exhaust gas treatment catalyst is small, the strength is low, and even if the content of the filler is too large, the catalyst performance may be insufficient.

本発明に係る排ガス処理触媒の形状はペレット、ビード、リング、ハニカム等従来公知の形状を採用することができる。
本発明では、上記した成型体用組成物を用いているため、成型性が高く、得られるハニカム状排ガス処理触媒は強度、耐摩耗性に優れている。また、前記した有機添加剤の種類、使用量、使用方法を適宜選択することによって、さらに成型性が向上し、薄肉化、ピッチ数の多い成型体を得ることができる。
As the shape of the exhaust gas treatment catalyst according to the present invention, conventionally known shapes such as pellets, beads, rings, and honeycombs can be adopted.
In the present invention, since the above-described composition for a molded body is used, the moldability is high, and the resulting honeycomb-shaped exhaust gas treatment catalyst is excellent in strength and wear resistance. In addition, by appropriately selecting the type, amount of use, and method of use of the organic additive described above, the moldability is further improved, and a molded product having a reduced thickness and a large number of pitches can be obtained.

ハニカム状排ガス処理触媒の縦・横サイズまたは外径は30〜400mmの範囲にあることが好ましい。
ここで、ハニカムの外観形状は、四角形、六角形、八角形以上の多角形、円形、楕円形等特に制限は無く、用途・用法によって適宜選択することができる。
The vertical / horizontal size or outer diameter of the honeycomb-shaped exhaust gas treatment catalyst is preferably in the range of 30 to 400 mm.
Here, the external shape of the honeycomb is not particularly limited, such as a quadrangle, a hexagon, a polygon more than an octagon, a circle, and an ellipse, and can be appropriately selected depending on the application and usage.

ハニカム状排ガス処理触媒の縦・横サイズまたは外径が30mm未満では、ハニカム状排ガス処理触媒の選択還元型NOx触媒として用いる場合に、生産本数が増えるだけで経済的ではない。ハニカム状排ガス処理触媒の縦・横サイズまたは外径が400mmを超えては、この大きさのハニカム状排ガス処理触媒を成型可能な押出成型装置がない。   If the vertical / horizontal size or the outer diameter of the honeycomb-shaped exhaust gas treatment catalyst is less than 30 mm, when used as a selective reduction-type NOx catalyst of the honeycomb-shaped exhaust gas treatment catalyst, the number of production increases, which is not economical. When the vertical / horizontal size or the outer diameter of the honeycomb-shaped exhaust gas treatment catalyst exceeds 400 mm, there is no extrusion molding apparatus capable of molding a honeycomb-shaped exhaust gas treatment catalyst of this size.

また、ハニカム状排ガス処理触媒の長さは3〜1500mm、さらには50〜1300mmの範囲にあることが好ましい。
ハニカム状排ガス処理触媒の長さが3mm未満の場合は、製造するのが困難となる。
ハニカム状排ガス処理触媒の長さが1500mmを超えると、用途が少ない。
ハニカム状排ガス処理触媒のピッチは6〜500cpsi、さらには15〜200cpsiの範囲にあることが好ましい。
The length of the honeycomb-shaped exhaust gas treatment catalyst is preferably in the range of 3 to 1500 mm, more preferably 50 to 1300 mm.
When the length of the honeycomb-shaped exhaust gas treatment catalyst is less than 3 mm, it is difficult to manufacture.
When the length of the honeycomb-shaped exhaust gas treatment catalyst exceeds 1500 mm, there are few uses.
The pitch of the honeycomb-shaped exhaust gas treatment catalyst is preferably in the range of 6 to 500 cpsi, more preferably 15 to 200 cpsi.

ハニカム状排ガス処理触媒のピッチが6cpsi未満の場合は、目開きが大きく保形性が弱くなり製造が難しくなる。
ハニカム状排ガス処理触媒のピッチが500cpsiを超えると、成型時に圧力損失が大きくなり成型が困難となる場合がある。
When the pitch of the honeycomb-shaped exhaust gas treatment catalyst is less than 6 cpsi, the opening is large and the shape retaining property is weakened, which makes it difficult to manufacture.
If the pitch of the honeycomb-shaped exhaust gas treatment catalyst exceeds 500 cpsi, pressure loss may increase at the time of molding, and molding may become difficult.

ハニカム状排ガス処理触媒の肉厚は0.1〜1.9mm、さらには0.1〜1.5mmの範囲にあることが好ましい。
ハニカム状排ガス処理触媒の肉厚が0.1mm未満のものは得ることが困難である。
ハニカム状排ガス処理触媒の肉厚が1.9mmを超えると、触媒性能に寄与するハニカムの有効表面の割合が低くなり、充分な性能が得られない場合がある。
The thickness of the honeycomb-shaped exhaust gas treatment catalyst is preferably in the range of 0.1 to 1.9 mm, more preferably 0.1 to 1.5 mm.
It is difficult to obtain a honeycomb-shaped exhaust gas treatment catalyst having a thickness of less than 0.1 mm.
When the thickness of the honeycomb-shaped exhaust gas treatment catalyst exceeds 1.9 mm, the ratio of the effective surface of the honeycomb that contributes to the catalyst performance decreases, and sufficient performance may not be obtained.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
排ガス処理触媒(1)の調製
使用済み酸化チタン含有排ガス処理触媒(ハニカム形状:ハニカム孔数20×20目、長さ1000mm、組成:TiO2=79.65重量%、WO3=8.0重量%、V25=0.90重量%、不純分:Na2O=0.35重量%、K2O=0.30重量%、CaO=1.5重量%、SO4=6.13重量%)を粉砕機(ヤリヤ機械製作所製:ヤリヤ粉砕機)にて粉砕した。
ついで、粉砕した使用済み酸化チタン含有排ガス処理触媒を篩(メッシュサイズ=0.5mm(日本工業規格(JIS)規程))で篩分けし、使用済み触媒粉砕品(1)を得た。工程(a)
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of exhaust gas treatment catalyst (1) Used titanium oxide-containing exhaust gas treatment catalyst (honeycomb shape: honeycomb hole number 20 × 20, length 1000 mm, composition: TiO 2 = 79.65 wt%, WO 3 = 8.0 weight %, V 2 O 5 = 0.90 wt%, Impurity: Na 2 O = 0.35 wt%, K 2 O = 0.30 wt%, CaO = 1.5 wt%, SO 4 = 6.13 % By weight) was pulverized with a pulverizer (Yariya Machine Seisakusho: Yariya pulverizer).
Next, the pulverized used titanium oxide-containing exhaust gas treatment catalyst was sieved with a sieve (mesh size = 0.5 mm (Japanese Industrial Standard (JIS) regulations)) to obtain a used catalyst pulverized product (1). Step (a)

使用済み触媒粉砕品(1)の平均粒子径を測定し、結果を表に示す。
メタチタン酸スラリー(石原産業(株)製:MT−A、TiO2濃度30重量%、pH1.18)37.5kgを加熱還流器付撹拌槽に仕込み、使用済み触媒粉砕品(1)17.4kgを添加して30℃で6時間撹拌して混合スラリーとした。工程(b)
冷却後の混合スラリーのpHは1.42であった。
ついで、混合スラリーを真空濾過器にて濾過し、脱水した。工程(c)
The average particle size of the used catalyst ground product (1) was measured, and the results are shown in the table.
37.5 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd .: MT-A, TiO 2 concentration 30 wt%, pH 1.18) was charged into a stirring tank equipped with a heating reflux, and 17.4 kg of used catalyst pulverized product (1) And stirred at 30 ° C. for 6 hours to obtain a mixed slurry. Step (b)
The pH of the mixed slurry after cooling was 1.42.
Subsequently, the mixed slurry was filtered with a vacuum filter and dehydrated. Step (c)

濾液についてNa2O、K2O、CaO、V25を分析し、使用済み触媒粉砕品(1)からの除去率を表に示す。
濾過・脱水ケーキ(固形分濃度51.7重量%)48.4kgに、パラタングステン酸アンモニウム(日本新金属(株)製)1.42kgを添加して混合した後、濃度15重量%のアンモニア水20kgを加えて中和した。このとき中和スラリーのpHは9.5であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
The filtrate was analyzed for Na 2 O, K 2 O, CaO, and V 2 O 5, and the removal rate from the used catalyst ground product (1) is shown in the table.
After adding 1.42 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.) to 48.4 kg of the filtered and dehydrated cake (solid content concentration 51.7 wt%), ammonia water having a concentration of 15 wt% 20 kg was added to neutralize. At this time, the pH of the neutralized slurry was 9.5. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

その後、この中和・熟成スラリーを40℃まで冷却し、ついで、濾過し、掛け水をして固形分濃度49重量%の洗浄ケーキを調製した。工程(e) Thereafter, this neutralized / ripened slurry was cooled to 40 ° C., then filtered, and sprayed to prepare a washed cake having a solid content concentration of 49% by weight. Step (e)

洗浄ケーキを110℃で20時間乾燥し、さらに550℃で5時間焼成した後、粉砕機(ヤリヤ機械製作所製:ヤリヤ粉砕機)にて粉砕し、使用済み触媒を含んでなる酸化チタン系微粉末(1)を得た。工程(f)、工程(g)、工程(h) The washed cake was dried at 110 ° C. for 20 hours, and further calcined at 550 ° C. for 5 hours, and then pulverized by a pulverizer (Yariya Machinery Co., Ltd .: Yarya pulverizer), and a titanium oxide fine powder containing a used catalyst. (1) was obtained. Step (f), Step (g), Step (h)

得られた酸化チタン系微粉末(1)の組成を分析し、また、平均粒子径を測定し、結果を表に示す。
酸化チタン系微粉末(1)24.1kgに、メタバナジン酸アンモニウム0.082kgをモノエタノールアミン0.250kgに溶解した溶液と、水3.5kgを加え、ついで、アンモニア水を加えて、混合スラリーのpHを7.9とし、ニーダーにて120℃に加熱しながら0.5時間捏和した。
The composition of the resulting titanium oxide fine powder (1) was analyzed, the average particle size was measured, and the results are shown in the table.
A solution of 0.082 kg of ammonium metavanadate dissolved in 0.250 kg of monoethanolamine and 3.5 kg of water were added to 24.1 kg of titanium oxide fine powder (1), and then ammonia water was added to the mixed slurry. The pH was adjusted to 7.9, and the mixture was kneaded for 0.5 hours while heating to 120 ° C. with a kneader.

その後、補強材としてグラスファイバー(以下、「GF」という場合がある。)1.39kgと、フィラーとして酸性白土を0.26kg、有機添加剤としてポリエチレンオキサイド0.500kgとを該混合スラリーに加え、さらにニーダーにて60℃で3時間捏和して成型体用組成物(1)を調製した。工程(i)、工程(j) Thereafter, 1.39 kg of glass fiber (hereinafter sometimes referred to as “GF”) as a reinforcing material, 0.26 kg of acidic clay as a filler, and 0.500 kg of polyethylene oxide as an organic additive are added to the mixed slurry. Furthermore, it was kneaded at 60 ° C. for 3 hours with a kneader to prepare a molding composition (1). Step (i), Step (j)

成型体用組成物(1)中の各成分の含有量(使用量基準)を表に示す。なお、水分量は赤外線水分計(ケツト科学研究所製:FD−610)によって測定した。
成型体用組成物(1)を真空押出成型機(宮崎鉄工(株)製)で押出成型して、外径寸法が、平面の一辺の長さ75mm、貫通方向の長さ約500mm、目開き(四角形の貫通孔径)6.4mm、隔壁の厚さ1.0mm、開口率72%、のハニカム構造体(1)を得た。工程(k)
The content (usage standard) of each component in the molded article composition (1) is shown in the table. The moisture content was measured with an infrared moisture meter (Ketto Kagaku Kenkyusho: FD-610).
The molded body composition (1) is extruded with a vacuum extrusion molding machine (Miyazaki Tekko Co., Ltd.), and the outer diameter is 75 mm on one side of the plane, about 500 mm in the penetration direction, and the aperture (Rectangular through hole diameter) A honeycomb structure (1) having a diameter of 6.4 mm, a partition wall thickness of 1.0 mm, and an aperture ratio of 72% was obtained. Step (k)

ついで、得られたハニカム構造体(1)を60℃で48時間乾燥し、ついで、600℃で3時間焼成してハニカム状排ガス処理触媒(1)を調製した。工程(l)、工程(m) Next, the obtained honeycomb structure (1) was dried at 60 ° C. for 48 hours and then fired at 600 ° C. for 3 hours to prepare a honeycomb-shaped exhaust gas treatment catalyst (1). Step (l), Step (m)

ハニカム状排ガス処理触媒(1)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(1)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(1)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
The dimensions of the honeycomb-shaped exhaust gas treatment catalyst (1) were measured, and the results are shown in the table. In addition, the contents (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (1) are shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (1) were measured by the following methods, and the results are shown in the table.

<比表面積>
30%窒素―70%ヘリウムの混合ガスを吸着ガスとしたBET法に基づく比表面積測定装置によりハニカム状排ガス処理触媒(1)の比表面積を求める。
<細孔容積>
水銀圧入法によりハニカム状排ガス処理触媒(1)の全細孔容積を求める。
(参考測定法:細孔容積の測定方法は、水銀圧入法細孔分布測定装置(QANTA CROME社製:PM−33GT1LP)で測定した。(圧力範囲:32〜32200psi)
<Specific surface area>
The specific surface area of the honeycomb-shaped exhaust gas treatment catalyst (1) is determined by a specific surface area measuring device based on the BET method using a mixed gas of 30% nitrogen and 70% helium as an adsorbed gas.
<Pore volume>
The total pore volume of the honeycomb-shaped exhaust gas treatment catalyst (1) is obtained by a mercury intrusion method.
(Reference measurement method: The measurement method of pore volume was measured with a mercury intrusion method pore distribution measuring device (manufactured by QANTA CROME: PM-33GT1LP) (pressure range: 32 to 32200 psi).

<圧縮強度>
圧縮強度機(東京試験機製作所製:型式 AL/B30P)を用い、ハニカム状排ガス処理触媒(1)を立方体または直方体に切出した試料に対し、ハニカム孔の貫通方向、及びこの方向と直交する方向(以下、単に「直交方向」ともいう)に一定速度で圧縮負荷をかけ、試料が破壊されるまでの最大荷重(N)を読み取り、下記(4)式より圧縮強度を求める。
圧縮強度(N/cm2)=W(N)/{a(cm)×c(cm)} ・・・(4)
ここで、a(cm)及びc(cm)は試料の加圧面の2辺の寸法を示す。W(N)は徐々に負荷をかけ試料が完全に破壊されるまでの最大荷重を示す。
<Compressive strength>
Using a compressive strength machine (manufactured by Tokyo Test Machine Co., Ltd .: Model AL / B30P), the honeycomb exhaust gas treatment catalyst (1) is cut into a cube or a rectangular parallelepiped, and the honeycomb hole penetration direction and the direction perpendicular to this direction A compression load is applied at a constant speed (hereinafter also simply referred to as “orthogonal direction”), the maximum load (N) until the sample is broken is read, and the compression strength is obtained from the following equation (4).
Compressive strength (N / cm 2 ) = W (N) / {a (cm) × c (cm)} (4)
Here, a (cm) and c (cm) indicate the dimensions of the two sides of the pressing surface of the sample. W (N) indicates the maximum load until the sample is completely destroyed by applying a load gradually.

<摩耗強度>
ハニカム孔数9×9目、貫通方向の長さ100mm(これ以外の寸法のものは切り出して調整)のハニカム状排ガス処理触媒(1)を試験試料とし、この試験試料を流通式反応器に充填した。流通式反応器には、砂を含むガスを下記の条件で通流させ、触媒重量の減少量から下記(5)式に基づいて摩耗率を測定した。流通式反応器内を通流した砂の通砂量は、流通式反応器の後段にサイクロンを設け、摩耗試験終了後、当該サイクロンに捕集された砂の重量を測定することにより求めた。
<Abrasion strength>
A honeycomb-shaped exhaust gas treatment catalyst (1) with 9 × 9 honeycomb holes and a length of 100 mm in the penetrating direction (the other dimensions are cut out and adjusted) is used as a test sample, and this test sample is filled into a flow reactor. did. A gas containing sand was passed through the flow reactor under the following conditions, and the wear rate was measured based on the following equation (5) from the amount of decrease in the catalyst weight. The amount of sand passing through the flow reactor was determined by providing a cyclone in the rear stage of the flow reactor, and measuring the weight of the sand collected in the cyclone after the wear test.

試験条件
触媒形状:ハニカム孔数9×9目、長さ100mm
ガス流速:(16.5±2)m/s(触媒断面)
ガス温度:室温25℃
ガス流通時間:3時間
砂濃度:(40±5)g/Nm3
砂:珪砂 平均粒径500μm
摩耗率(%/kg)={〔摩耗試験開始前の触媒重量(g)−摩耗試験終了後の触媒重量(g)〕/摩耗試験開始前の触媒重量(g)}×100/通砂量(kg)・・・(5)
Test conditions Catalyst shape: Honeycomb hole number 9x9, length 100mm
Gas flow rate: (16.5 ± 2) m / s (catalyst cross section)
Gas temperature: Room temperature 25 ° C
Gas distribution time: 3 hours Sand concentration: (40 ± 5) g / Nm 3
Sand: Silica sand Average particle size 500μm
Abrasion rate (% / kg) = {[catalyst weight before starting wear test (g) −catalyst weight after finishing wear test (g)] / catalyst weight before starting wear test (g)} × 100 / sand passing amount (Kg) (5)

<脱硝触媒性能試験>
ハニカム状排ガス処理触媒(1)を、ハニカム孔数3×3目、貫通方向の長さ300mm(これ以外の寸法のものは切り出して調整)のハニカム構造体からなるハニカム状排ガス処理触媒(1)を試験試料とし、この試験試料を流通式反応器に充填した。この流通式反応器に下記組成のモデルガスを通流させて脱硝率を測定した。触媒接触前後のガス中の窒素酸化物(NOX)の脱硝率は、下記(6)式により求めた。このときNOXの濃度は化学発光式の窒素酸化物分析計(株式会社 アナテック・ヤナコ製:ECL-88AO)にて測定した。
脱硝率(%)= {〔未接触ガス中のNOX(質量ppm)−接触後のガス中のNOX(質量ppm)〕/ 未接触ガス中のNOX(質量ppm)}×100 ・・・(6)
<Denitration catalyst performance test>
The honeycomb-shaped exhaust gas treatment catalyst (1) is a honeycomb-shaped exhaust gas treatment catalyst (1) comprising a honeycomb structure having a honeycomb hole number of 3 × 3 and a length of 300 mm in the penetration direction (the other dimensions are cut out and adjusted) Was used as a test sample, and this test sample was charged into a flow reactor. A model gas having the following composition was passed through the flow reactor to measure the denitration rate. The denitration rate of nitrogen oxides (NO x ) in the gas before and after contact with the catalyst was determined by the following equation (6). At this time, the concentration of NO x was measured with a chemiluminescent nitrogen oxide analyzer (manufactured by Anatech Yanaco: ECL-88AO).
Denitration rate (%) = {[NO x in non-contact gas (ppm by mass) −NO x in gas after contact (mass ppm)] / NO x in non-contact gas (mass ppm)} × 100・ (6)

試験条件
触媒形状:ハニカム孔数3×3目、長さ300mm
反応温度:380℃、空塔速度(SV)=20,000hr-1
モデルガス組成:NOX=180質量ppm、NH3=180質量ppm、SO2=500
質量ppm、O2=2重量%、H2O=10重量%、N2=バランス
Test conditions Catalyst shape: Honeycomb hole number 3x3, length 300mm
Reaction temperature: 380 ° C., superficial velocity (SV) = 20,000 hr −1
Model gas composition: NO x = 180 mass ppm, NH 3 = 180 mass ppm, SO 2 = 500
Mass ppm, O 2 = 2 wt%, H 2 O = 10 wt%, N 2 = balance

[実施例2]
排ガス処理触媒(2)の調製
実施例1と同様にして粉砕した使用済み酸化チタン含有排ガス処理触媒を篩(メッシュサイズ=0.3mm(日本工業規格(JIS)規程))で篩分けし、使用済み触媒粉砕品(2)を得た。工程(a)
[Example 2]
Preparation of exhaust gas treatment catalyst (2) Used titanium oxide-containing exhaust gas treatment catalyst pulverized in the same manner as in Example 1 is sieved with a sieve (mesh size = 0.3 mm (Japanese Industrial Standard (JIS) regulations)) and used. A finished catalyst pulverized product (2) was obtained. Step (a)

使用済み触媒粉砕品(2)の平均粒子径を測定し、結果を表に示す。
以下、使用済み触媒粉砕品(2)を用いた以外は同様にしてハニカム状排ガス処理触媒(2)を調製した。
ハニカム状排ガス処理触媒(2)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(2)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(2)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
The average particle size of the used catalyst ground product (2) was measured, and the results are shown in the table.
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (2) was prepared in the same manner except that the used catalyst ground product (2) was used.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (2) was measured, and the results are shown in the table. Further, the contents (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (2) are shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (2) were measured by the following methods, and the results are shown in the table.

[実施例3]
排ガス処理触媒(3)の調製
実施例1と同様にして粉砕した使用済み酸化チタン含有排ガス処理触媒を篩(メッシュサイズ=0.7mm(日本工業規格(JIS)規程))で篩分けし、使用済み触媒粉砕品(3)を得た。工程(a)
[Example 3]
Preparation of exhaust gas treatment catalyst (3) Used titanium oxide-containing exhaust gas treatment catalyst pulverized in the same manner as in Example 1 is sieved with a sieve (mesh size = 0.7 mm (Japanese Industrial Standard (JIS) regulations)) and used. A finished catalyst pulverized product (3) was obtained. Step (a)

使用済み触媒粉砕品(3)の平均粒子径を測定し、結果を表に示す。
以下、使用済み触媒粉砕品(3)を用いた以外は同様にしてハニカム状排ガス処理触媒(3)を調製した。
ハニカム状排ガス処理触媒(3)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(3)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(3)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
The average particle size of the used catalyst ground product (3) was measured, and the results are shown in the table.
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (3) was prepared in the same manner except that the used catalyst ground product (3) was used.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (3) was measured, and the results are shown in the table. Further, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (3) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (3) were measured by the following methods, and the results are shown in the table.

[実施例4]
排ガス処理触媒(4)の調製
実施例1の工程(b)において、メタチタン酸スラリー(石原産業(株)製:MT−A、TiO2濃度30重量%)7.5kgを仕込み、使用済み触媒粉砕品(1)31.3kgを添加した以外は同様にして混合スラリーとした。工程(b)
ついで、混合スラリーを真空濾過器にて濾過し、脱水した。工程(c)
[Example 4]
Preparation of exhaust gas treatment catalyst (4) In step (b) of Example 1, 7.5 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd .: MT-A, TiO 2 concentration 30 wt%) was charged and used catalyst pulverized. Product (1) A mixed slurry was prepared in the same manner except that 31.3 kg was added . Step (b)
Subsequently, the mixed slurry was filtered with a vacuum filter and dehydrated. Step (c)

濾液についてNa2O、K2O、CaO、V25を分析し、使用済み触媒粉砕品(1)からの脱離(溶出)量・率を表に示す。
ついで、濾過・脱水ケーキ(固形分濃度51.8重量%)48.3kgに、パラタングステン酸アンモニウム(日本新金属(株)製)0.32kgを添加して混合した後、濃度15重量%のアンモニア水18kgを加えて中和した。このとき中和スラリーのpHは9.53であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
The filtrate is analyzed for Na 2 O, K 2 O, CaO, and V 2 O 5, and the amount and rate of desorption (elution) from the used catalyst pulverized product (1) are shown in the table.
Next, after adding 0.32 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.) to 48.3 kg of the filtered and dehydrated cake (solid content concentration 51.8 wt%), the concentration was 15 wt%. 18 kg of aqueous ammonia was added for neutralization. At this time, the pH of the neutralized slurry was 9.53. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(4)を調製した。
ハニカム状排ガス処理触媒(4)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(4)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(4)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (4) was prepared in the same manner as in Example 1.
The dimensions of the honeycomb-shaped exhaust gas treatment catalyst (4) were measured, and the results are shown in the table. Further, the contents (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (4) are shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (4) were measured by the following methods, and the results are shown in the table.

[実施例5]
排ガス処理触媒(5)の調製
実施例1の工程(b)において、メタチタン酸スラリー(石原産業(株)製:MT−A、TiO2濃度30重量%)67.5kgを仕込み、使用済み触媒粉砕品(1)3.48kgを添加した以外は同様にして混合スラリーとした。工程(b)
ついで、混合スラリーを真空濾過器にて濾過し、脱水した。工程(c)
[Example 5]
Preparation of Exhaust Gas Treatment Catalyst (5) In step (b) of Example 1, 67.5 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd .: MT-A, TiO 2 concentration 30% by weight) was charged and used catalyst pulverized. Product (1) A mixed slurry was prepared in the same manner except that 3.48 kg was added. Step (b)
Subsequently, the mixed slurry was filtered with a vacuum filter and dehydrated. Step (c)

濾液についてNa2O、K2O、CaO、V25を分析し、使用済み触媒粉砕品(1)からの脱離(溶出)量・率を表に示す。
ついで、濾過・脱水ケーキ(固形分濃度50.5重量%)49.5kgに、パラタングステン酸アンモニウム(日本新金属(株)製)2.52kgを添加して混合した後、濃度15重量%のアンモニア水28kgを加えて中和した。このとき中和スラリーのpHは9.5であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
The filtrate is analyzed for Na 2 O, K 2 O, CaO, and V 2 O 5, and the amount and rate of desorption (elution) from the used catalyst pulverized product (1) are shown in the table.
Next, after adding 2.52 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.) to 49.5 kg of the filtered and dehydrated cake (solid content concentration 50.5 wt%), the concentration was 15 wt%. It neutralized by adding 28 kg of aqueous ammonia. At this time, the pH of the neutralized slurry was 9.5. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(5)を調製した。
ハニカム状排ガス処理触媒(5)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(5)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(5)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (5) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (5) was measured, and the results are shown in the table. Further, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (5) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (5) were measured by the following methods, and the results are shown in the table.

[実施例6]
排ガス処理触媒(6)の調製
実施例1の工程(d)において、パラタングステン酸アンモニウム(日本新金属(株)製)1.42kgを添加することなく、濃度15重量%のアンモニア水18kgを加えて中和した。このとき中和スラリーのpHは9.55であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
[Example 6]
Preparation of exhaust gas treatment catalyst (6) In step (d) of Example 1, 18 kg of ammonia water having a concentration of 15% by weight was added without adding 1.42 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.). Neutralized. At this time, the pH of the neutralized slurry was 9.55. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(6)を調製した。
ハニカム状排ガス処理触媒(6)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(6)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(6)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (6) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (6) was measured, and the results are shown in the table. Further, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (6) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (6) were measured by the following methods, and the results are shown in the table.

[実施例7]
排ガス処理触媒(7)の調製
実施例1の工程(b)において、メタチタン酸スラリーの代わりに硫酸チタニル(テイカ(株)製:TM結晶、TiO2濃度30重量%)37.5kgを仕込んだ以外は同様にして混合スラリーとした。工程(b)
[Example 7]
Preparation of exhaust gas treatment catalyst (7) In step (b) of Example 1, 37.5 kg of titanyl sulfate (manufactured by Teika Co., Ltd .: TM crystal, TiO 2 concentration 30% by weight) was used instead of metatitanic acid slurry. Was similarly mixed slurry. Step (b)

冷却後の混合スラリーのpHは9.54であった。
以下、実施例1と同様にしてハニカム状排ガス処理触媒(7)を調製した。
ハニカム状排ガス処理触媒(7)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(7)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(7)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
The pH of the mixed slurry after cooling was 9.54.
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (7) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (7) was measured, and the results are shown in the table. Further, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (7) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (7) were measured by the following methods, and the results are shown in the table.

[比較例1]
排ガス処理触媒(R1)の調製
メタチタン酸スラリー(石原産業(株)製)75.0kgを加熱還流器付撹拌槽に仕込み、さらにパラタングステン酸アンモニウム2.79kgを添加して混合した後、濃度15重量%のアンモニア水23kgを加えてpHを9.5に調整し、95℃で1時間撹拌しながら熟成した。その後、この混合スラリーを40℃まで冷却し、ついで、濾過し、掛け水により洗浄して、固形分濃度(TiO2・WO3)49重量%の洗浄ケーキを調製した。
[Comparative Example 1]
Preparation of exhaust gas treatment catalyst (R1) 75.0 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirring tank equipped with a heating reflux, and 2.79 kg of ammonium paratungstate was added and mixed. The pH was adjusted to 9.5 by adding 23 kg of aqueous ammonia by weight, and aged with stirring at 95 ° C. for 1 hour. Then, this mixed slurry was cooled to 40 ° C., then filtered, and washed with water to prepare a washed cake having a solid content concentration (TiO 2 · WO 3 ) of 49% by weight.

ついで、洗浄ケーキを110℃で20時間乾燥し、さらに550℃で5時間焼成した後、粉砕機(ヤリヤ機械製作所製:ヤリヤ粉砕機)にて粉砕し、使用済み触媒を含まない酸化チタン系微粉末(R1)を得た。工程(f)、工程(g)、工程(h) Next, the washed cake was dried at 110 ° C. for 20 hours, further calcined at 550 ° C. for 5 hours, and then pulverized by a pulverizer (Yariya Machinery Co., Ltd .: Yarya pulverizer). A powder (R1) was obtained. Step (f), Step (g), Step (h)

得られた酸化チタン系微粉末(R1)の組成を分析し、また、平均粒子径を測定し、結果を表に示す。ついで、酸化チタン系微粉末(1)24.0kgに、メタバナジン酸アンモニウム0.273kgをモノエタノールアミン0.250kgに溶解した溶液と、水3.5kgを加え、ついで、アンモニア水を加えて、混合スラリーのpHを7.8とし、ニーダーにて120℃に加熱しながら0.5時間捏和した。   The composition of the obtained titanium oxide fine powder (R1) was analyzed, the average particle size was measured, and the results are shown in the table. Next, a solution obtained by dissolving 0.273 kg of ammonium metavanadate in 0.250 kg of monoethanolamine and 3.5 kg of water were added to 24.0 kg of titanium oxide fine powder (1), and then ammonia water was added and mixed. The slurry was adjusted to pH 7.8 and kneaded for 0.5 hours while heating to 120 ° C. with a kneader.

その後、補強材としてグラスファイバー(以下、「GF」という場合がある。)1.39kgと、フィラーに酸性白土を0.26kg、有機添加剤としてポリエチレンオキサイド0.500kgとを該混合スラリーに加え、さらにニーダーにて60℃で3時間捏和して成型体用組成物(R1)を調製した。工程(i)、工程(j) Thereafter, 1.39 kg of glass fiber (hereinafter sometimes referred to as “GF”) as a reinforcing material, 0.26 kg of acidic clay as a filler, and 0.500 kg of polyethylene oxide as an organic additive are added to the mixed slurry. Furthermore, it was kneaded at 60 ° C. for 3 hours with a kneader to prepare a molding composition (R1). Step (i), Step (j)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(R1)を調製した。
ハニカム状排ガス処理触媒(R1)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(R1)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(R1)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (R1) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (R1) was measured, and the results are shown in the table. Further, the contents (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (R1) are shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (R1) were measured by the following methods, and the results are shown in the table.

[比較例2]
排ガス処理触媒(R2)の調製
実施例1と同様にして粉砕した使用済み酸化チタン含有排ガス処理触媒を篩(メッシュサイズ=1.0mm(日本工業規格(JIS)規程))で篩分けし、使用済み触媒粉砕品(R2)を得た。工程(a)
[Comparative Example 2]
Preparation of exhaust gas treatment catalyst (R2) Used titanium oxide-containing exhaust gas treatment catalyst pulverized in the same manner as in Example 1 is sieved with a sieve (mesh size = 1.0 mm (Japanese Industrial Standard (JIS) regulations)) and used Used catalyst pulverized product (R2) was obtained. Step (a)

使用済み触媒粉砕品(R2)の平均粒子径を測定し、結果を表に示す。
以下、使用済み触媒粉砕品(R2)を用いた以外は同様にしてハニカム状排ガス処理触媒(R2)を調製した。
ハニカム状排ガス処理触媒(R2)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(R2)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(R2)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
The average particle size of the used catalyst ground product (R2) was measured, and the results are shown in the table.
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (R2) was prepared in the same manner except that the used catalyst ground product (R2) was used.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (R2) was measured, and the results are shown in the table. In addition, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (R2) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (R2) were measured by the following methods, and the results are shown in the table.

[比較例3]
排ガス処理触媒(R3)の調製
実施例1の工程(b)において、メタチタン酸スラリー(石原産業(株)製:MT−A、TiO2濃度30重量%)0.4kgを仕込み、使用済み触媒粉砕品(1)34.7kgを添加した以外は同様にして混合スラリーとした。工程(b)
ついで、混合スラリーを真空濾過器にて濾過し、脱水した。工程(c)
[Comparative Example 3]
Preparation of exhaust gas treatment catalyst (R3) In step (b) of Example 1, 0.4 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd .: MT-A, TiO 2 concentration 30% by weight) was charged and used catalyst pulverized. Product (1) A mixed slurry was prepared in the same manner except that 34.7 kg was added. Step (b)
Subsequently, the mixed slurry was filtered with a vacuum filter and dehydrated. Step (c)

濾液についてNa2O、K2O、CaO、V25を分析し、使用済み触媒粉砕品(1)からの脱離(溶出)量・率を表に示す。
ついで、濾過・脱水ケーキ(固形分濃度52.0重量%)48.1kgに、パラタングステン酸アンモニウム(日本新金属(株)製)0.06kgを添加して混合した後、濃度15重量%のアンモニア水16kgを加えて中和した。このとき中和スラリーのpHは9.52であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
The filtrate is analyzed for Na 2 O, K 2 O, CaO, and V 2 O 5, and the amount and rate of desorption (elution) from the used catalyst pulverized product (1) are shown in the table.
Next, 0.06 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.) was added to 48.1 kg of the filtered / dehydrated cake (solid concentration 52.0 wt%) and mixed. 16 kg of aqueous ammonia was added for neutralization. At this time, the pH of the neutralized slurry was 9.52. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(R3)を調製した。
ハニカム状排ガス処理触媒(R3)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(R3)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(R3)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (R3) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (R3) was measured, and the results are shown in the table. Further, the content (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (R3) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (R3) were measured by the following methods, and the results are shown in the table.

[比較例4]
排ガス処理触媒(R4)の調製
実施例1の工程(b)において、メタチタン酸スラリー(石原産業(株)製:MT−A、TiO2濃度30重量%)69.0kgを仕込み、使用済み触媒粉砕品(1)2.79kgを添加した以外は同様にして混合スラリーとした。工程(b)
ついで、混合スラリーを真空濾過器にて濾過し、脱水した。工程(c)
[Comparative Example 4]
Preparation of exhaust gas treatment catalyst (R4) In step (b) of Example 1, 69.0 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd .: MT-A, TiO 2 concentration 30 wt%) was charged and used catalyst pulverization Product (1) A mixed slurry was prepared in the same manner except that 2.79 kg was added. Step (b)
Subsequently, the mixed slurry was filtered with a vacuum filter and dehydrated. Step (c)

濾液についてNa2O、K2O、CaO、V25を分析し、使用済み触媒粉砕品(1)からの脱離(溶出)量・率を表に示す。
ついで、濾過・脱水ケーキ(固形分濃度51.0重量%)49.0kgに、パラタングステン酸アンモニウム(日本新金属(株)製)0.06kgを添加して混合した後、濃度15重量%のアンモニア水16kgを加えて中和した。このとき中和スラリーのpHは9.54であった。ついで、95℃で3時間撹拌しながら熟成した。工程(d)
The filtrate is analyzed for Na 2 O, K 2 O, CaO, and V 2 O 5, and the amount and rate of desorption (elution) from the used catalyst pulverized product (1) are shown in the table.
Next, after adding 0.06 kg of ammonium paratungstate (manufactured by Nippon Shin Metal Co., Ltd.) to 49.0 kg of the filtered / dehydrated cake (solid content concentration 51.0 wt%), the concentration was 15 wt%. 16 kg of aqueous ammonia was added for neutralization. At this time, the pH of the neutralized slurry was 9.54. Next, the mixture was aged with stirring at 95 ° C. for 3 hours. Step (d)

以下、実施例1と同様にしてハニカム状排ガス処理触媒(R4)を調製した。
ハニカム状排ガス処理触媒(R4)の各寸法を測定し、結果を表に示す。また、ハニカム状排ガス処理触媒(R4)中の各成分の含有量(使用量基準)を表に示す。
また、ハニカム状排ガス処理触媒(R4)の比表面積、細孔容積、圧縮強度、摩耗強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Thereafter, a honeycomb-shaped exhaust gas treatment catalyst (R4) was prepared in the same manner as in Example 1.
Each dimension of the honeycomb-shaped exhaust gas treatment catalyst (R4) was measured, and the results are shown in the table. In addition, the contents (usage standard) of each component in the honeycomb-shaped exhaust gas treatment catalyst (R4) are shown in the table.
Further, the specific surface area, pore volume, compressive strength, wear strength and denitration catalyst performance of the honeycomb-shaped exhaust gas treatment catalyst (R4) were measured by the following methods, and the results are shown in the table.

[比較例5]
排ガス処理触媒(R5)の調製
使用済み酸化チタン含有排ガス処理触媒(ハニカム形状:ハニカム孔数20×20目、長さ1000mm、組成:TiO2=79.65重量%、WO3=8.0重量%、V25=0.90重量%、不純分:Na2O=0.35重量%、K2O=0.30重量%、CaO=1.5重量%、SO4=6.13重量%)をハニカム状排ガス処理触媒(R5)として用いた。
ハニカム状排ガス処理触媒(R5)の比表面積、細孔容積、圧縮強度、摩耗強度を測定し、結果を表に示す。
ハニカム状排ガス処理触媒(R5)をハニカム孔数3×3目、貫通方向の長さ300mmに切り出して調整して、実施例1と同様に脱硝触媒性能を測定し、結果を表に示す。
[Comparative Example 5]
Preparation of exhaust gas treatment catalyst (R5) Used titanium oxide-containing exhaust gas treatment catalyst (honeycomb shape: honeycomb hole number 20 × 20, length 1000 mm, composition: TiO 2 = 79.65% by weight, WO 3 = 8.0% by weight %, V 2 O 5 = 0.90 wt%, Impurity: Na 2 O = 0.35 wt%, K 2 O = 0.30 wt%, CaO = 1.5 wt%, SO 4 = 6.13 % By weight) was used as a honeycomb-shaped exhaust gas treatment catalyst (R5).
The specific surface area, pore volume, compressive strength, and wear strength of the honeycomb-shaped exhaust gas treatment catalyst (R5) were measured, and the results are shown in the table.
The honeycomb-shaped exhaust gas treatment catalyst (R5) was cut out and adjusted to have a honeycomb hole number of 3 × 3 and a length of 300 mm in the penetration direction, and the denitration catalyst performance was measured in the same manner as in Example 1. The results are shown in the table.

Figure 0006441140
その他成分は、主に(WO3, Al2O3, SiO2)である。
Figure 0006441140
The other components are mainly (WO 3 , Al 2 O 3 , SiO 2 ).

Figure 0006441140
Figure 0006441140

Figure 0006441140
Figure 0006441140

Figure 0006441140
Figure 0006441140

Claims (6)

使用済み酸化チタン含有排ガス処理触媒を粉砕して平均粒子径が0.1〜15μmの粉体を得る粉体調製工程と、A powder preparation step of pulverizing a used titanium oxide-containing exhaust gas treatment catalyst to obtain a powder having an average particle size of 0.1 to 15 μm;
硫酸チタニル水溶液とメタチタン酸スラリーの少なくとも一方と前記粉体とを混合して混合スラリーを得る混合工程と、A mixing step of obtaining a mixed slurry by mixing at least one of an aqueous titanyl sulfate solution and a metatitanic acid slurry and the powder;
前記混合スラリーを濾過してケーキを得る濾過工程と、A filtration step of filtering the mixed slurry to obtain a cake;
前記ケーキと塩基性化合物とを混合し、中和して、酸化チタンゲルを得る中和工程と、The cake and the basic compound are mixed and neutralized to obtain a titanium oxide gel,
前記酸化チタンゲルを焼成後、粉砕して酸化チタン系微粉末を得る工程と、After firing the titanium oxide gel, pulverizing to obtain a titanium oxide fine powder;
を備えることを特徴とする酸化チタン系微粉末の製造方法。A method for producing a fine titanium oxide powder, comprising:
前記混合工程において、前記混合スラリー中の硫酸チタニル水溶液とメタチタン酸スラリーの合計のTiOIn the mixing step, the total TiO of the titanyl sulfate aqueous solution and the metatitanic acid slurry in the mixed slurry. 22 濃度(CConcentration (C TT )と、前記混合スラリー中の粉体の固形分濃度(C) And solid content concentration of powder in the mixed slurry (C RCRC )との比(C) (C) TT /C/ C RCRC )が0.1〜9.0となるように混合することを特徴とする請求項1に記載の酸化チタン系微粉末の製造方法。) Is mixed so as to be 0.1 to 9.0. The method for producing a fine titanium oxide powder according to claim 1. 前記中和工程で得られた酸化チタンゲルのpHが7〜12であることを特徴とする請求項1または2に記載の酸化チタン系微粉末の製造方法。The method for producing a titanium oxide fine powder according to claim 1 or 2, wherein the titanium oxide gel obtained in the neutralization step has a pH of 7 to 12. 前記濾過工程と前記中和工程の間に、前記ケーキと活性成分前駆体化合物とを混合する工程を備えることを特徴とする請求項1〜3のいずれかに記載の酸化チタン系微粉末の製造方法。The production of the titanium oxide fine powder according to any one of claims 1 to 3, further comprising a step of mixing the cake and the active ingredient precursor compound between the filtration step and the neutralization step. Method. 前記活性成分前駆体化合物は、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、InおよびIrから選ばれる少なくとも1つの元素を含む化合物であることを特徴とする請求項4に記載の酸化チタン系微粉末の製造方法。The active component precursor compound is a compound containing at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. The method for producing a fine titanium oxide powder according to claim 4. 請求項1に記載の製造方法で得られた酸化チタン系微粉末と補強材とを混合する工程と、成型する工程とを備えることを特徴とする排ガス処理触媒の製造方法。A method for producing an exhaust gas treatment catalyst, comprising: a step of mixing the titanium oxide fine powder obtained by the production method according to claim 1 and a reinforcing material; and a step of molding.
JP2015057718A 2014-03-28 2015-03-20 Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder Active JP6441140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057718A JP6441140B2 (en) 2014-03-28 2015-03-20 Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014068571 2014-03-28
JP2014068571 2014-03-28
JP2015057718A JP6441140B2 (en) 2014-03-28 2015-03-20 Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder

Publications (3)

Publication Number Publication Date
JP2015192999A JP2015192999A (en) 2015-11-05
JP2015192999A5 JP2015192999A5 (en) 2018-04-19
JP6441140B2 true JP6441140B2 (en) 2018-12-19

Family

ID=54156998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057718A Active JP6441140B2 (en) 2014-03-28 2015-03-20 Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder

Country Status (2)

Country Link
JP (1) JP6441140B2 (en)
CN (1) CN104941628B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052687A1 (en) * 2016-06-21 2017-12-22 Lab Sa PROCESS FOR PRODUCING A CATALYST
CN106944039B (en) * 2017-02-21 2020-10-16 安徽迪诺环保新材料科技有限公司 Production method of honeycomb denitration catalyst carrier material with more than 40 holes
CN111974378B (en) * 2020-09-23 2023-06-09 国家能源投资集团有限责任公司 Denitration catalyst and preparation method thereof
CN112316937B (en) * 2020-11-16 2023-05-12 陆叶梓 Cement rotary kiln waste gas treatment catalyst and preparation method thereof
CN116060425B (en) * 2023-03-08 2023-06-02 国能龙源环保有限公司 Method for removing Hg on surface of waste denitration catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829143B2 (en) * 1979-04-27 1983-06-21 石原産業株式会社 A new method for producing a denitrification catalyst that reuses waste catalyst as a raw material
JPS61153139A (en) * 1984-12-27 1986-07-11 Babcock Hitachi Kk Regeneration method of denitrating catalyst
DE19617081C2 (en) * 1996-04-29 2003-02-06 Kerr Mcgee Pigments Gmbh & Co Process for the production of mixed oxide powders from deactivated DENOX catalysts
JP4005291B2 (en) * 2000-02-14 2007-11-07 バブコック日立株式会社 Regeneration method of used denitration catalyst
US6602818B2 (en) * 2000-09-27 2003-08-05 Sk Corporation Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
JP5308083B2 (en) * 2008-02-29 2013-10-09 三菱重工業株式会社 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
JP5535769B2 (en) * 2010-06-02 2014-07-02 三菱重工業株式会社 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
JP6012962B2 (en) * 2011-12-27 2016-10-25 日揮触媒化成株式会社 Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof

Also Published As

Publication number Publication date
CN104941628B (en) 2018-12-18
CN104941628A (en) 2015-09-30
JP2015192999A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6489596B2 (en) NOx removal catalyst and method for producing the same
JP6441140B2 (en) Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
JP4860076B2 (en) Process for producing a catalyst for selective catalytic reduction of nitrogen oxides
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
JP2014512956A (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
JP6671163B2 (en) Exhaust gas treatment honeycomb catalyst and method for producing the same
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
CN108525709B (en) Method for recycling waste SCR denitration catalyst and regenerated SCR denitration catalyst carrier powder
KR20140002647A (en) Supported catalyst of digestion residues of titanyl sulphate-containing black solution
JP2004000943A (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP6266069B2 (en) COMPOSITION FOR HONEYCOMB EXTRUSION MOLDED BODY, HONEYCOMB MOLDED BODY AND METHOD FOR PRODUCING THEM
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6157916B2 (en) NOx removal catalyst and method for producing the same
JP6308832B2 (en) Method for producing exhaust gas treatment catalyst
JP6391397B2 (en) Method for producing exhaust gas treatment catalyst
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2013193938A (en) Denitration catalyst, method of preparing the same, and method of denitration
JP2005021780A (en) Production method of exhaust gas treatment catalyst
JP2010194452A (en) Method of manufacturing catalyst for nitrogen oxide removal using waste gypsum board
JP2016068031A (en) Denitration catalyst and denitration method
JP2014079716A (en) Catalyst for treating exhaust gas and exhaust gas treatment method
JP2001187318A (en) Waste gas treating method and catalyst carrying ceramic filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250