JP6671163B2 - Exhaust gas treatment honeycomb catalyst and method for producing the same - Google Patents

Exhaust gas treatment honeycomb catalyst and method for producing the same Download PDF

Info

Publication number
JP6671163B2
JP6671163B2 JP2015238418A JP2015238418A JP6671163B2 JP 6671163 B2 JP6671163 B2 JP 6671163B2 JP 2015238418 A JP2015238418 A JP 2015238418A JP 2015238418 A JP2015238418 A JP 2015238418A JP 6671163 B2 JP6671163 B2 JP 6671163B2
Authority
JP
Japan
Prior art keywords
raw material
exhaust gas
catalyst
honeycomb
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238418A
Other languages
Japanese (ja)
Other versions
JP2016129885A (en
Inventor
内田 浩司
浩司 内田
足立 健太郎
健太郎 足立
健太郎 山口
健太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Publication of JP2016129885A publication Critical patent/JP2016129885A/en
Application granted granted Critical
Publication of JP6671163B2 publication Critical patent/JP6671163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、排ガス処理ハニカム触媒およびその製造方法に関する。   The present invention relates to an exhaust gas treatment honeycomb catalyst and a method for producing the same.

例えばセメント製造排ガスは熱回収するため、排ガス温度が80℃程度となる場合がある。よって、このような低温(70〜250℃程度)の排ガスを処理した場合に高い脱硝性能を発揮する触媒の開発が望まれる。   For example, since the exhaust gas from cement production is recovered by heat, the temperature of the exhaust gas may be about 80 ° C. Therefore, development of a catalyst that exhibits high denitration performance when treating such low-temperature (about 70 to 250 ° C.) exhaust gas is desired.

また、燃焼排ガス中の窒素酸化物の除去方法としては、還元剤であるアンモニアの存在下に接触分解する方法が知られているが、通常、燃焼排ガス中には二酸化硫黄が含有されているため、分解温度が300℃以下の場合は、アンモニアとの反応により硫酸アンモニウムが触媒表面に析出して触媒性能を低下させる問題がある。   Further, as a method for removing nitrogen oxides from flue gas, a method of catalytic decomposition in the presence of ammonia as a reducing agent is known, but since sulfur dioxide is usually contained in flue gas, On the other hand, when the decomposition temperature is 300 ° C. or lower, there is a problem that ammonium sulfate precipitates on the surface of the catalyst due to the reaction with ammonia and deteriorates the catalytic performance.

さらに、排ガス中に排煙処理触媒に対する被毒物質が含まれていると、排煙処理触媒が失活し易い。ここで主な被毒物質としてアルカリ金属やアルカリ土類金属が挙げられる。例えば、セメント製造排ガスに含まれるダストの主成分はカルシウムであることが知られている(特許文献1参照)。   Furthermore, if the exhaust gas contains a poisoning substance for the exhaust gas treatment catalyst, the exhaust gas treatment catalyst is easily deactivated. Here, the main poisoning substances include alkali metals and alkaline earth metals. For example, it is known that the main component of dust contained in the exhaust gas from cement production is calcium (see Patent Document 1).

特開2013−49580号公報JP 2013-49580 A

本発明は、低温(70〜250℃程度)の排ガスを処理した場合に高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い、排ガス処理ハニカム触媒およびその製造方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention exhibits high denitration performance when treating low-temperature (about 70 to 250 ° C.) exhaust gas, and furthermore, a poisoning component containing an alkali metal or an alkaline earth metal (especially calcium) and an exhaust gas containing a large amount of ammonium sulfate. It is an object of the present invention to provide an exhaust gas treating honeycomb catalyst which is hardly deactivated even when used for a catalyst, and a method for producing the same.

本発明者は上記の課題を解決するため鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(8)である。
(1)異なる2種類以上の無機単一酸化物または無機複合酸化物の混合物からなる担体と、活性金属成分とを含む排ガス処理ハニカム触媒であって、
BET法による比表面積(SABET)と、水銀圧入ポロシメトリー法による5nmから5μmの触媒細孔の比表面積(SAHg)との差(SABET−SAHg)が25〜35m2/gの範囲にあることを特徴とする排ガス処理ハニカム触媒。
(2)前記担体がA成分とB成分との混合物からなり、
前記A成分が、TiO2からなる無機単一酸化物、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物であり、
前記B成分が、SiO2からなる無機単一酸化物、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物であり、
前記A成分の含有率が10〜90質量%であり、
SiO2の含有率が0.05〜16質量%である、上記(1)に記載の排ガス処理ハニカム触媒。
(3)隔壁に0.005mm以上かつセル目開き幅未満のスリットを有し、スリット数が、隔壁数(矩形のハニカム構造体の端面における一方の辺におけるセル数をXとし、他方の辺におけるセル数をYとして、X(Y−1)+Y(X−1)から算出される値)に対して、0.03〜3%(片端面あたり)である、上記(1)または(2)に記載の排ガス処理ハニカム触媒。
(4)前記スリットの最大長が、長手方向の長さの5〜80%である、上記(3)に記載の排ガス処理ハニカム触媒。
(5)ハニカムセルの肉厚を0.50mm、目開きの幅を3.20mmとしたハニカム触媒とした場合の圧縮強度が50〜200N/cm2である、上記(1)〜(4)のいずれかに記載の排ガス処理ハニカム触媒。
(6)前記B成分に含まれるSiO2の固形分量が5〜20質量%である、上記(1)〜(5)のいずれかに記載の排ガス処理ハニカム触媒。
(7)前記活性金属成分が、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つである、上記(1)〜(6)のいずれかに記載の排ガス処理ハニカム触媒。
(8)下記の工程(a)〜(c)を備え、上記(1)〜(7)のいずれかに記載の排ガス処理ハニカム触媒が得られる、排ガス処理ハニカム触媒の製造方法。
工程(a):Tiを含むスラリー、または、WおよびMoからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物原料を得る工程。
工程(b):Siを含むスラリー、または、TiおよびWからなる群から選ばれる少なくとも1つとSiとを含むスラリーを脱水し、焼成して、SiO2からなる無機単一酸化物原料、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物原料を得る工程。
工程(c):工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料と、工程(b)において得られた無機単一酸化物原料または無機複合酸化物原料とを混合し、ハニカム状に押し出して成形し、乾燥、焼成する工程。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and have completed the present invention.
The present invention is the following (1) to (8).
(1) An exhaust gas treatment honeycomb catalyst comprising a carrier composed of a mixture of two or more different inorganic single oxides or inorganic composite oxides, and an active metal component,
The difference (SA BET -SA Hg ) between the specific surface area (SA BET ) by the BET method and the specific surface area (SA Hg ) of the catalyst pores of 5 nm to 5 μm by the mercury intrusion porosimetry is in the range of 25 to 35 m 2 / g. An exhaust gas treatment honeycomb catalyst characterized in that:
(2) the carrier comprises a mixture of an A component and a B component,
Wherein component A, an inorganic single oxides consisting TiO 2, or an inorganic composite oxide of at least one and TiO 2 selected from the group consisting of WO 3 and MoO 3,
The B component is an inorganic single oxides consisting SiO 2, or at least one inorganic composite oxide of SiO 2 selected from the group consisting of TiO 2 and WO 3,
The content of the component A is 10 to 90% by mass,
The exhaust gas treatment honeycomb catalyst according to the above (1), wherein the content of SiO 2 is 0.05 to 16% by mass.
(3) The partition has a slit of 0.005 mm or more and less than the cell opening width, and the number of slits is equal to the number of partitions (X is the number of cells on one side of the end face of the rectangular honeycomb structure, and X is the number of cells on the other side. (1) or (2) above, which is 0.03 to 3% (per one end face) with respect to X (Y-1) + Y (X-1), where Y is the number of cells. An exhaust gas treatment honeycomb catalyst according to the above.
(4) The exhaust gas treatment honeycomb catalyst according to (3), wherein the maximum length of the slit is 5 to 80% of the length in the longitudinal direction.
(5) The above (1) to (4), wherein the honeycomb cell has a honeycomb cell with a thickness of 0.50 mm and an opening width of 3.20 mm and a compressive strength of 50 to 200 N / cm 2 . An exhaust gas treatment honeycomb catalyst according to any one of the above.
(6) The exhaust gas treatment honeycomb catalyst according to any one of the above (1) to (5), wherein the solid content of SiO 2 contained in the component B is 5 to 20% by mass.
(7) The exhaust gas treatment honeycomb catalyst according to any one of (1) to (6), wherein the active metal component is at least one selected from the group consisting of vanadium, molybdenum, manganese, lanthanum, yttrium, and cerium. .
(8) A method for producing an exhaust gas-treated honeycomb catalyst, comprising the following steps (a) to (c), wherein the exhaust gas-treated honeycomb catalyst according to any one of (1) to (7) is obtained.
Step (a): A slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W and Mo is dehydrated and calcined to obtain an inorganic single oxide raw material made of TiO 2 , or at least one step of obtaining the inorganic composite oxide raw material of TiO 2 selected from the group consisting of WO 3 and MoO 3.
Step (b): A slurry containing Si or a slurry containing at least one selected from the group consisting of Ti and W and Si is dehydrated and calcined to obtain an inorganic single oxide raw material made of SiO 2 , or A step of obtaining a raw material of an inorganic composite oxide of at least one selected from the group consisting of TiO 2 and WO 3 and SiO 2 .
Step (c): mixing the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (a) with the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (b) Extruding into a honeycomb shape, forming, drying and firing.

本発明によれば、低温(70〜250℃程度)の排ガスを処理した場合に高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い、排ガス処理ハニカム触媒およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when exhaust gas of low temperature (about 70-250 degreeC) is processed, high denitration performance is exhibited, and the poisoning component containing alkali metal or alkaline earth metal (especially calcium) and ammonium sulfate are further increased. It is possible to provide an exhaust gas treating honeycomb catalyst which is hardly deactivated even when used for a contained exhaust gas, and a method for producing the same.

ハニカム構造体の好適例の概略斜視図である。It is an outline perspective view of a suitable example of a honeycomb structure. 圧縮強度の測定方法を説明するための概略図である。It is a schematic diagram for explaining the measuring method of compressive strength.

<本発明の触媒>
本発明について説明する。
本発明は、異なる2種類以上の無機単一酸化物または無機複合酸化物の混合物からなる担体と、活性金属成分とを含む排ガス処理ハニカム触媒であって、BET法による比表面積(SABET)と、水銀圧入ポロシメトリー法による5nmから5μmの触媒細孔の比表面積(SAHg)との差(SABET−SAHg)が25〜35m2/gの範囲にあることを特徴とする排ガス処理ハニカム触媒である。
このような排ガス処理ハニカム触媒を、以下では「本発明の触媒」ともいう。
<Catalyst of the present invention>
The present invention will be described.
The present invention relates to an exhaust gas treating honeycomb catalyst comprising a carrier comprising a mixture of two or more different inorganic monooxides or inorganic composite oxides, and an active metal component, and has a specific surface area (SA BET ) measured by a BET method. Exhaust gas treatment honeycomb characterized in that the difference (SA BET -SA Hg ) from the specific surface area (SA Hg ) of the catalyst pores of 5 nm to 5 μm by mercury intrusion porosimetry is in the range of 25 to 35 m 2 / g. It is a catalyst.
Hereinafter, such an exhaust gas treatment honeycomb catalyst is also referred to as “catalyst of the present invention”.

本発明の触媒は、BET法によって測定した比表面積(SABET)が50〜100m2/gであることが好ましく、60〜100m2/gであることがより好ましい。 The catalyst of the present invention preferably has a specific surface area (SA BET ) measured by the BET method of 50 to 100 m 2 / g, more preferably 60 to 100 m 2 / g.

BET法(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、300℃で60分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
A method for measuring the BET method (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put into a measurement cell, degassed at 300 ° C. for 60 minutes in a nitrogen gas stream, and then the sample is mixed with a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. The liquid nitrogen temperature is maintained in an air stream, and nitrogen is equilibrium-adsorbed to the sample. Next, the temperature of the sample is gradually raised to room temperature while flowing the above-mentioned mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured by a previously prepared calibration curve.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.

本発明の触媒は、水銀圧入ポロシメトリー法によって測定した比表面積(SAHg)が20〜60m2/gであることが好ましく、25〜55m2/gであることがより好ましい。 The catalyst of the present invention preferably has a surface area ratio as measured by mercury intrusion porosimetry method (SA Hg) is 20~60m 2 / g, more preferably 25~55m 2 / g.

水銀圧入ポロシメトリー法とは、ポロシメーターを使用する水銀圧入法であり、例えば従来公知の測定装置を用いて測定することができる。   The mercury intrusion porosimetry method is a mercury intrusion method using a porosimeter, and can be measured using, for example, a conventionally known measuring device.

本発明の触媒は、BET法による比表面積(SABET)と、水銀圧入ポロシメトリー法による比表面積(SAHg)との差(SABET−SAHg)が25〜35m2/gとなる。この値は27〜30m2/gとなることが好ましい。
SABET−SAHgが上記のような範囲にあると、低温(70〜250℃程度)の排ガスを処理した場合に高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い。
In the catalyst of the present invention, the difference (SA BET -SA Hg ) between the specific surface area (SA BET ) by the BET method and the specific surface area (SA Hg ) by the mercury intrusion porosimetry method is 25 to 35 m 2 / g. This value is preferably from 27 to 30 m 2 / g.
When SA BET -SA Hg is in the above range, when a low-temperature (about 70 to 250 ° C.) exhaust gas is treated, a high denitration performance is exhibited, and further, an alkali metal or an alkaline earth metal (particularly, calcium) is removed. Even when used in an exhaust gas containing a large amount of poisoning components and ammonium sulfate, it is hardly deactivated.

<担体>
本発明の触媒における担体について説明する。
本発明の触媒において担体は、異なる2種類以上の無機単一酸化物または無機複合酸化物の混合物からなる。
具体的に、担体は、異なる2種類であるA成分とB成分との混合物からなるものであることが好ましい。
ここでA成分は、TiO2からなる無機単一酸化物、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物である。すなわち、A成分は、Tiを含む単一酸化物、TiとWとを含む複合酸化物、TiとMoとを含む複合酸化物、TiとWとMoとを含む複合酸化物のいずれかを意味する。
<Carrier>
The carrier in the catalyst of the present invention will be described.
In the catalyst of the present invention, the support comprises a mixture of two or more different inorganic single oxides or inorganic composite oxides.
Specifically, the carrier is preferably composed of a mixture of two different types of A component and B component.
Where A component, an inorganic single oxides consisting TiO 2, or an inorganic composite oxide of at least one and TiO 2 selected from the group consisting of WO 3 and MoO 3. That is, the component A means any of a single oxide containing Ti, a complex oxide containing Ti and W, a complex oxide containing Ti and Mo, and a complex oxide containing Ti, W and Mo. I do.

また、B成分は、SiO2からなる無機単一酸化物、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物ある。すなわち、B成分は、Siを含む単一酸化物、SiとTiとを含む複合酸化物、SiとWとを含む複合酸化物、SiとTiとWとを含む複合酸化物のいずれかを意味する。
B成分は、SiとTiとを含む複合酸化物であることが好ましい。
また、B成分に含まれるSiO2の固形分量が5〜40質量%であることが好ましい。
Also, B component, an inorganic single oxides consisting SiO 2, or is at least one inorganic composite oxide of SiO 2 is selected from the group consisting of TiO 2 and WO 3. That is, the B component means any of a single oxide containing Si, a complex oxide containing Si and Ti, a complex oxide containing Si and W, and a complex oxide containing Si, Ti and W. I do.
The B component is preferably a composite oxide containing Si and Ti.
Further, it is preferable that the solid content of SiO 2 contained in the component B is 5 to 40% by mass.

担体におけるA成分の含有率は10〜90質量%であることが好ましく、20〜85質量%であることがより好ましく、30〜80質量%であることがさらに好ましい。   The content of the component A in the carrier is preferably from 10 to 90% by mass, more preferably from 20 to 85% by mass, and still more preferably from 30 to 80% by mass.

担体におけるSiO2の含有率は0.05〜16質量%であることが好ましく、0.10〜13質量%であることがより好ましく、0.15〜8質量%であることがさらに好ましい。 The content of SiO 2 in the carrier is preferably 0.05 to 16% by mass, more preferably 0.10 to 13% by mass, and even more preferably 0.15 to 8% by mass.

担体は、上記のようなA成分およびB成分以外の成分を20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下の割合で含んでもよい。また、担体は実質的にA成分およびB成分からなることが好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物等は含まれ得るが、それ以外は含まないことを意味する。   The carrier may contain components other than the above-mentioned components A and B at a ratio of 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less. Further, it is preferable that the carrier substantially comprises the A component and the B component. Here, “substantially” means that impurities and the like inevitably contained in the raw materials and the manufacturing process can be contained, but other substances are not contained.

<活性金属成分>
本発明の触媒における活性金属成分について説明する。
本発明の触媒は、上記のような担体に活性金属成分が担持している。
本発明の触媒において活性金属成分は、タングステン、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つであることが好ましい。
<Active metal component>
The active metal component in the catalyst of the present invention will be described.
In the catalyst of the present invention, an active metal component is supported on the above-described carrier.
In the catalyst of the present invention, the active metal component is preferably at least one selected from the group consisting of tungsten, vanadium, molybdenum, manganese, lanthanum, yttrium, and cerium.

本発明の触媒は、上記のような担体および活性金属成分以外の成分を20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下の割合で含んでもよい。また、本発明の触媒は実質的に前記担体および前記活性金属成分からなることが好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物等は含まれ得るが、それ以外は含まないことを意味する。
上記のような担体および活性金属成分以外の成分として、例えばCr、Fe、Co、Ni、Cu、Ag、Au、Pd、Nd、In、SnおよびIrが挙げられる。
The catalyst of the present invention contains components other than the above-mentioned carrier and the active metal component in a proportion of 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less. May be. In addition, it is preferable that the catalyst of the present invention substantially comprises the carrier and the active metal component. Here, “substantially” means that impurities and the like inevitably contained in the raw materials and the manufacturing process can be contained, but other substances are not contained.
Components other than the above-described carrier and active metal component include, for example, Cr, Fe, Co, Ni, Cu, Ag, Au, Pd, Nd, In, Sn and Ir.

<ハニカム構造体>
本発明の触媒は、上記のような担体に活性金属成分が担持しているハニカム状の構造体である。
ハニカム状の構造体とは、平行に貫通した多数の小孔(セル)を有する構造体を意味する。このような構造の触媒は、通常、反応管内にぴったりと収めて使用される。また、セルの形(断面形状)としては、六角形、四角形、三角形、円形などがある。通常、セルの大きさ(径)は目開き、セルとセルとの間は隔壁、1つのセルに注目した場合に対向する左右または上下の壁の各中心間の距離はピッチと呼ばれる。
<Honeycomb structure>
The catalyst of the present invention is a honeycomb-shaped structure in which an active metal component is supported on a carrier as described above.
The honeycomb structure means a structure having a number of small holes (cells) penetrating in parallel. The catalyst having such a structure is usually used while being tightly fitted in a reaction tube. The shape (cross-sectional shape) of the cell includes a hexagon, a quadrangle, a triangle, and a circle. In general, the size (diameter) of a cell is an aperture, the partition between cells is a partition, and the distance between the centers of left, right, upper and lower walls facing each other when one cell is focused is called pitch.

図1に、本発明の触媒に相当するハニカム状の構造体の概略斜視図を例示する。
図1において本発明の触媒(1)は、8目×8目のセル(3)を有し、セル(3)の断面形状は四角形の態様のものである。セル(3)の大きさ(径)は目開きの幅(5)、セル(3)とセル(3)との間は隔壁(7)、隔壁(7)の厚さ(9)を肉厚ともいう。さらに、セル(3)の開口部が露出している面を端面(11)とし、それ以外の面を側面(13)とする。また、ハニカム構造体の長手方向の長さをXとする。
FIG. 1 illustrates a schematic perspective view of a honeycomb structure corresponding to the catalyst of the present invention.
In FIG. 1, the catalyst (1) of the present invention has 8 × 8 cells (3), and the cross-sectional shape of the cells (3) is a quadrangle. The size (diameter) of the cell (3) is the width of the aperture (5), the space between the cells (3) and (3) is the partition (7), and the thickness (9) of the partition (7) is the thickness. Also called. Further, the surface where the opening of the cell (3) is exposed is defined as an end surface (11), and the other surface is defined as a side surface (13). Further, the length in the longitudinal direction of the honeycomb structure is represented by X.

本発明の触媒は、図1に示すように、隔壁(7)に0.005mm以上かつセル目開き幅(5)未満のスリット(15)を有するものであることが好ましい。ここでスリットの幅(17)の測定は、ハニカム構造体の端面(11)をマイクロスコープや顕微鏡等を用いて観察して確認し、その端面(11)における幅を測定して得た値を意味するものとする。   As shown in FIG. 1, the catalyst of the present invention preferably has a partition (7) having a slit (15) of 0.005 mm or more and less than the cell opening width (5). Here, the width (17) of the slit is measured by observing the end face (11) of the honeycomb structure using a microscope, a microscope, or the like, and measuring the width at the end face (11). Shall mean.

そして、同様にしてハニカム構造体の端面(11)をマイクロスコープや顕微鏡等を用いて観察して確認して得られたスリット数が、隔壁数(すなわち、セル数×(セル数−1)×2)に対して0.03〜3%(片端面あたり)であることが好ましく、0.06〜2%であることが好ましい。この比率が低すぎると、初期性能低く、被毒成分耐性低くなる傾向がある。逆に、この比率が高すぎると、触媒の強度に問題が生じたり、生産性(ハニカム状形状を製造できない)に問題が生じたりする場合がある。
なお、ハニカム構造体の端面がほぼ正方形である場合のように、その端面における一方の辺におけるセル数と、他方の辺におけるセル数とが同一の場合、隔壁数は、上記のようにセル数×(セル数−1)×2から算出できる。しかしながら、ハニカム構造体の端面が長方形である場合のように、その端面における一方の辺におけるセル数と、他方の辺におけるセル数とが異なる場合、隔壁数は、一方の辺におけるセル数をX、他方の辺におけるセル数をYとすると、X(Y−1)+Y(X−1)の式から算出される。ハニカム構造体の端面における一方の辺におけるセル数と、他方の辺におけるセル数とが同一の場合は、この式においてX=Yの場合に相当するため、上記の通り、セル数×(セル数−1)×2から隔壁数を算出する場合と同一になる。
Then, similarly, the number of slits obtained by observing and confirming the end face (11) of the honeycomb structure using a microscope or a microscope is the number of partitions (that is, the number of cells × (the number of cells−1) × It is preferably 0.03 to 3% (per one end face) with respect to 2), and more preferably 0.06 to 2%. If this ratio is too low, the initial performance tends to be low and the resistance to poisoning components tends to be low. Conversely, if the ratio is too high, there may be a problem in the strength of the catalyst or a problem in productivity (cannot produce a honeycomb-shaped shape).
When the number of cells on one side of the end face and the number of cells on the other side are the same, such as when the end face of the honeycomb structure is substantially square, the number of partition walls is equal to the number of cells as described above. × (number of cells−1) × 2. However, when the number of cells on one side of the end face is different from the number of cells on the other side, such as when the end face of the honeycomb structure is a rectangle, the number of partitions on the one side is X. , And Y is the number of cells on the other side, and is calculated from the equation X (Y-1) + Y (X-1). When the number of cells on one side and the number of cells on the other side of the end face of the honeycomb structure are the same, this equation corresponds to the case of X = Y, and therefore, as described above, the number of cells × (the number of cells) -1) It is the same as the case of calculating the number of partitions from × 2.

さらに、スリット15の長さ(すなわち、ハニカム構造体の長手方向と略平行な方向へのスリットの深さ)の最大長が、ハニカム構造体の長手方向の長さ(X)の5〜80%であることが好ましく、5〜70%であることがより好ましい。この比率が低すぎると、初期性能低く、被毒成分耐性低くなる傾向がある。逆に、この比率が高すぎると、触媒の強度に問題が生じたり、生産性(ハニカム状形状を製造できない)に問題が生じたりする場合がある。   Further, the maximum length of the slit 15 (that is, the depth of the slit in a direction substantially parallel to the longitudinal direction of the honeycomb structure) is 5 to 80% of the longitudinal length (X) of the honeycomb structure. And more preferably 5 to 70%. If this ratio is too low, the initial performance tends to be low and the resistance to poisoning components tends to be low. Conversely, if the ratio is too high, there may be a problem in the strength of the catalyst or a problem in productivity (cannot produce a honeycomb-shaped shape).

本発明の触媒は、セルの肉厚(9)を0.50mm、目開きの幅(5)を3.20mmとしたハニカム触媒とした場合の圧縮強度が50〜200N/cm2であることが好ましい。このような場合、本発明の触媒は圧縮強度が十分に高いので好ましい。
なお、圧縮強度の測定方法は、後述する実施例において詳細に説明する。
The catalyst of the present invention may have a compressive strength of 50 to 200 N / cm 2 when the honeycomb catalyst has a cell thickness (9) of 0.50 mm and an opening width (5) of 3.20 mm. preferable. In such a case, the catalyst of the present invention is preferable because the compressive strength is sufficiently high.
The method for measuring the compressive strength will be described in detail in Examples described later.

本発明の触媒は、セメント製造排ガス、ゴミ焼却排ガス、ガラス溶融炉排ガス、鉄鋼コークス炉の排ガス処理触媒として好ましく用いることができる。   The catalyst of the present invention can be preferably used as an exhaust gas treatment catalyst for cement production exhaust gas, refuse incineration exhaust gas, glass melting furnace exhaust gas, and steel coke oven.

本発明の触媒は、排ガスに有機塩素化化合物(ダイオキシン類等)が含有されている場合、これを分解除去する装置にも用いることができる。   The catalyst of the present invention can also be used in an apparatus for decomposing and removing organic chlorinated compounds (such as dioxins) when the exhaust gas contains organic chlorinated compounds.

本発明の触媒は、排ガスに水銀が含有されている場合、本触媒を設置し水銀をハロゲン化する装置にも用いることができる。   When mercury is contained in the exhaust gas, the catalyst of the present invention can be used in an apparatus for installing the present catalyst and halogenating mercury.

次に、本発明の触媒の製造方法について説明する。
本発明の触媒において担体は、収縮率の異なる2種類以上の無機酸化物を混合して製造することができる。例えば特開2004−41893号公報や特開2005−021780号公報に記載された方法で製造することができる。
本発明の触媒は、前記担体もしくはその原料および前記活性金属成分もしくはその原料を混合してなる混合物を得た後、押出成形法等によってハニカム構造の形状に成形する方法や、ハニカム構造の基材上に担体成分および活性成分を含浸・担持する方法によって製造することができる。
Next, a method for producing the catalyst of the present invention will be described.
In the catalyst of the present invention, the support can be produced by mixing two or more types of inorganic oxides having different shrinkage rates. For example, it can be manufactured by a method described in JP-A-2004-41893 or JP-A-2005-021780.
The catalyst of the present invention is obtained by mixing the carrier or the raw material thereof and the active metal component or the raw material thereof to obtain a mixture, and then forming the mixture into a honeycomb structure by an extrusion molding method or the like. It can be produced by a method of impregnating and supporting a carrier component and an active ingredient thereon.

本発明の触媒は、下記の工程(a)〜(c)を備える製造方法によって製造することが好ましい。
工程(a):Tiを含むスラリー、または、WおよびMoからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物原料を得る工程。
工程(b):Siを含むスラリー、または、TiおよびWからなる群から選ばれる少なくとも1つとSiとを含むスラリーを脱水し、焼成して、SiO2からなる無機単一酸化物原料、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物原料を得る工程。
工程(c):工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料と、工程(b)において得られた無機単一酸化物原料または無機複合酸化物原料とを混合し、ハニカム状に押し出して成形し、乾燥、焼成する工程。
このような好ましい製造方法を、以下では「本発明の製造方法」ともいう。
The catalyst of the present invention is preferably produced by a production method comprising the following steps (a) to (c).
Step (a): A slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W and Mo is dehydrated and calcined to obtain an inorganic single oxide raw material made of TiO 2 , or at least one step of obtaining the inorganic composite oxide raw material of TiO 2 selected from the group consisting of WO 3 and MoO 3.
Step (b): A slurry containing Si or a slurry containing at least one selected from the group consisting of Ti and W and Si is dehydrated and calcined to obtain an inorganic single oxide raw material made of SiO 2 , or A step of obtaining a raw material of an inorganic composite oxide of at least one selected from the group consisting of TiO 2 and WO 3 and SiO 2 .
Step (c): mixing the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (a) with the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (b) Extruding into a honeycomb shape, forming, drying and firing.
Hereinafter, such a preferable production method is also referred to as a “production method of the present invention”.

<本発明の製造方法>
工程(a)について説明する。
工程(a)では、初めに、Tiを含むスラリー、または、WおよびMoからなる群から選ばれる少なくとも1つとTiとを含むスラリーを得る。
このスラリーは、例えばTiを含む化合物や、さらにWを含む化合物、Moを含む化合物を、水等の溶媒に溶解した後、酸やアルカリを用いてpHを調整することでTiの酸化物や、さらにWの酸化物、Moの酸化物を析出させて得ることができる。析出させた後、30〜98℃で0.5〜12時間、熟成させることが好ましい。
<Production method of the present invention>
Step (a) will be described.
In the step (a), a slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W and Mo is first obtained.
This slurry, for example, a compound containing Ti, a compound containing W, and a compound containing Mo are dissolved in a solvent such as water, and then the pH is adjusted with an acid or an alkali to thereby prepare an oxide of Ti, Further, it can be obtained by depositing an oxide of W and an oxide of Mo. After the precipitation, aging is preferably performed at 30 to 98 ° C for 0.5 to 12 hours.

ここでTiを含む化合物としては、メタチタン酸が好ましく、硫酸法による二酸化チタンの製造工程より得られる硫酸チタン溶液を用い、さらにこの硫酸チタンを加水分解してメタチタン酸を得ることが好ましい。   Here, the compound containing Ti is preferably metatitanic acid, and it is preferable to use a titanium sulfate solution obtained from a process for producing titanium dioxide by a sulfuric acid method and further hydrolyze the titanium sulfate to obtain metatitanic acid.

Wを含む化合物としては、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、燐タングステン酸アンモニウムおよびテトラチオタングステン酸アンモニウムなどのタングステン含有窒素化合物、二硫化タングステン、三硫化タングステンなどのタングステン含有硫黄化合物、六塩化タングステン、二塩化タングステン、三塩化タングステン、四塩化タングステン、五塩化タングステン、二塩化二酸化タングステン、四塩化酸化タングステンが挙げられる。   Examples of the compound containing W include tungsten-containing nitrogen compounds such as ammonium paratungstate, ammonium metatungstate, ammonium phosphotungstate and ammonium tetrathiotungstate; tungsten-containing sulfur compounds such as tungsten disulfide and tungsten trisulfide; and hexachloride. Examples include tungsten, tungsten dichloride, tungsten trichloride, tungsten tetrachloride, tungsten pentachloride, tungsten dichloride dioxide, and tungsten tetrachloride oxide.

Moを含む化合物としては、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウム、燐モリブデン酸アンモニウムおよびテトラチオモリブデン酸アンモニウムなどのモリブデン含有窒素化合物、二硫化モリブデン、三硫化モリブデンなどのモリブデン含有硫黄化合物、六塩化モリブデン、二塩化モリブデン、三塩化モリブデン、四塩化モリブデン、五塩化モリブデン、二塩化二酸化モリブデン、四塩化酸化モリブデンが挙げられる。   Examples of the compound containing Mo include molybdenum-containing nitrogen compounds such as ammonium paramolybdate, ammonium metamolybdate, ammonium phosphomolybdate and ammonium tetrathiomolybdate; molybdenum-containing sulfur compounds such as molybdenum disulfide and molybdenum trisulfide; and hexachloride. Examples include molybdenum, molybdenum dichloride, molybdenum trichloride, molybdenum tetrachloride, molybdenum pentachloride, molybdenum dichloride, and molybdenum tetrachloride.

Tiを含む化合物の他にWを含む化合物を用いる場合、Tiを含む化合物とWを含む化合物との量比は特に限定されないが、TiO2(Tiの全てがTiO2であると仮定した換算値)100質量部に対してWO3(Wの全てがWO3であると仮定した換算値)が1〜15質量部となるように調整することが好ましい。 When a compound containing W is used in addition to a compound containing Ti, the quantitative ratio of the compound containing Ti to the compound containing W is not particularly limited, but TiO 2 (a conversion value assuming that all of Ti is TiO 2 ) ) all WO 3 (W is converted value assuming that the WO 3) that is preferably adjusted to be 1 to 15 parts by weight to 100 parts by weight.

Tiを含む化合物の他にMoを含む化合物を用いる場合、Tiを含む化合物とMoを含む化合物との量比は特に限定されないが、TiO2(Tiの全てがTiO2であると仮定した換算値)100質量部に対してMoO3(Moの全てがMoO3であると仮定した換算値)が1〜15質量部となるように調整することが好ましい。 When a compound containing Mo is used in addition to a compound containing Ti, the quantitative ratio between the compound containing Ti and the compound containing Mo is not particularly limited, but TiO 2 (a conversion value assuming that all of Ti is TiO 2 ) It is preferable to adjust MoO 3 (converted value assuming that all of Mo is MoO 3 ) to 1 to 15 parts by mass with respect to 100 parts by mass.

上記のようにしてスラリーを得た後、これを脱水し、焼成する。
脱水方法は特に限定されず、例えば従来公知の方法、具体的には遠心分離法等を適用して脱水することができる。
焼成方法は特に限定されず、例えば従来公知の方法、具体的には焼成炉等を用いて焼成することができる。焼成温度は、例えば110℃以上(好ましくは300℃以上)、700℃以下とする。
脱水後に得られるケーキを焼成する前に、乾燥してもよい。乾燥は、例えば従来公知の方法、具体的には電気乾燥機等を用いることができる。乾燥温度は、例えば30〜200℃とする。
After obtaining the slurry as described above, it is dehydrated and fired.
The dehydration method is not particularly limited, and for example, dehydration can be performed by applying a conventionally known method, specifically, a centrifugal separation method or the like.
The firing method is not particularly limited, and for example, firing can be performed using a conventionally known method, specifically, using a firing furnace or the like. The firing temperature is, for example, 110 ° C. or higher (preferably 300 ° C. or higher) and 700 ° C. or lower.
Before baking the cake obtained after dehydration, it may be dried. For drying, for example, a conventionally known method, specifically, an electric dryer or the like can be used. The drying temperature is, for example, 30 to 200 ° C.

このような工程(a)によって、TiO2からなる無機単一酸化物原料、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物原料を得ることができる。 Such step (a), the inorganic single oxide material consists of TiO 2 or, can be obtained inorganic mixed oxide material of at least one of a TiO 2 selected from the group consisting of WO 3 and MoO 3 .

工程(b)について説明する。
工程(b)では、初めに、Siを含むスラリー、または、TiおよびWからなる群から選ばれる少なくとも1つとSiとを含むスラリーを得る。
このスラリーは、例えばSiを含む化合物や、さらにTiを含む化合物、Wを含む化合物を、水等の溶媒に溶解または分散した後、酸やアルカリを用いてpHを調整することでSiの酸化物や、さらにTiの酸化物、Wの酸化物を析出させて得ることができる。析出させた後、30〜98℃で0.5〜12時間、熟成させることが好ましい。
Step (b) will be described.
In the step (b), first, a slurry containing Si or a slurry containing at least one selected from the group consisting of Ti and W and Si is obtained.
This slurry is prepared by dissolving or dispersing, for example, a compound containing Si, a compound containing Ti, and a compound containing W in a solvent such as water, and then adjusting the pH using an acid or an alkali to form an oxide of Si. Alternatively, it can be obtained by further depositing an oxide of Ti and an oxide of W. After the precipitation, aging is preferably performed at 30 to 98 ° C for 0.5 to 12 hours.

ここでSiを含む化合物としては、シリカゾル、ケイ酸液、ヒュームドシリカ、シリコンアルコキシド等が挙げられる。   Here, examples of the compound containing Si include silica sol, silicic acid solution, fumed silica, silicon alkoxide, and the like.

Tiを含む化合物およびWを含む化合物としては、工程(a)の場合と同様のものを用いることができる。   As the compound containing Ti and the compound containing W, those similar to those in the step (a) can be used.

Siを含む化合物の他にTiを含む化合物を用いる場合、Siを含む化合物とTiを含む化合物との量比は特に限定されないが、SiO2(Siの全てがSiO2であると仮定した換算値)100質量部に対してTiO2(Tiの全てがTiO2であると仮定した換算値)が150〜900質量部となるように調整することが好ましい。 When a compound containing Ti is used in addition to a compound containing Si, the quantitative ratio between the compound containing Si and the compound containing Ti is not particularly limited. However, SiO 2 (a conversion value assuming that all of Si is SiO 2 ) ) it is preferred that all of the TiO 2 (Ti is converted value assuming that the TiO 2) is adjusted to be from 150 to 900 parts by weight to 100 parts by weight.

Siを含む化合物の他にWを含む化合物を用いる場合、Siを含む化合物とWを含む化合物との量比は特に限定されないが、SiO2(Siの全てがSiO2であると仮定した換算値)100質量部に対してWO3(Wの全てがWO3であると仮定した換算値)が12.5〜1500質量部となるように調整することが好ましい。 When a compound containing W is used in addition to a compound containing Si, the quantitative ratio between the compound containing Si and the compound containing W is not particularly limited. However, SiO 2 (a conversion value assuming that all of Si is SiO 2 ) ) all WO 3 (W is converted value assuming that the WO 3) that is preferably adjusted to be from 12.5 to 1500 parts by weight to 100 parts by weight.

上記のようにしてスラリーを得た後、これを脱水し、焼成する。
脱水方法および焼成方法は特に限定されず、工程(a)の場合と同様であってよい。また、工程(a)の場合と同様に乾燥処理を行ってもよい。
After obtaining the slurry as described above, it is dehydrated and fired.
The dehydration method and firing method are not particularly limited, and may be the same as in the case of step (a). Further, a drying treatment may be performed as in the case of the step (a).

このような工程(2)によって、SiO2からなる無機単一酸化物原料、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物原料を得ることができる。 Such step (2), an inorganic single oxide material made of SiO 2 or, can be obtained with at least one inorganic composite oxide raw material of SiO 2 is selected from the group consisting of TiO 2 and WO 3 .

工程(c)について説明する。
工程(c)では、工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料(以下ではこれらを原料(a)ともいう)と、工程(b)において得られた無機単一酸化物原料または無機複合酸化物原料(以下ではこれらを原料(b)ともいう)とを混合する。
この混合比は特に限定されないものの、原料(a)および原料(b)の合計質量に対する原料(a)の割合(原料(a)の質量/(原料(a)の質量+原料(b)の質量)×100(%))が10〜95質量%となるように、水分を添加した上で混合することが好ましい。
Step (c) will be described.
In the step (c), the inorganic single oxide raw material or the inorganic composite oxide raw material obtained in the step (a) (hereinafter also referred to as the raw material (a)) and the inorganic single oxide raw material obtained in the step (b) are used. A monoxide material or an inorganic composite oxide material (these materials are also referred to as a material (b) below) are mixed.
Although this mixing ratio is not particularly limited, the ratio of the raw material (a) to the total mass of the raw material (a) and the raw material (b) (mass of the raw material (a) / (mass of the raw material (a) + mass of the raw material (b)) ) × 100 (%)) is preferably 10 to 95% by mass and mixed after adding water.

上記のように原料(a)および原料(b)を、水分を添加した上で混合する際に、必要に応じて成形助剤を、さらに添加して混合してもよい。成形助剤としては、例えば従来公知のものを用いることができ、具体的には、ポリエチレンオキサイド、結晶性セルロース、グリセリン、ポリビニルアルコール等の有機物、または粘土鉱物が挙げられる。   When the raw material (a) and the raw material (b) are mixed after adding water as described above, a molding aid may be further added and mixed as necessary. As the molding aid, for example, conventionally known ones can be used, and specific examples include polyethylene oxide, crystalline cellulose, organic substances such as glycerin and polyvinyl alcohol, and clay minerals.

そして、得られた混合物を、例えば従来公知の成形機を用いてハニカム状に成形し、その後、乾燥、焼成する。
乾燥方法は特に限定されず、例えば従来公知の方法、具体的には電気乾燥機等を適用して乾燥することができる。乾燥温度は、例えば30〜200℃とする。
焼成方法は特に限定されず、例えば従来公知の方法、具体的には焼成炉等を用いて焼成することができる。焼成温度は、例えば450〜700℃とする。
Then, the obtained mixture is formed into a honeycomb shape using, for example, a conventionally known forming machine, and then dried and fired.
The drying method is not particularly limited, and for example, drying can be performed using a conventionally known method, specifically, an electric dryer or the like. The drying temperature is, for example, 30 to 200 ° C.
The firing method is not particularly limited, and for example, firing can be performed using a conventionally known method, specifically, using a firing furnace or the like. The firing temperature is, for example, 450 to 700 ° C.

このような本発明の製造方法によって、本発明の触媒を得ることができる。   The catalyst of the present invention can be obtained by such a production method of the present invention.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

[原料調製1(Ti酸化物原料:TiO2原料)]
メタチタン酸スラリー(石原産業製)を還流器付攪拌機に仕込み、25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti酸化物原料を得た。
[Raw material preparation 1 (Ti oxide raw material: TiO 2 raw material)]
A metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirrer equipped with a reflux condenser, 25 mass% aqueous ammonia was added so as to have a pH of 7.5 or more, and the mixture was heated and aged at 60 ° C. for 3 hours with sufficient stirring. . Then, the obtained slurry was dewatered and washed, and the dehydrated cake was dried at 110 ° C. and then fired at 500 ° C. to obtain a Ti oxide raw material.

[原料調製2(Ti-Si原料:TiO2−20質量%SiO2複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付攪拌機に仕込み、これにシリカゾル(日揮触媒化成社製、S−20L)を、TiO2100質量部に対してSiO2が20質量部となるように添加し、加えて25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。
そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−Si複合酸化物原料を得た。
[Raw material preparation 2 (Ti-Si raw material: TiO 2 -20 mass% SiO 2 composite oxide raw material)]
They were charged to metatitanic acid slurry (manufactured by Ishihara Sangyo Kaisha), a reflux condenser equipped with a stirrer, to which silica sol (JGC Catalysts and Chemicals Ltd., S-20L), and so SiO 2 is 20 parts by mass with respect to TiO 2 100 parts by weight After the addition, 25 mass% ammonia water was added so as to have a pH of 7.5 or more, and the mixture was heated and aged at 60 ° C. for 3 hours with sufficient stirring.
Then, the obtained slurry was dewatered and washed, and the dehydrated cake was dried at 110 ° C and then fired at 500 ° C to obtain a Ti-Si composite oxide raw material.

[原料調製3(Ti−W−Si原料:TiO2−5質量%WO3−10%SiO2複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付攪拌機に仕込み、これにパラタングステン酸アンモニウム(日本新金属社製)を、TiO2100質量部に対してWO3が5質量部となるように添加し、さらにシリカゾル(日揮触媒化成社製、S−20L)を、TiO2100質量部に対してSiO2が10質量部となるように添加し、加えて25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。
そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−W−Si複合酸化物原料を得た。
[Raw material preparation 3 (Ti-W-Si raw material: TiO 2 -5 mass% WO 3 -10% SiO 2 composite oxide raw material)]
They were charged to metatitanic acid slurry (manufactured by Ishihara Sangyo Kaisha), a reflux condenser equipped with a stirrer, adding thereto ammonium paratungstate (produced by Nippon Shinkinzoku Co.), as WO 3 with respect to TiO 2 100 parts by weight is 5 parts by weight Further, silica sol (manufactured by Nikki Shokubai Kasei Co., Ltd., S-20L) was added so that SiO 2 was 10 parts by mass with respect to 100 parts by mass of TiO 2 , and 25% by mass aqueous ammonia was added at pH 7.5 or more. Then, the mixture was heated and aged at 60 ° C. for 3 hours with sufficient stirring.
Then, the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C and then baked at 500 ° C to obtain a Ti-W-Si composite oxide material.

[原料調製4(Ti−Mo原料:TiO2−5質量%MoO3複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付攪拌機に仕込み、これにパラモリブデン酸アンモニウムを、TiO2100質量部に対してMoO3が5質量部となるように添加し、加えて25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。
そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−Mo複合酸化物原料を得た。
[Raw material preparation 4 (Ti-Mo raw material: TiO 2 -5 mass% MoO 3 composite oxide raw material)]
A metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirrer equipped with a reflux condenser, and ammonium paramolybdate was added to 100 parts by mass of TiO 2 so that 5 parts by mass of MoO 3 was added. After adding ammonia water so as to have a pH of 7.5 or more, the mixture was heated and aged at 60 ° C. for 3 hours with sufficient stirring.
Then, the obtained slurry was dewatered and washed, and the dehydrated cake was dried at 110 ° C and then fired at 500 ° C to obtain a Ti-Mo composite oxide raw material.

[原料調製5(Ti−W原料:TiO2−5質量%WO3複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付攪拌機に仕込み、これにパラタングステン酸アンモニウム(日本新金属社製)を、TiO2100質量部に対してWO3が5質量部となるように添加し、加えて25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。
そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−W複合酸化物原料を得た。
[Raw material preparation 5 (Ti-W raw material: TiO 2 -5 mass% WO 3 composite oxide raw material)]
They were charged to metatitanic acid slurry (manufactured by Ishihara Sangyo Kaisha), a reflux condenser equipped with a stirrer, adding thereto ammonium paratungstate (produced by Nippon Shinkinzoku Co.), as WO 3 with respect to TiO 2 100 parts by weight is 5 parts by weight Then, 25 mass% ammonia water was added so as to have a pH of 7.5 or more, and the mixture was heated and aged at 60 ° C. for 3 hours with sufficient stirring.
Then, the obtained slurry was subjected to dehydration washing, and the dehydrated cake was dried at 110 ° C and fired at 500 ° C to obtain a Ti-W composite oxide raw material.

触媒調製
[比較例1]
上記のようにして得たTi酸化物原料22.7kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.10kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるようにミキサーにて混練後、ハニカム状に押して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。得られたハニカム状触媒は、隔壁の肉厚:0.50mm、目開き:3.20mm、外形75mmの態様であった。
Preparation of catalyst [Comparative Example 1]
To 22.7 kg of the Ti oxide raw material obtained as described above, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Co., Ltd.), 920 g of ammonium paramolydate (manufactured by Taiyo Mining Co., Ltd.), and 2.10 kg of 25 mass% ammonia water Water, 125 g of polyethylene glycol (PEG-20,000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the mixture was kneaded with a mixer so as to have a water concentration of 30% by mass. After drying at 60 ° C. for 72 hours, it was calcined at 500 ° C. for 3 hours to obtain a catalyst. The obtained honeycomb catalyst had a partition wall thickness of 0.50 mm, mesh size of 3.20 mm, and an outer shape of 75 mm.

[比較例2]
上記のようにして得たTi-Si複合酸化物原料22.7kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.10kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるようにミキサーにて混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出してサンプルを得ようとしたが、ハニカム形状にならず、ハニカムサンプルが採取できなかった。
[Comparative Example 2]
To 22.7 kg of the Ti-Si composite oxide raw material obtained as described above, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Co., Ltd.), 920 g of ammonium paramorinate (manufactured by Taiyo Mining Co., Ltd.), 25% by mass aqueous ammonia 2 .10 kg, water, 125 g of polyethylene glycol (PEG-20,000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Seolas TG-101) were added, and the mixture was kneaded with a mixer so that the water concentration became 30% by mass. An attempt was made to obtain a sample by extruding into a honeycomb shape having a thickness of 0.50 mm, an opening of 3.20 mm, and an outer diameter of 75 mm. However, the honeycomb shape was not obtained, and a honeycomb sample could not be obtained.

[比較例3]
同様に、上記のようにして得たTi酸化物原料1.29kgとTi−Si複合酸化物原料21.39kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
[Comparative Example 3]
Similarly, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Co., Ltd.) and 1.28 kg of ammonium paravanadate (solar ore) were added to 1.29 kg of the Ti oxide raw material and 21.39 kg of the Ti-Si composite oxide raw material obtained as described above. 920 g, 2.30 kg of 25 mass% ammonia water and water, 125 g of polyethylene glycol (PEG-2000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the water concentration was 30 mass%. After kneading, the mixture was extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C. for 72 hours, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

[実施例1]
同様に、上記のようにして得たTi酸化物原料21.91kgとTi−Si複合酸化物原料0.773kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
[Example 1]
Similarly, 21.91 kg of the Ti oxide raw material and 0.773 kg of the Ti-Si composite oxide raw material obtained as described above are mixed with 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Industry Co., Ltd.) 920 g, 2.30 kg of 25 mass% ammonia water and water, 125 g of polyethylene glycol (PEG-2000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the water concentration was 30 mass%. After kneading, the mixture was extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C. for 72 hours, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

[実施例2]
同様に、Ti酸化物原料12.37kgとTi−Si複合酸化物原料10.31kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 2]
Similarly, a catalyst was obtained in the same manner as in Example 1, except that 12.37 kg of a Ti oxide raw material and 10.31 kg of a Ti-Si composite oxide raw material were used.

[実施例3]
同様に、Ti酸化物原料3.35kgとTi−Si複合酸化物原料19.33kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 3]
Similarly, a catalyst was obtained in the same manner as in Example 1, except that 3.35 kg of the Ti oxide raw material and 19.33 kg of the Ti-Si composite oxide raw material were used.

[実施例4]
同様に、Ti酸化物原料5.93kgとTi−W−Si複合酸化物原料16.75kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 4]
Similarly, a catalyst was obtained in the same manner as in Example 1, except that 5.93 kg of the Ti oxide raw material and 16.75 kg of the Ti-W-Si composite oxide raw material were used.

[実施例5]
同様に、Ti−Si複合酸化物原料0.73kgとTi−Mo複合酸化物原料21.91kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 5]
Similarly, a catalyst was obtained in the same manner as in Example 1, except that 0.73 kg of the Ti—Si composite oxide raw material and 21.91 kg of the Ti—Mo composite oxide raw material were used.

[実施例6]
同様に、Ti−Si複合酸化物原料0.73kgとTi−W複合酸化物原料21.91kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 6]
Similarly, a catalyst was obtained in the same manner as in Example 1, except that 0.73 kg of the Ti—Si composite oxide raw material and 21.91 kg of the Ti—W composite oxide raw material were used.

[実施例7]
同様に、上記のようにして得たTi酸化物原料13.66kgとTi−Si複合酸化物原料10.31kgに、50質量%硝酸マンガン水溶液4.53kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
[Example 7]
Similarly, to 13.66 kg of the Ti oxide raw material and 10.31 kg of the Ti—Si composite oxide raw material obtained as described above, 4.53 kg of a 50% by mass aqueous solution of manganese nitrate, and 920 g of ammonium paramorinate (manufactured by Taiyo Mining Co., Ltd.) And 2.30 kg of 25% by mass aqueous ammonia, water, 125 g of polyethylene glycol (PEG-20,000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 125 g of crystalline cellulose (Ceolas TG-101) were added so that the water concentration became 30% by mass. After kneading, the mixture was extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C for 72 hours, and calcined at 500 ° C for 3 hours to obtain a catalyst.

[実施例8]
同様に、上記のようにして得たTi酸化物原料13.66kgとTi−Si複合酸化物原料10.31kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、硝酸ランタン六水和物2.03kg、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
Example 8
Similarly, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Co., Ltd.) and lanthanum nitrate hexahydrate were added to 13.66 kg of the Ti oxide raw material and 10.31 kg of the Ti-Si composite oxide raw material obtained as described above. 2.03 kg, 2.30 kg of 25 mass% ammonia water and water, 125 g of polyethylene glycol (PEG-20,000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added to reduce the water concentration to 30 mass%. After kneading, the mixture was extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C. for 72 hours, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

[実施例9]
同様に、上記のようにして得たTi酸化物原料13.66kgとTi−Si複合酸化物原料10.31kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、硝酸イットリウム六水和物2.57kg、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
[Example 9]
Similarly, to 13.66 kg of the Ti oxide raw material and 10.31 kg of the Ti—Si composite oxide raw material obtained as described above, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Industry Co., Ltd.) and yttrium nitrate hexahydrate 2.57 kg, 2.30 kg of 25 mass% ammonia water, water, 125 g of polyethylene glycol (PEG-2000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added to reduce the water concentration to 30 mass%. After kneading, the mixture was extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C. for 72 hours, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

[実施例10]
同様に、上記のようにして得たTi酸化物原料13.66kgとTi−Si複合酸化物原料10.31kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、硝酸第一セリウム六水和物2.53kg、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃で72時間乾燥後、500℃で3時間焼成し触媒を得た。
[Example 10]
Similarly, to 13.66 kg of the Ti oxide raw material and 10.31 kg of the Ti—Si composite oxide raw material obtained as described above, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Industry Co., Ltd.) and cerous nitrate hexahydrate 2.53 kg of a Japanese product, 2.30 kg of 25% by mass ammonia water and water, 125 g of polyethylene glycol (PEG-20,000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the water concentration was 30 mass. %, Then extruded into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, dried at 60 ° C. for 72 hours, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

[比較例4]
同様に、Ti−Mo複合酸化物原料22.7kgを使用すること以外は比較例1と同様にして触媒を得た。
[Comparative Example 4]
Similarly, a catalyst was obtained in the same manner as in Comparative Example 1 except that 22.7 kg of the Ti—Mo composite oxide raw material was used.

[比較例5]
同様に、上記のようにして得たTi酸化物原料0.52kgとTi−Si複合酸化物原料22.16kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して85℃で48時間乾燥後 、500℃で3時間焼成し触媒を得た。
[Comparative Example 5]
Similarly, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Industry Co., Ltd.) and ammonium paravanadate (solar mineral) were added to 0.52 kg of the Ti oxide raw material and 22.16 kg of the Ti-Si composite oxide raw material obtained as described above. 920 g, 2.30 kg of 25 mass% ammonia water and water, 125 g of polyethylene glycol (PEG-2000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the water concentration was 30 mass%. After extruding into a honeycomb shape having a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, drying at 85 ° C. for 48 hours, and calcining at 500 ° C. for 3 hours to obtain a catalyst.

[比較例6]
同様に、上記のようにして得たTi酸化物原料0.52kgとTi−Si複合酸化物原料22.16kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状に押し出して60℃の熱風をハニカム孔内に通風 させ48時間乾燥後、500℃で3時間焼成し触媒を得た。
[Comparative Example 6]
Similarly, 1.285 kg of ammonium metavanadate (manufactured by Shinko Chemical Industry Co., Ltd.) and ammonium paravanadate (solar mineral) were added to 0.52 kg of the Ti oxide raw material and 22.16 kg of the Ti-Si composite oxide raw material obtained as described above. 920 g, 2.30 kg of 25 mass% ammonia water and water, 125 g of polyethylene glycol (PEG-2000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Ceolas TG-101) were added, and the water concentration was 30 mass%. After extruding into a honeycomb shape with a partition wall thickness of 0.50 mm, a mesh size of 3.20 mm, and an outer diameter of 75 mm, hot air at 60 ° C is passed through the honeycomb holes, dried for 48 hours, and fired at 500 ° C for 3 hours. A catalyst was obtained.

[試験例1] BET比表面積測定、水銀ポロシメータ比表面積測定によるスリット由来比表面積の見積もり
実施例および比較例において得られた各触媒について、BET比表面積測定値と、水銀ポロシメータによる5nmから5μmの細孔が占める比表面積測定値の比較を行った。BET法による比表面積SABETは大小全ての細孔およびスリットによって形成される比表面積の値であるため、この値から水銀ポロシメータによる5nmから5μmの細孔が占める比表面積SAHgの測定値を引いた値は、スリットの比表面積値と相関する値となり、また、触媒表面に一様にスリットが分布していることを示す指標となる。
BET比表面積測定及び水銀ポロシメータ比表面積測定は以下の条件で行った。
BET比表面積測定装置:Mountech HM model-1220
BET比表面積測定条件:前処理300℃1時間、BET一点法
水銀ポロシメータ比表面積測定装置:Quantachrome PoreMaster
水銀ポロシメータ比表面積測定条件:前処理300℃1時間、水銀圧入角130度、表面張力473erg/cm2
[Test Example 1] Estimation of specific surface area derived from slits by BET specific surface area measurement and mercury porosimeter specific surface area measurement For each of the catalysts obtained in the examples and comparative examples, the BET specific surface area measurement value and the fineness of 5 nm to 5 µm using a mercury porosimeter were measured. The measured specific surface area occupied by the pores was compared. Since the specific surface area SA BET according to the BET method is a value of the specific surface area formed by all the small and large pores and slits, the measured value of the specific surface area SA Hg occupied by the pores of 5 nm to 5 μm by the mercury porosimeter is subtracted from this value. The value thus obtained is a value that correlates with the specific surface area of the slit, and is an index indicating that the slit is uniformly distributed on the catalyst surface.
The BET specific surface area measurement and the mercury porosimeter specific surface area measurement were performed under the following conditions.
BET specific surface area measuring device: Mountech HM model-1220
BET specific surface area measurement condition: Pretreatment 300 ° C for 1 hour, BET single point method Mercury porosimeter specific surface area measurement device: Quantachrome PoreMaster
Mercury porosimeter specific surface area measurement conditions: pretreatment 300 ° C for 1 hour, mercury intrusion angle 130 °, surface tension 473 erg / cm 2

第1表に、BET比表面積測定値(SABET)、水銀ポロシメータ比表面積測定における5nmから5μmの細孔が占める比表面積測定値(SAHg)を示す。SABET−SAHgの値は、実施例1〜8の触媒の場合は25〜35の範囲内となった。一方、比較例1〜6の触媒の場合は、この範囲を外れる値となった。また、実施例1〜8の触媒におけるスリットは触媒表面の一部分のみではなく一様に分布しているといえる。 Table 1 shows the measured BET specific surface area (SA BET ) and the measured specific surface area (SA Hg ) occupied by pores of 5 nm to 5 μm in mercury porosimeter specific surface area measurement. The value of SA BET -SA Hg was in the range of 25-35 for the catalysts of Examples 1-8. On the other hand, in the case of the catalysts of Comparative Examples 1 to 6, the values were out of this range. Further, it can be said that the slits in the catalysts of Examples 1 to 8 are not only distributed on a part of the catalyst surface but are uniformly distributed.

[試験例2] スリット割合の測定
マイクロスコープを全貫通孔内に挿入し、ハニカム端面における幅が0.005mm以上かつセルの目開き(3.2mm)以下である隔壁のスリットに数を数えた(隣り合う貫通孔の間に存在する重複したスリットは同一のものと見なす)。
[Test Example 2] Measurement of slit ratio A microscope was inserted into all the through holes, and the number of slits of the partition wall having a width of 0.005 mm or more and a cell opening (3.2 mm) or less at a honeycomb end face was counted. (Overlapping slits between adjacent through-holes are considered identical).

次に、隔壁数(20セル×(20セル−1)×2=760)に対する割合(百分率)を求めた。
結果を第1表に示す。
第1表に示すように、実施例1〜8の触媒の場合、スリット割合(すなわち、スリット数/隔壁数×100)は0.03〜3%(片端面あたり)の範囲内となった。
Next, the ratio (percentage) to the number of partition walls (20 cells × (20 cells−1) × 2 = 760) was determined.
The results are shown in Table 1.
As shown in Table 1, in the case of the catalysts of Examples 1 to 8, the slit ratio (that is, the number of slits / the number of partition walls × 100) was in the range of 0.03 to 3% (per one end face).

[試験例3] スリット長さの測定
マイクロスコープを貫通孔内に挿入し、スリット長を測定し、その中で最大値をスリット長さとした。
[Test Example 3] Measurement of slit length A microscope was inserted into the through hole, the slit length was measured, and the maximum value was defined as the slit length.

[試験例4] 圧縮強度測定
実施例1〜8および比較例1〜6の各々において得られた触媒を長さ75mmに切断し、75mm×75mmの大きさの立方体形状に切り出した後、図2に示すように、触媒貫通孔と垂直な方向に圧縮し、触媒が完全に破壊した時の圧力を測定した。
結果を第1表に示す。実施例1〜8の触媒の場合、圧縮強度が50〜200N/cm2の範囲内となった。すなわち、圧縮強度が高いハニカム状触媒であることを確認できた。
[Test Example 4] Compressive strength measurement The catalyst obtained in each of Examples 1 to 8 and Comparative Examples 1 to 6 was cut into a length of 75 mm, cut into a cube having a size of 75 mm x 75 mm, and then cut as shown in FIG. As shown in Table 2, the sample was compressed in a direction perpendicular to the catalyst through-hole, and the pressure when the catalyst was completely destroyed was measured.
The results are shown in Table 1. In the case of the catalysts of Examples 1 to 8, the compressive strength was in the range of 50 to 200 N / cm 2 . That is, it was confirmed that the honeycomb catalyst had high compressive strength.

[試験例5] CaCl2溶液スプレー、硫安による触媒の加速劣化試験
実施例および比較例において得られた各触媒について、4目×4目×107mmLに切り出し(肉厚:0.50mm、目開きの幅:3.20mm)、石英反応管にセットした後、Fresh状態での触媒脱硝性能を測定した。ここで触媒接触前後のガス中の窒素酸化物(NOx)の脱硝率は、下記式により求めることができる。このとき、NOxの濃度は化学発光式の窒素酸化物分析計(株式会社 アバテック・ヤナコ社製、ECL−88AO)で測定した。
脱硝率(%)={(未接触ガス中のNOx(体積ppm)−接触後のガス中のNOx(体積ppm))/未接触ガス中のNOx(体積ppm)}×100
ここで求められた初期脱硝率をη0(%)とした。また反応速度定数k0=―AV×ln(1−η0/100)を算出した。
その後、石英反応管中にCaCl2溶液を噴霧するためのノズルを取り付け、触媒上流側からCaCl2溶液を添加した。ノズルは石英反応管の上流側の端面から300mm離して設置した。CaCl2溶液の濃度は0.1質量%、噴霧時間は48時間で実施した。CaCl2溶液スプレー後、再び触媒の脱硝性能を測定した。ここで求められた劣化後脱硝率をη(%)からk=―AV×ln(1−η/100)を算出した。そして、k/k0を求めて、Fresh状態の性能との比較を行った。性能測定及びCaCl2溶液スプレーはいずれも130℃で実施した。測定条件は以下に示す通りである。
活性測定条件
反応温度:130℃、SV=3000(1/h)、ガス風量=0.075(Nm3/h)、AV=3.30(Nm3/m2h)、NO=180(体積ppm)、NH3=180(体積ppm)、SO2=40(体積ppm)、O2=7体積%、H2O=10体積%、N2=バランス
加速劣化試験条件
SV=3000(1/h)、ガス風量=0.075(Nm3/h)、AV=3.30(Nm3/m2h)、NO=0(体積ppm)、NH3=0(体積ppm)、SO2=1000(体積ppm)、O2=7体積%、H2O=10体積%(CaCl2溶液として)、N2=バランス
[Test Example 5] Accelerated deterioration test of catalyst by spraying CaCl 2 solution and ammonium sulfate Each catalyst obtained in Examples and Comparative Examples was cut into 4 × 4 × 107 mmL (wall thickness: 0.50 mm, opening of mesh). (Width: 3.20 mm) After setting in a quartz reaction tube, the catalytic denitration performance in a fresh state was measured. Here, the denitration rate of nitrogen oxides (NOx) in the gas before and after contact with the catalyst can be obtained by the following equation. At this time, the concentration of NOx was measured with a chemiluminescent nitrogen oxide analyzer (ECL-88AO, manufactured by Abatec Yanaco Co., Ltd.).
DeNOx rate (%) = {(NOx in non-contact gas (volume ppm) −NOx in gas after contact (volume ppm)) / NOx in non-contact gas (volume ppm)} × 100
The initial denitration rate determined here was defined as η 0 (%). The calculated reaction rate constant k 0 = -AV × ln (1 -η 0/100).
Thereafter, a nozzle for spraying the CaCl 2 solution was attached to the quartz reaction tube, and the CaCl 2 solution was added from the upstream side of the catalyst. The nozzle was installed at a distance of 300 mm from the upstream end face of the quartz reaction tube. The concentration of the CaCl 2 solution was 0.1% by mass, and the spraying time was 48 hours. After spraying the CaCl 2 solution, the denitration performance of the catalyst was measured again. From the η (%), k = −AV × ln (1−η / 100) was calculated from the denitration rate after deterioration obtained here. Then, k / k 0 was obtained and compared with the performance in the Fresh state. Performance measurement and CaCl 2 solution spraying were both performed at 130 ° C. The measurement conditions are as shown below.
Activity measurement conditions Reaction temperature: 130 ° C., SV = 3000 (1 / h), gas flow rate = 0.075 (Nm 3 / h), AV = 3.30 (Nm 3 / m 2 h), NO = 180 (volume) ppm), NH 3 = 180 (volume ppm), SO 2 = 40 (volume ppm), O 2 = 7 vol%, H 2 O = 10 vol%, N 2 = balance Accelerated deterioration test condition SV = 3000 (1 / h), the gas air volume = 0.075 (Nm 3 /h),AV=3.30(Nm 3 / m 2 h), NO = 0 ( volume ppm), NH 3 = 0 (volume ppm), SO 2 = 1000 (ppm by volume), O 2 = 7% by volume, H 2 O = 10% by volume (as CaCl 2 solution), N 2 = balance

結果を第1表に示す。比較例1〜6の触媒に比べ、実施例1〜8の触媒はCaCl2溶液スプレー後も活性が高いことがわかる。 The results are shown in Table 1. It can be seen that the catalysts of Examples 1 to 8 have higher activities even after spraying the CaCl 2 solution than the catalysts of Comparative Examples 1 to 6.

[試験例6] 低温脱硝試験
実施例および比較例において得られた各触媒について、4目×4目×107mmLに切り出し(肉厚:0.50mm、目開きの幅:3.20mm)、石英反応管にセットした後、低温脱硝性能を測定した。
ここで触媒接触前後のガス中の窒素酸化物(NO)の脱硝率は、上記式により求めた。このときNOの濃度は化学発光式の窒素酸化物分析計(株式会社 アナテック・ヤナコ製、ECL-88AO)にて測定した。
Test Example 6 Low-Temperature Denitrification Test Each catalyst obtained in Examples and Comparative Examples was cut into 4 × 4 × 107 mmL (thickness: 0.50 mm, opening width: 3.20 mm), and a quartz reaction was performed. After setting in a tube, the low-temperature denitration performance was measured.
Here denitration of nitrogen oxides in the gas before and after the catalyst contact (NO X) was determined by the above equation. At this time, the concentration of NO X was measured with a chemiluminescent nitrogen oxide analyzer (ECL-88AO, manufactured by Anatech Yanaco).

低温脱硝性能の測定方法は次の通りである。
反応温度:110℃、空塔速度(SV)=3000hr−1
モデルガス組成:NO=180体積ppm、NH3=180体積ppm、O2=7体積%、H2O=10体積%、N2=バランス
The method for measuring the low-temperature denitration performance is as follows.
Reaction temperature: 110 ° C, superficial velocity (SV) = 3000 hr -1
Model gas composition: NO X = 180 ppm by volume, NH 3 = 180 ppm by volume, O 2 = 7% by volume, H 2 O = 10% by volume, N 2 = balance

結果を第1表に示す。第1表では低温脱硝性能が65%以上であったものを良好(○)、65%未満であったものを不良(×)と記した。   The results are shown in Table 1. In Table 1, those having a low-temperature denitration performance of 65% or more were marked as good (○) and those with less than 65% were marked as poor (x).

第1表に示すように、実施例1〜10の触媒は、SABET−SAHgの値が25〜35の範囲内となり、スリット数/隔壁数×100の値が0.03〜3%(片端面あたり)の範囲内となり、スリット長さは、ハニカム触媒の長手方向に対して5〜80%の範囲内となり、圧縮強度は50〜200N/cm2の範囲内となり、CaCl2溶液スプレー後の活性が高く、低温脱硝性能が高いことがわかった。 As shown in Table 1, in the catalysts of Examples 1 to 10, the value of SA BET -SA Hg was in the range of 25 to 35, and the value of the number of slits / the number of partition walls × 100 was 0.03 to 3% ( (Per one end face), the slit length is in the range of 5 to 80% with respect to the longitudinal direction of the honeycomb catalyst, the compressive strength is in the range of 50 to 200 N / cm 2 , and after spraying the CaCl 2 solution. Was found to have high activity and low temperature denitration performance.

これに対して、成分Bを含まない態様である比較例1および比較例4は、SABET−SAHgの値が低くなり、スリットが形成されなかった。このような比較例1および比較例4の場合、CaCl2溶液スプレー後の活性が低くなった。
また、成分Aを含まない態様である比較例2は、成形状態(生産性)も悪く、得られた成形体の強度不足等により崩壊してしまい、ハニカム状の触媒とならなった。
また、成分Aと成分Bとの比率が5:83であり、触媒中のSiO含有率が16質量%を超えている比較例3は、SABET−SAHgの値が高くなり、圧縮強度が低くなった。比較例5および比較例6についても同様の傾向であった。
On the other hand, in Comparative Examples 1 and 4 in which the component B was not contained, the value of SA BET -SA Hg was low, and no slit was formed. In Comparative Examples 1 and 4, the activity after spraying the CaCl 2 solution was low.
Further, Comparative Example 2, which is an embodiment containing no component A, was poor in molding state (productivity), and collapsed due to insufficient strength of the obtained molded body, and became a honeycomb-shaped catalyst.
In Comparative Example 3, in which the ratio of component A to component B was 5:83 and the content of SiO 2 in the catalyst exceeded 16% by mass, the value of SA BET -SA Hg was high, and the compressive strength was high. Became lower. The same tendency was observed in Comparative Examples 5 and 6.

Claims (7)

A成分とB成分との混合物からなる担体と、活性金属成分とを含む排ガス処理ハニカム触媒であって、
前記A成分が、TiO 2 からなる無機単一酸化物、または、WO 3 およびMoO 3 からなる群から選ばれる少なくとも1つとTiO 2 との無機複合酸化物であり、
前記B成分が、SiO 2 からなる無機単一酸化物、または、TiO 2 およびWO 3 からなる群から選ばれる少なくとも1つとSiO 2 との無機複合酸化物であり、
前記A成分の含有率が10〜90質量%であり、
SiO 2 の含有率が0.05〜16質量%である、
300℃で1時間、前処理した後に行うBET法(一点法)による比表面積(SABET)と、300℃で1時間、前処理した後に、水銀圧入角130度、表面張力473erg/cm 2 にて行う水銀圧入ポロシメトリー法による5nmから5μmの触媒細孔の比表面積(SAHg)との差(SABET−SAHg)が25〜35m2/gの範囲にあることを特徴とする排ガス処理ハニカム触媒。
An exhaust gas treatment honeycomb catalyst comprising a carrier comprising a mixture of an A component and a B component, and an active metal component,
Wherein component A, an inorganic single oxides consisting TiO 2, or an inorganic composite oxide of at least one and TiO 2 selected from the group consisting of WO 3 and MoO 3,
The B component is an inorganic single oxides consisting SiO 2, or at least one inorganic composite oxide of SiO 2 selected from the group consisting of TiO 2 and WO 3,
The content of the component A is 10 to 90% by mass,
The content of SiO 2 is 0.05 to 16% by mass;
1 hour at 300 ° C., BET method in which after the pretreatment with specific surface area according to (single point method) (SA BET), 1 hour at 300 ° C., after pretreatment, the mercury penetration angle of 130 degrees, the surface tension 473erg / cm 2 Exhaust gas treatment characterized in that the difference (SA BET -SA Hg ) from the specific surface area (SA Hg ) of the catalyst pores of 5 nm to 5 μm by mercury intrusion porosimetry performed in the range of 25 to 35 m 2 / g. Honeycomb catalyst.
隔壁に0.005mm以上かつセル目開き幅未満のスリットを有し、スリット数が、隔壁数(矩形のハニカム構造体の端面における一方の辺におけるセル数をXとし、他方の辺におけるセル数をYとして、X(Y−1)+Y(X−1)から算出される値)に対して、0.03〜3%(片端面あたり)である、請求項1に記載の排ガス処理ハニカム触媒。 The partition has a slit of 0.005 mm or more and less than the cell opening width, and the number of slits is the number of partitions (X is the number of cells on one side of the end face of the rectangular honeycomb structure, and X is the number of cells on the other side. 2. The exhaust gas treatment honeycomb catalyst according to claim 1, wherein Y is 0.03 to 3% (per one end surface) based on X (Y−1) + Y (X−1)). 前記スリットの最大長が、長手方向の長さの5〜80%である、請求項に記載の排ガス処理ハニカム触媒。 The exhaust gas treatment honeycomb catalyst according to claim 2 , wherein a maximum length of the slit is 5 to 80% of a length in a longitudinal direction. ハニカムセルの肉厚を0.50mm、目開きの幅を3.20mmとしたハニカム触媒とした場合の圧縮強度が50〜200N/cm2である、請求項1〜のいずれかに記載の排ガス処理ハニカム触媒。 The exhaust gas according to any one of claims 1 to 3 , wherein the honeycomb cell has a honeycomb cell having a thickness of 0.50 mm and an opening width of 3.20 mm, and has a compressive strength of 50 to 200 N / cm 2. Treated honeycomb catalyst. 前記B成分に含まれるSiO2の固形分量が5〜20質量%である、請求項1〜のいずれかに記載の排ガス処理ハニカム触媒。 The solids content of the SiO 2 contained in the component B is 5 to 20 wt%, the exhaust gas treatment honeycomb catalyst according to any one of claims 1-4. 前記活性金属成分が、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つである、請求項1〜のいずれかに記載の排ガス処理ハニカム触媒。 The exhaust gas treatment honeycomb catalyst according to any one of claims 1 to 5 , wherein the active metal component is at least one selected from the group consisting of vanadium, molybdenum, manganese, lanthanum, yttrium, and cerium. 下記の工程(a)〜(c)を備え、請求項1〜のいずれかに記載の排ガス処理ハニカム触媒が得られる、排ガス処理ハニカム触媒の製造方法。
工程(a):Tiを含むスラリー、または、WおよびMoからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、WO3およびMoO3からなる群から選ばれる少なくとも1つとTiO2との無機複合酸化物原料を得る工程。
工程(b):Siを含むスラリー、または、TiおよびWからなる群から選ばれる少なくとも1つとSiとを含むスラリーを脱水し、焼成して、SiO2からなる無機単一酸化物原料、または、TiO2およびWO3からなる群から選ばれる少なくとも1つとSiO2との無機複合酸化物原料を得る工程。
工程(c):工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料と、工程(b)において得られた無機単一酸化物原料または無機複合酸化物原料とを混合し、ハニカム状に押し出して成形し、乾燥、焼成する工程。
A method for producing an exhaust gas treating honeycomb catalyst, comprising the following steps (a) to (c), wherein the exhaust gas treating honeycomb catalyst according to any one of claims 1 to 6 is obtained.
Step (a): A slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W and Mo is dehydrated and calcined to obtain an inorganic single oxide raw material made of TiO 2 , or at least one step of obtaining the inorganic composite oxide raw material of TiO 2 selected from the group consisting of WO 3 and MoO 3.
Step (b): A slurry containing Si or a slurry containing at least one selected from the group consisting of Ti and W and Si is dehydrated and calcined to obtain an inorganic single oxide raw material made of SiO 2 , or A step of obtaining a raw material of an inorganic composite oxide of at least one selected from the group consisting of TiO 2 and WO 3 and SiO 2 .
Step (c): mixing the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (a) with the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (b) Extruding into a honeycomb shape, forming, drying and firing.
JP2015238418A 2015-01-09 2015-12-07 Exhaust gas treatment honeycomb catalyst and method for producing the same Active JP6671163B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003645 2015-01-09
JP2015003645 2015-01-09

Publications (2)

Publication Number Publication Date
JP2016129885A JP2016129885A (en) 2016-07-21
JP6671163B2 true JP6671163B2 (en) 2020-03-25

Family

ID=56390207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238418A Active JP6671163B2 (en) 2015-01-09 2015-12-07 Exhaust gas treatment honeycomb catalyst and method for producing the same

Country Status (2)

Country Link
JP (1) JP6671163B2 (en)
CN (1) CN105771960B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592319B2 (en) * 2015-09-30 2019-10-16 日揮触媒化成株式会社 Exhaust gas treatment catalyst and method for producing the same
CN106902811A (en) * 2017-02-12 2017-06-30 盐城工业职业技术学院 The calendering process of cellular low-temperature denitration catalyst
JP6605522B2 (en) * 2017-03-09 2019-11-13 株式会社キャタラー Exhaust gas purification catalyst
CN108722393A (en) * 2018-05-04 2018-11-02 昆明贵研催化剂有限责任公司 The control method of bond strength between a kind of catalysis material coating and cordierite honeycomb ceramic carrier
JP2020044461A (en) * 2018-09-14 2020-03-26 三菱日立パワーシステムズ株式会社 Denitrification device
KR102265558B1 (en) * 2019-08-09 2021-06-30 한국남부발전 주식회사 High strength honeycomb structures for selective catalystic reduction catalyst and method of manufacturing the same
WO2021140775A1 (en) * 2020-01-06 2021-07-15 日本碍子株式会社 Ceramic structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186562B1 (en) * 2002-06-17 2015-01-14 Hitachi Metals, Ltd. Ceramic honeycomb structure
JP4182697B2 (en) * 2002-07-10 2008-11-19 日揮触媒化成株式会社 Catalyst for decomposing chlorinated organic compounds and process for producing the same
JP2004275852A (en) * 2003-03-14 2004-10-07 Mitsubishi Heavy Ind Ltd Stack gas denitrification catalyst and method for producing the same
CN101687143B (en) * 2007-01-31 2013-01-02 巴斯福催化剂公司 Gas catalysts comprising porous wall honeycombs
JP5215990B2 (en) * 2007-02-27 2013-06-19 株式会社日本触媒 Exhaust gas treatment catalyst and exhaust gas treatment method
CN103769239B (en) * 2014-01-27 2016-08-17 济南大学 Honeycomb type denitrating catalyst with hierarchical porous structure and preparation method thereof

Also Published As

Publication number Publication date
CN105771960B (en) 2020-09-22
CN105771960A (en) 2016-07-20
JP2016129885A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6671163B2 (en) Exhaust gas treatment honeycomb catalyst and method for producing the same
JP6592319B2 (en) Exhaust gas treatment catalyst and method for producing the same
US6602818B2 (en) Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
WO2018047379A1 (en) Denitration catalyst and production method for denitration catalyst
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
KR101095229B1 (en) Method of preparing vanadium/tungsten/titania-based catalyst
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
JP2004000943A (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
CN106268773A (en) A kind of thin-walled wide active temperature windows denitrating catalyst and preparation method thereof
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
WO2010013729A1 (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
JP6697287B2 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxide, and method for purifying exhaust gas
JP2015192999A (en) Method for producing exhaust gas treatment catalyst using used catalyst and exhaust gas treatment catalyst
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
KR101631487B1 (en) Catalyst for Removal of Nitrogen Oxides by Selective Catalytic reduction
WO2014178290A1 (en) Denitration catalyst and method for producing same
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP6368251B2 (en) Honeycomb catalyst for treating coal and biomass mixed combustion exhaust gas, method for producing the same, and method for treating coal and biomass mixed combustion exhaust gas using the same.
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2016068031A (en) Denitration catalyst and denitration method
JP2005021780A (en) Production method of exhaust gas treatment catalyst
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPH09187652A (en) Production of catalyst for stack gas denitrification
JPH0438455B2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6671163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250